1
|
Ito M, Chisada S, Matsunaga N, Okino N. Vibrio-binding gangliosides in fish intestinal tracts. Glycoconj J 2023; 40:315-322. [PMID: 36933118 DOI: 10.1007/s10719-023-10110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
It has been clarified that pathogens bind to glycosphingolipid (GSL) receptors in mammals, but there have been very few reports on pathogen-binding GSLs in fish. Vibrios are facultative anaerobic bacteria ubiquitous in marine and brackish environments. They are members of the normal intestinal microflora of healthy fish, but some species can cause a disease called vibriosis in fish and shellfish when the hosts are physiologically or immunologically weakened. The adherence of vibrios to host intestinal tracts is a significant event not only for survival and growth but also in terms of pathogenicity. We show in this mini-review that sialic acid-containing GSLs (gangliosides), GM4 and GM3, are receptors to which vibrios adhere to epithelial cells in the intestinal tract of fish. We also describe the enzymes responsible for synthesizing these Vibrio-binding gangliosides in fish.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan.
| | - Shinichi Chisada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan.,Department of Hygiene and Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Naoyuki Matsunaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan.,Bizen Chemical Co. Ltd., 363 Tokudomi, Akaiwa-shi, Okayama, 709-0716, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0385, Japan
| |
Collapse
|
2
|
Itokazu Y, Fuchigami T, Yu RK. Functional Impairment of the Nervous System with Glycolipid Deficiencies. ADVANCES IN NEUROBIOLOGY 2023; 29:419-448. [PMID: 36255683 PMCID: PMC9793801 DOI: 10.1007/978-3-031-12390-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with nervous system disorders suffer from impaired cognitive, sensory and motor functions that greatly inconvenience their daily life and usually burdens their family and society. It is difficult to achieve functional recovery for the damaged central nervous system (CNS) because of its limited ability to regenerate. Glycosphingolipids (GSLs) are abundant in the CNS and are known to play essential roles in cell-cell recognition, adhesion, signal transduction, and cellular migration, that are crucial in all phases of neurogenesis. Despite intense investigation of CNS regeneration, the roles of GSLs in neural regeneration remain unclear. Here we focus on the respective potentials of glycolipids to promote regeneration and repair of the CNS. Mice lacking glucosylceramide, lactosylceramide or gangliosides show lethal phenotypes. More importantly, patients with ganglioside deficiencies exhibit severe clinical phenotypes. Further, neurodegenerative diseases and mental health disorders are associated with altered GSL expression. Accumulating studies demonstrate that GSLs not only delimit physical regions but also play central roles in the maintenance of the biological functions of neurons and glia. We anticipate that the ability of GSLs to modulate behavior of a variety of molecules will enable them to ameliorate biochemical and neurobiological defects in patients. The use of GSLs to treat such defects in the human CNS will be a paradigm-shift in approach since GSL-replacement therapy has not yet been achieved in this manner clinically.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Singh P, Joon A, Kumari M, Singh T, Bal A, Maan P, Ghosh S. Role of a Disease-associated ST3Gal-4 in Non-small Cell Lung Cancer. Cell Biochem Biophys 2022; 80:781-793. [PMID: 36083411 DOI: 10.1007/s12013-022-01091-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Sialylation promotes tumorigenesis by affecting various cancer-related events, including apoptosis inhibition, cell growth, invasion, migration, metastasis, chemo-resistance, and immunomodulation in favor of tumor progression. An altered expression of sialyltransferase enzymes is responsible for synthesizing various tumor-associated sialylated structures. In the present study, our findings have revealed a significant up-regulation of ST3Gal-4 transcript in the two major subtypes of NSCLC cell lines [squamous cell carcinoma cell line (NCI-H520) and adenocarcinoma cell line (A549)]. Thus, the role of the ST3Gal-4 gene was assessed on cancer-associated signal transduction pathways in these cells in view of proliferation, invasion, and migration. ST3Gal-4 was silenced by transfection of both the cell lines with esi-ST3Gal-4-RNA, which RT-PCR and western immunoblotting confirmed. Silencing of ST3Gal-4 resulted in a decreased expression of MAL-I interacting membrane-HSP60, identified earlier as an α2,3-sialylated glycoprotein, thus pointing towards the possible role of ST3Gal-4 in its sialylation. The proliferation, invasion, and migration of both types of NSCLC cells were reduced significantly in the ST3Gal-4 silenced cells. Our findings were substantiated by the down-regulation of β-catenin and E-cadherin, a reduced expression of activated AKT1, ERK1/2, and NF-ƙB in these cells. We propose that ST3Gal-4 may be the disease-associated sialyltransferase involved in α2,3 sialylation of the membrane proteins, including HSP60 of the NSCLC cells. This may lead to the conformational alteration of these proteins, required for the activation of E-cadherin/β-catenin, AKT, and ERK/NF-ƙB mediated signal transduction pathways in these cells, resulting in their proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Archana Joon
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Munmun Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Tanya Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh, 160012, India
| | - Pratibha Maan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, 160012, India.
