1
|
Chang CWM, Wang SC, Wang CH, Pang AH, Yang CH, Chang YK, Wu WJ, Tsai MD. A unified view on enzyme catalysis by cryo-EM study of a DNA topoisomerase. Commun Chem 2024; 7:45. [PMID: 38418525 PMCID: PMC10901890 DOI: 10.1038/s42004-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The theories for substrate recognition in enzyme catalysis have evolved from lock-key to induced fit, then conformational selection, and conformational selection followed by induced fit. However, the prevalence and consensus of these theories require further examination. Here we use cryogenic electron microscopy and African swine fever virus type 2 topoisomerase (AsfvTop2) to demonstrate substrate binding theories in a joint and ordered manner: catalytic selection by the enzyme, conformational selection by the substrates, then induced fit. The apo-AsfvTop2 pre-exists in six conformers that comply with the two-gate mechanism directing DNA passage and release in the Top2 catalytic cycle. The structures of AsfvTop2-DNA-inhibitor complexes show that substantial induced-fit changes occur locally from the closed apo-conformer that however is too far-fetched for the open apo-conformer. Furthermore, the ATPase domain of AsfvTop2 in the MgAMP-PNP-bound crystal structures coexist in reduced and oxidized forms involving a disulfide bond, which can regulate the AsfvTop2 function.
Collapse
Affiliation(s)
- Chiung-Wen Mary Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Ramirez-Medina E, Velazquez-Salinas L, Rai A, Espinoza N, Valladares A, Silva E, Burton L, Spinard E, Meyers A, Risatti G, Calvelage S, Blome S, Gladue DP, Borca MV. Evaluation of the Deletion of the African Swine Fever Virus Gene O174L from the Genome of the Georgia Isolate. Viruses 2023; 15:2134. [PMID: 37896911 PMCID: PMC10612027 DOI: 10.3390/v15102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
African swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus, which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently affecting pork production in a large geographical region, including Eurasia and the Caribbean. ASFV has a large genome, which harbors more than 160 genes, but most of these genes' functions have not been experimentally characterized. One of these genes is the O174L gene which has been experimentally shown to function as a small DNA polymerase. Here, we demonstrate that the deletion of the O174L gene from the genome of the virulent strain ASFV Georgia2010 (ASFV-G) does not significantly affect virus replication in vitro or in vivo. A recombinant virus, having deleted the O174L gene, ASFV-G-∆O174L, was developed to study the effect of the O174L protein in replication in swine macrophages cultures in vitro and disease production when inoculated in pigs. The results demonstrated that ASFV-G-∆O174L has similar replication kinetics to parental ASFV-G in swine macrophage cultures. In addition, animals intramuscularly inoculated with 102 HAD50 of ASFV-G-∆O174L presented a clinical form of the disease that is indistinguishable from that induced by the parental virulent strain ASFV-G. All animals developed a lethal disease, being euthanized around day 7 post-infection. Therefore, although O174L is a well-characterized DNA polymerase, its function is apparently not critical for the process of virus replication, both in vitro and in vivo, or for disease production in domestic pigs.
Collapse
Affiliation(s)
- Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Ayushi Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Nallely Espinoza
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Alyssa Valladares
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Ediane Silva
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Leeanna Burton
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Edward Spinard
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Amanda Meyers
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Guillermo Risatti
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA;
| | - Sten Calvelage
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.C.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.C.); (S.B.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; (E.R.-M.); (L.V.-S.); (A.R.); (N.E.); (A.V.); (E.S.); (L.B.); (E.S.); (A.M.)
| |
Collapse
|
3
|
Farlow J, Donduashvili M, Kokhreidze M, Kotorashvili A, Vepkhvadze NG, Kotaria N, Gulbani A. Intra-epidemic genome variation in highly pathogenic African swine fever virus (ASFV) from the country of Georgia. Virol J 2018; 15:190. [PMID: 30547827 PMCID: PMC6295034 DOI: 10.1186/s12985-018-1099-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND African swine fever virus (ASFV) causes an acute hemorrhagic infection in suids with a mortality rate of up to 100%. No vaccine is available and the potential for catastrophic disease in Europe remains elevated due to the ongoing ASF epidemic in Russia and Baltic countries. To date, intra-epidemic whole-genome variation for ASFV has not been reported. To provide a more comprehensive baseline for genetic variation early in the ASF outbreak, we sequenced two Georgian ASFV samples, G-2008/1 and G-2008/2, derived from domestic porcine blood collected in 2008. METHODS Genomic DNA was extracted directly from low-volume ASFV PCR-positive porcine blood samples and subjected to next generation sequencing on the Illumina Miseq platform. De novo and mapped sequence assemblies were performed using CLCBio software. Genomic illustrations, sequence alignments and assembly figures were generated using Geneious v10.2.4. Sequence repeat architecture was analyzed using DNASTAR GeneQuest 14.1.0. RESULTS The G-2008/1 and G-2008/2 genomes were distinguished from each other by coding changes in seven genes, including MGF 110-1 L, X69R, MGF 505-10R, EP364R, H233R, E199L, and MGF 360-21R in addition to eight homopolymer tract variations. The 2008/2 genome possessed a novel allele state at a previously undescribed intergenic repeat locus between genes C315R and C147L. The C315R/C147L locus represents the earliest observed variable repeat sequence polymorphism reported among isolates from this epidemic. No sequence variation was observed in conventional ASFV subtyping markers. The two genomes exhibited complete collinearity and identical gene content with the Georgia 2007/1 reference genome. Approximately 56 unique homopolymer A/T-tract variations were identified that were unique to the Georgia 2007/1 genome. In both 2008 genomes, within-sample sequence read heterogeneity was evident at six homopolymeric G/C-tracts confined to the known hypervariable ~ 7 kb region in the left terminal region of the genome. CONCLUSIONS This is the first intra-epidemic comparative genomic analysis reported for ASFV and provides insight into the intra-epidemic microevolution of ASFV. The genomes reported here, in addition to the G-2007/1 genome, provide an early baseline for future genome-level comparisons and epidemiological tracing efforts.