| |
Collapse
|
4
|
Ma Y, Wang X, Wang Z, Cong P, Xu J, Xue C. Characterization of Gangliosides in Three Sea Urchin Species by HILIC-ESI-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7641-7651. [PMID: 34184526 DOI: 10.1021/acs.jafc.1c02058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sea urchin gangliosides (SU-GLSs) are well acknowledged for their nerve regeneration activity and neuroprotective property. The present study sought to characterize and semi-quantitate different SU-GLS subclasses in three sea urchin species, including Strongylocentrotus nudus, Hemicentrotus pulcherrimus, and Glyptocidaris crenularis. A total of 14 SU-GLS subclasses were identified by a hydrophilic interaction liquid chromatography-Q-Exactive tandem mass spectrometry method. Three sialic acid (Sia) structures, including Neu5Ac, Neu5Gc, and KDN, were identified in SU-GLSs, of which Neu5Ac and Neu5Gc had their corresponding sulfated forms. The linkage among Sias was determined to be 2-8. Additionally, KDN2-6Glc1-1Cer, KDN2-8Neu5Gc2-6Glc1-1Cer, and KDN2-8Neu5Gc2-8Neu5Gc2-6Glc-1Cer were speculated to be novel SU-GLS structures. Furthermore, the total SU-GLS content was 2.0-7.3 mg/g in the three sea urchin species. These results will provide useful data for developing a SU-GLS database of aquatic products. Besides, this study will provide a theoretical basis to explore the nutritional values of seafood products further.
Collapse
Affiliation(s)
- Yingxu Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1, Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Cancer-Associated Glycosphingolipids as Tumor Markers and Targets for Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22116145. [PMID: 34200284 PMCID: PMC8201009 DOI: 10.3390/ijms22116145] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.
Collapse
|
6
|
McDonald AG, Davey GP. Simulating the enzymes of ganglioside biosynthesis with Glycologue. Beilstein J Org Chem 2021; 17:739-748. [PMID: 33828618 PMCID: PMC8008095 DOI: 10.3762/bjoc.17.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 02/03/2023] Open
Abstract
Gangliosides are an important class of sialylated glycosphingolipids linked to ceramide that are a component of the mammalian cell surface, especially those of the central nervous system, where they function in intercellular recognition and communication. We describe an in silico method for determining the metabolic pathways leading to the most common gangliosides, based on the known enzymes of their biosynthesis. A network of 41 glycolipids is produced by the actions of the 10 enzymes included in the model. The different ganglioside nomenclature systems in common use are compared and a systematic variant of the widely used Svennerholm nomenclature is described. Knockouts of specific enzyme activities are used to simulate congenital defects in ganglioside biosynthesis, and altered ganglioside status in cancer, and the effects on network structure are predicted. The simulator is available at the Glycologue website, https://glycologue.org/.
Collapse
Affiliation(s)
- Andrew G McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Visualisation of cholesterol and ganglioside GM1 in zebrafish models of Niemann-Pick type C disease and Smith-Lemli-Opitz syndrome using light sheet microscopy. Histochem Cell Biol 2020; 154:565-578. [PMID: 33079236 PMCID: PMC7609433 DOI: 10.1007/s00418-020-01925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage diseases are the most common cause of neurodegeneration in children. They are characterised at the cellular level by the accumulation of storage material within lysosomes. There are very limited therapeutic options, and the search for novel therapies has been hampered as few good small animal models are available. Here, we describe the use of light sheet microscopy to assess lipid storage in drug and morpholino induced zebrafish models of two diseases of cholesterol homeostasis with lysosomal dysfunction: First, Niemann–Pick type C disease (NPC), caused by mutations in the lysosomal transmembrane protein NPC1, characterised by intralysosomal accumulation of cholesterol and several other lipids. Second, Smith–Lemli–Opitz syndrome (SLOS), caused by mutations in 7-dehydrocholesterol reductase, which catalyses the last step of cholesterol biosynthesis and is characterised by intralysosomal accumulation of dietary cholesterol. This is the first description of a zebrafish SLOS model. We find that zebrafish accurately model lysosomal storage and disease-specific phenotypes in both diseases. Increased cholesterol and ganglioside GM1 were observed in sections taken from NPC model fish, and decreased cholesterol in SLOS model fish, but these are of limited value as resolution is poor, and accurate anatomical comparisons difficult. Using light sheet microscopy, we were able to observe lipid changes in much greater detail and identified an unexpected accumulation of ganglioside GM1 in SLOS model fish. Our data demonstrate, for the first time in zebrafish, the immense potential that light sheet microscopy has in aiding the resolution of studies involving lysosomal and lipid disorders.
Collapse
|
8
|
Yamakawa N, Vanbeselaere J, Chang LY, Yu SY, Ducrocq L, Harduin-Lepers A, Kurata J, Aoki-Kinoshita KF, Sato C, Khoo KH, Kitajima K, Guerardel Y. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat Commun 2018; 9:4647. [PMID: 30405127 PMCID: PMC6220181 DOI: 10.1038/s41467-018-06950-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
The emergence of zebrafish Danio rerio as a versatile model organism provides the unique opportunity to monitor the functions of glycosylation throughout vertebrate embryogenesis, providing insights into human diseases caused by glycosylation defects. Using a combination of chemical modifications, enzymatic digestion and mass spectrometry analyses, we establish here the precise glycomic profiles of eight individual zebrafish organs and demonstrate that the protein glycosylation and glycosphingolipid expression patterns exhibits exquisite specificity. Concomitant expression screening of a wide array of enzymes involved in the synthesis and transfer of sialic acids shows that the presence of organ-specific sialylation motifs correlates with the localized activity of the corresponding glycan biosynthesis pathways. These findings provide a basis for the rational design of zebrafish lines expressing desired glycosylation profiles.
Collapse
Affiliation(s)
- Nao Yamakawa
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.,Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Jorick Vanbeselaere
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Lan-Yi Chang
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.,Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin-Yi Yu
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Lucie Ducrocq
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Junichi Kurata
- Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | | | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.
| |
Collapse
|
9
|
Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett 2018; 592:3835-3864. [PMID: 29802621 DOI: 10.1002/1873-3468.13114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Gangliosides (GGs) are sialic acid-containing glycosphingolipids (GSLs) and major membrane components enriched on cellular surfaces. Biosynthesis of mammalian GGs starts at the cytosolic leaflet of endoplasmic reticulum (ER) membranes with the formation of their hydrophobic ceramide anchors. After intracellular ceramide transfer to Golgi and trans-Golgi network (TGN) membranes, anabolism of GGs, as well as of other GSLs, is catalyzed by membrane-spanning glycosyltransferases (GTs) along the secretory pathway. Combined activity of only a few promiscuous GTs allows for the formation of cell-type-specific glycolipid patterns. Following an exocytotic vesicle flow to the cellular plasma membranes, GGs can be modified by metabolic reactions at or near the cellular surface. For degradation, GGs are endocytosed to reach late endosomes and lysosomes. Whereas membrane-spanning enzymes of the secretory pathway catalyze GSL and GG formation, a cooperation of soluble glycosidases, lipases and lipid-binding cofactors, namely the sphingolipid activator proteins (SAPs), act as the main players of GG and GSL catabolism at intralysosomal luminal vesicles (ILVs).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
10
|
Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:1-62. [DOI: 10.1016/bs.pmbts.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Abstract
KDN is an abbreviated name of 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, and belongs to sialic acid members like N-acetylneuraminic acid (Neu5Ac), and N-glycolylneuraminic acid (Neu5Gc). The aminoacyl group at C5 position of Neu5Ac is replaced by a hydroxyl group in KDN. Like Neu5Ac, KDN exists in various glycoconjugates including glycosphingolipids in vertebrates and gram-negative bacteria. Because of its unique properties, some methods are specifically applicable to KDN residue, although most detection methods for Neu5Ac are also applicable. In this chapter, methods for identification of KDN residues in glycosphingolipids are described, focusing on two methods that are often used, i.e., the fluorescent HPLC analysis and the TLC immunostaining with the antibodies specific to α2,3- and α2,8-KDN residues.