Collapse
Affiliation(s)
- Jason Farlow
- Farlow Scientific Consulting Company, LLC, Lewiston, UT 84320 USA
| | | | | | - Adam Kotorashvili
- Richard G. Lugar Center for Public Health Research at the National Center for Disease Control (NCDC), Tbilisi, Georgia
| | | | - Nato Kotaria
- Richard G. Lugar Center for Public Health Research at the National Center for Disease Control (NCDC), Tbilisi, Georgia
| | - Ana Gulbani
- Laboratory of the Ministry of Agriculture, Tbilisi, Georgia
| |
Collapse
|
4
|
Yang Z, Kang DH, Lee H, Shin J, Yan W, Rathore B, Kim HR, Kim SJ, Singh H, Liu L, Qu J, Kang C, Kim JS. A Fluorescent Probe for Stimulated Emission Depletion Super-Resolution Imaging of Vicinal-Dithiol-Proteins on Mitochondrial Membrane. Bioconjug Chem 2018; 29:1446-1453. [PMID: 29570268 DOI: 10.1021/acs.bioconjchem.8b00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Dong Hoon Kang
- Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736, Korea
| | - Hoyeon Lee
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bhowmira Rathore
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hye-Ri Kim
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Seo Jin Kim
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Hardev Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Jong Seung Kim
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
5
|
Wu WJ, Su MI, Wu JL, Kumar S, Lim LH, Wang CWE, Nelissen FHT, Chen MCC, Doreleijers JF, Wijmenga SS, Tsai MD. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation. J Am Chem Soc 2014; 136:4927-37. [PMID: 24617852 DOI: 10.1021/ja4102375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A dogma for DNA polymerase catalysis is that the enzyme binds DNA first, followed by MgdNTP. This mechanism contributes to the selection of correct dNTP by Watson-Crick base pairing, but it cannot explain how low-fidelity DNA polymerases overcome Watson-Crick base pairing to catalyze non-Watson-Crick dNTP incorporation. DNA polymerase X from the deadly African swine fever virus (Pol X) is a half-sized repair polymerase that catalyzes efficient dG:dGTP incorporation in addition to correct repair. Here we report the use of solution structures of Pol X in the free, binary (Pol X:MgdGTP), and ternary (Pol X:DNA:MgdGTP with dG:dGTP non-Watson-Crick pairing) forms, along with functional analyses, to show that Pol X uses multiple unprecedented strategies to achieve the mutagenic dG:dGTP incorporation. Unlike high fidelity polymerases, Pol X can prebind purine MgdNTP tightly and undergo a specific conformational change in the absence of DNA. The prebound MgdGTP assumes an unusual syn conformation stabilized by partial ring stacking with His115. Upon binding of a gapped DNA, also with a unique mechanism involving primarily helix αE, the prebound syn-dGTP forms a Hoogsteen base pair with the template anti-dG. Interestingly, while Pol X prebinds MgdCTP weakly, the correct dG:dCTP ternary complex is readily formed in the presence of DNA. H115A mutation disrupted MgdGTP binding and dG:dGTP ternary complex formation but not dG:dCTP ternary complex formation. The results demonstrate the first solution structural view of DNA polymerase catalysis, a unique DNA binding mode, and a novel mechanism for non-Watson-Crick incorporation by a low-fidelity DNA polymerase.