Collapse
Affiliation(s)
- Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
12
|
Go S, Go S, Veillon L, Ciampa MG, Mauri L, Sato C, Kitajima K, Prinetti A, Sonnino S, Inokuchi JI. Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem 2017; 292:7040-7051. [PMID: 28275055 DOI: 10.1074/jbc.m116.771253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Gangliosides (sialic acid-containing glycosphingolipids) help regulate many important biological processes, including cell proliferation, signal transduction, and differentiation, via formation of functional microdomains in plasma membranes. The structural diversity of gangliosides arises from both the ceramide moiety and glycan portion. Recently, differing molecular species of a given ganglioside are suggested to have distinct biological properties and regulate specific and distinct biological events. Elucidation of the function of each molecular species is important and will provide new insights into ganglioside biology. Gangliosides are also suggested to be involved in skeletal muscle differentiation; however, the differential roles of ganglioside molecular species remain unclear. Here we describe striking changes in quantity and quality of gangliosides (particularly GM3) during differentiation of mouse C2C12 myoblast cells and key roles played by distinct GM3 molecular species at each step of the process.
Collapse
Affiliation(s)
- Shinji Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Shiori Go
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.,Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Lucas Veillon
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan, and
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Segrate Milano, Italy
| | - Jin-Ichi Inokuchi
- From the Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan,
| |
Collapse
|
13
|
Schengrund CL. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40:397-406. [DOI: 10.1016/j.tibs.2015.03.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
|
14
|
Petit D, Teppa E, Mir AM, Vicogne D, Thisse C, Thisse B, Filloux C, Harduin-Lepers A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol Biol Evol 2014; 32:906-27. [PMID: 25534026 PMCID: PMC4379398 DOI: 10.1093/molbev/msu395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.
Collapse
Affiliation(s)
- Daniel Petit
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Anne-Marie Mir
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Dorothée Vicogne
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Christine Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Bernard Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Cyril Filloux
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Anne Harduin-Lepers
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| |
Collapse
|
15
|
Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 2013; 23:418-33. [PMID: 24026681 DOI: 10.1093/hmg/ddt434] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
'Salt & Pepper' syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function.
Collapse
|
16
|
Expression machinery of GM4: the excess amounts of GM3/GM4S synthase (ST3GAL5) are necessary for GM4 synthesis in mammalian cells. Glycoconj J 2013; 31:101-8. [DOI: 10.1007/s10719-013-9499-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
|
17
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
18
|
MRP1 expressed on Burkitt's lymphoma cells was depleted by catfish egg lectin through Gb3-glycosphingolipid and enhanced cytotoxic effect of drugs. Protein J 2012; 31:15-26. [PMID: 22083453 DOI: 10.1007/s10930-011-9369-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel anticancer mechanism of catfish (Silurus asotus) egg lectin (SAL) was found to occur via the down-regulation of the membrane transopter protein, MRP1 (multidrug resistance associate protein-1) on Burkitt's lymphoma cells through Gb3(Galα1-4Galβ1-4Glc)-glycosphingolipid. Although SAL did not influence the viability of the cells directly, only 10 and 100 ng/mL of vincristine and etoposide, respectively induced anticancer effects when the lectin was applied in conjunction with these drugs. These phenomena were specifically inhibited by the co-presence of the α-galactoside, melibiose, which is a strong haptenic sugar of SAL that mimicks Gb3. The degree of expression regulation of the transporter proteins on the cells surface was investigated through the examination of the binding between SAL and Gb3-glycosphingolipid by immunological and molecular biological procedures. PCR data showed that MRP1 was more highly expressed when compared to another ATP-binding cassette family, multi-drug resistant protein and the expression levels of MRP1 on the cells were specifically dose- and time-dependently depleted by the addition of SAL. These results were also evaluated by immunological procedures using FACS and western-blotting. Small interfering RNA coding a part of MRP1 was transfected to Raji cells to knock down the protein, and cell death was increased by 10% when vincristine was administered at a concentration as low as 10 ng/mL compared to non-transfected cells. These results indicated that SAL possesses the potential to enhance the anticancer activites of low-concentrations of vincristine by the down-regulating the MRP1 gene expression to inhibit the multidrug resistance by binding to the target ligand Gb3-glycosphingolipid on Burkitt's lymphoma cells.