Collapse
Affiliation(s)
- Wen-Jin Wu
- Institute of Biological Chemistry, and ‡Genomics Research Center, Academia Sinica , 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Redrejo-Rodríguez M, Salas ML. Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Res 2013; 179:12-25. [PMID: 24184318 DOI: 10.1016/j.virusres.2013.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/21/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
Abstract
Among the DNA viruses, the so-called nucleo-cytoplasmic large DNA viruses (NCLDV) constitute a monophyletic group that currently consists of seven families of viruses infecting a very broad variety of eukaryotes, from unicellular marine protists to humans. Many recent papers have analyzed the sequence and structure of NCLDV genomes and their phylogeny, providing detailed analysis about their genomic structure and evolutionary history and proposing their inclusion in a new viral order named Megavirales that, according to some authors, should be considered as a fourth domain of life, aside from Bacteria, Archaea and Eukarya. The maintenance of genetic information protected from environmental attacks and mutations is essential not only for the survival of cellular organisms but also viruses. In cellular organisms, damaged DNA bases are removed in two major repair pathways: base excision repair (BER) and nucleotide incision repair (NIR) that constitute the major pathways responsible for repairing most endogenous base lesions and abnormal bases in the genome by precise repair procedures. Like cells, many NCLDV encode proteins that might constitute viral DNA repair pathways that would remove damages through BER/NIR pathways. However, the molecular mechanisms and, specially, the biological roles of those viral repair pathways have not been deeply addressed in the literature so far. In this paper, we review viral-encoded BER proteins and the genetic and biochemical data available about them. We propose and discuss probable viral-encoded DNA repair mechanisms and pathways, as compared with the functional and molecular features of known homologs proteins.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - María L Salas
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Involvement of the reparative DNA polymerase Pol X of African swine fever virus in the maintenance of viral genome stability in vivo. J Virol 2013; 87:9780-7. [PMID: 23824796 DOI: 10.1128/jvi.01173-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The function of the African swine fever virus (ASFV) reparative DNA polymerase, Pol X, was investigated in the context of virus infection. Pol X is a late structural protein that localizes at cytoplasmic viral factories during DNA replication. Using an ASFV deletion mutant lacking the Pol X gene, we have shown that Pol X is not required for virus growth in Vero cells or swine macrophages under one-step growth conditions. However, at a low multiplicity of infection, when multiple rounds of replication occur, the growth of the mutant virus is impaired in swine macrophages but not in Vero cells, suggesting that Pol X is needed to repair the accumulated DNA damage. The replication of the mutant virus in Vero cells presents sensitivity to oxidative damage, and mutational analysis of viral DNA shows that deletion of Pol X results in an increase in the mutation frequency in macrophages. Therefore, our data reveal a biological role for ASFV Pol X in the context of the infected cell in the preservation of viral genetic information.
Collapse
|
8
|
Gillet FX, Cattoni DI, Petiot-Bécard S, Delalande F, Poignavent V, Brizard JP, Bessin Y, Dorsselaer AV, Declerck N, Sanglier-Cianférani S, Brugidou C, Vignols F. The RYMV-Encoded Viral Suppressor of RNA Silencing P1 Is a Zinc-Binding Protein with Redox-Dependent Flexibility. J Mol Biol 2013; 425:2423-35. [DOI: 10.1016/j.jmb.2013.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
9
|
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2012; 173:3-14. [PMID: 23142553 DOI: 10.1016/j.virusres.2012.10.020] [Citation(s) in RCA: 459] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 01/03/2023]
Abstract
African swine fever virus (ASFV) is a large icosahedral DNA virus which replicates predominantly in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames. These are closely spaced and read from both DNA strands. The virus genome termini are covalently closed by imperfectly base-paired hairpin loops that are present in two forms that are complimentary and inverted with respect to each other. Adjacent to the termini are inverted arrays of different tandem repeats. Head to head concatemeric genome replication intermediates have been described. A similar mechanism of replication to Poxviruses has been proposed for ASFV. Virus genome transcription occurs independently of the host RNA polymerase II and virus particles contain all of the enzymes and factors required for early gene transcription. DNA replication begins in perinuclear factory areas about 6h post-infection although an earlier stage of nuclear DNA synthesis has been reported. The virus genome encodes enzymes required for transcription and replication of the virus genome and virion structural proteins. Enzymes that are involved in a base excision repair pathway may be an adaptation to enable virus replication in the oxidative environment of the macrophage cytoplasm. Other ASFV genes encode factors involved in evading host defence systems and modulating host cell function. Variation between the genomes of different ASFV isolates is most commonly due to gain or loss of members of multigene families, MGFs 100, 110, 300, 360, 505/530 and family p22. These are located within the left terminal 40kbp and right terminal 20kbp. ASFV is the only member of the Asfarviridae, which is one of the families within the nucleocytoplasmic large DNA virus superfamily.
Collapse
Affiliation(s)
- Linda K Dixon
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity. Proc Natl Acad Sci U S A 2010; 107:6805-10. [PMID: 20351257 DOI: 10.1073/pnas.0914077107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Formation of a complex between the XRCC1 N-terminal domain (NTD) and DNA polymerase beta (Pol beta) is central to base excision repair of damaged DNA. Two crystal forms of XRCC1-NTD complexed with Pol beta have been solved, revealing that the XRCC1-NTD is able to adopt a redox-dependent alternate fold, characterized by a disulfide bond, and substantial variations of secondary structure, folding topology, and electrostatic surface. Although most of these structural changes occur distal to the interface, the oxidized XRCC1-NTD forms additional interactions with Pol beta, enhancing affinity by an order of magnitude. Transient disulfide bond formation is increasingly recognized as an important molecular regulatory mechanism. The results presented here suggest a paradigm in DNA repair in which the redox state of a scaffolding protein plays an active role in organizing the repair complex.
Collapse
|