Collapse
|
19
|
Vanbeselaere J, Chang LY, Harduin-Lepers A, Fabre E, Yamakawa N, Slomianny C, Biot C, Khoo KH, Guerardel Y. Mapping the Expressed Glycome and Glycosyltransferases of Zebrafish Liver Cells as a Relevant Model System for Glycosylation Studies. J Proteome Res 2012; 11:2164-77. [DOI: 10.1021/pr200948j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jorick Vanbeselaere
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne Harduin-Lepers
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Emeline Fabre
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Nao Yamakawa
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Christian Slomianny
- INSERM-LPC, U1003,
Université Lille 1, Cité Scientifique, Bât. SN3,
F-59655 Villeneuve d′Ascq Cedex, France
| | - Christophe Biot
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yann Guerardel
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| |
Collapse
|
20
|
IKEDA K, TAGUCHI R, SOGA T. Establishment of Basic Lipidomics Platforms for Discovery of Lipid Biomarkers. BUNSEKI KAGAKU 2012. [DOI: 10.2116/bunsekikagaku.61.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kazutaka IKEDA
- Institute for Advanced Biosciences, Keio University
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University
| | - Ryo TAGUCHI
- Institute for Advanced Biosciences, Keio University
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University
| | | |
Collapse
|
21
|
Affiliation(s)
- Shou Takashima
- The Noguchi institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shuichi Tsuji
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
22
|
Molecular correlates of experimental cerebral malaria detectable in whole blood. Infect Immun 2010; 79:1244-53. [PMID: 21149594 DOI: 10.1128/iai.00964-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cerebral malaria (CM) is a primary cause of deaths caused by Plasmodium falciparum in young children in sub-Saharan Africa. Laboratory tests based on early detection of host biomarkers in patient blood would help in the prognosis and differential diagnosis of CM. Using the Plasmodium berghei ANKA murine model of experimental cerebral malaria (ECM), we have identified over 300 putative diagnostic biomarkers of ECM in the circulation by comparing the whole-blood transcriptional profiles of resistant mice (BALB/c) to those of two susceptible strains (C57BL/6 and CBA/CaJ). Our results suggest that the transcriptional profile of whole blood captures the molecular and immunological events associated with the pathogenesis of disease. We find that during ECM, erythropoiesis is dysfunctional, thrombocytopenia is evident, and glycosylation of cell surface components may be modified. Furthermore, analysis of immunity-related genes suggests that slightly distinct mechanisms of immunopathogenesis may operate in susceptible C57BL/6 and CBA/CaJ mice. Furthermore, our data set has allowed us to create a molecular signature of ECM composed of a subset of circulatory markers. Complement component C1q, β-chain, nonspecific cytotoxic cell receptor protein 1, prostate stem cell antigen, DnaJC, member 15, glutathione S-transferase omega-1, and thymidine kinase 1 were overexpressed in blood during the symptomatic phase of ECM, as measured by quantitative real-time PCR analysis. These studies provide the first host transcriptome database that is uniquely altered during the pathogenesis of ECM in blood. A subset of these mediators of ECM warrant validation in P. falciparum-infected young African children as diagnostic markers of CM.
Collapse
|
23
|
Ikeda K, Taguchi R. Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2957-2965. [PMID: 20872628 DOI: 10.1002/rcm.4716] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is suitable for analysis of glycosphingolipids such as fragile gangliosides avoiding the use of the sialic acid elimination. However, it was not possible to distinguish the structural isomers such as GD1a and GD1b with reversed-phase LC/ESI-MS by hydrophobic interaction. Here we report an effective method for targeted analysis of theoretically expanded ganglioside molecular species including structural isomers by hydrophilic interaction liquid chromatography (HILIC)/ESI-MS with multiple reaction monitoring (MRM). As a result of MRM analysis of glycosphingolipid mixtures from porcine brain, each of the lipid classes was detected within 25 min in the following order: sulfatides > GM3 > GM2 > GM1 > GD3 > GD1a > GD2 > GD1b > GT1a > GT1b > GQ1b. For the advanced application, localization analysis of postnatal day 15 (P15) mouse cerebellum layered structures was carried out by combination of MRM and laser microdissection (LMD). As a result, GM3, GD1a, GT1b and GQ1b were abundantly detected in the molecular and granular layers, whereas GM1 was widely presented in each layered structure. These gangliosides were mainly composed of d18:1-18:0 and d18:1-20:0, but GM3 was d18:1-16:0 and d18:1-20:0. Meanwhile, sulfatide molecular species were mostly localized in the myelinated fibers and scarcely found in the molecular layer. These results suggested that our method is suitable to detect a variety of ganglioside classes and sulfatides with high sensitivity at the molecular species level and effective for localization analysis of these glycosphingolipids from mouse brain sections.
Collapse
Affiliation(s)
- Kazutaka Ikeda
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|