1
|
Huang Q, Zhao Z, Liu X, Yuan X, Zhao R, Niu Q, Li C, Liu Y, Wang D, Yu T, Yi H, Yang C, Rong T, Cao M. Maize plastid terminal oxidase (ZmPTOX) regulates the color formation of leaf and kernel by modulating plastid development. J Genet Genomics 2024:S1673-8527(24)00121-8. [PMID: 38815650 DOI: 10.1016/j.jgg.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Zhuofan Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu University of Technology, Chengdu, Sichuan 610051, China
| | - Xiaowei Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xin Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruiqing Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qunkai Niu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Chengdu Agricultural College, Chengdu, Sichuan 611130, China
| | - Chuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yusheng Liu
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Danfeng Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shanxi 726000, China
| | - Tao Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hongyang Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chengming Yang
- Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Tingzhao Rong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China
| | - Moju Cao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Irradiation Preservation Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, China.
| |
Collapse
|
2
|
Rog I, Chaturvedi AK, Tiwari V, Danon A. Low light-regulated intramolecular disulfide fine-tunes the role of PTOX in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:585-597. [PMID: 34767654 DOI: 10.1111/tpj.15579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Disulfide-based regulation links the activity of numerous chloroplast proteins with photosynthesis-derived redox signals. The plastid terminal oxidase (PTOX) is a thylakoid-bound plastoquinol oxidase that has been implicated in multiple roles in the light and in the dark, which could require different levels of PTOX activity. Here we show that Arabidopsis PTOX contains a conserved C-terminus domain (CTD) with cysteines that evolved progressively following the colonization of the land by plants. Furthermore, the CTD contains a regulatory disulfide that is in the oxidized state in the dark and is rapidly reduced, within 5 min, in low light intensity (1-5 µE m-2 sec-1 ). The reduced PTOX form in the light was reoxidized within 15 min after transition to the dark. Mutation of the cysteines in the CTD prevented the formation of the oxidized form. This resulted in higher levels of reduced plastoquinone when measured at transition to the onset of low light. This is consistent with the reduced state of PTOX exhibiting diminished PTOX oxidase activity under conditions of limiting PQH2 substrate. Our findings suggest that AtPTOX-CTD evolved to provide light-dependent regulation of PTOX activity for the adaptation of plants to terrestrial conditions.
Collapse
Affiliation(s)
- Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amit Kumar Chaturvedi
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Vivekanand Tiwari
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Avihai Danon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
3
|
Wang D, Wang C, Li C, Song H, Qin J, Chang H, Fu W, Wang Y, Wang F, Li B, Hao Y, Xu M, Fu A. Functional Relationship of Arabidopsis AOXs and PTOX Revealed via Transgenic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:692847. [PMID: 34367216 PMCID: PMC8336870 DOI: 10.3389/fpls.2021.692847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 06/01/2023]
Abstract
Alternative oxidase (AOX) and plastid terminal oxidase (PTOX) are terminal oxidases of electron transfer in mitochondria and chloroplasts, respectively. Here, taking advantage of the variegation phenotype of the Arabidopsis PTOX deficient mutant (im), we examined the functional relationship between PTOX and its five distantly related homologs (AOX1a, 1b, 1c, 1d, and AOX2). When engineered into chloroplasts, AOX1b, 1c, 1d, and AOX2 rescued the im defect, while AOX1a partially suppressed the mutant phenotype, indicating that AOXs could function as PQH2 oxidases. When the full length AOXs were overexpressed in im, only AOX1b and AOX2 rescued its variegation phenotype. In vivo fluorescence analysis of GFP-tagged AOXs and subcellular fractionation assays showed that AOX1b and AOX2 could partially enter chloroplasts while AOX1c and AOX1d were exclusively present in mitochondria. Surprisingly, the subcellular fractionation, but not the fluorescence analysis of GFP-tagged AOX1a, revealed that a small portion of AOX1a could sort into chloroplasts. We further fused and expressed the targeting peptides of AOXs with the mature form of PTOX in im individually; and found that targeting peptides of AOX1a, AOX1b, and AOX2, but not that of AOX1c or AOX1d, could direct PTOX into chloroplasts. It demonstrated that chloroplast-localized AOXs, but not mitochondria-localized AOXs, can functionally compensate for the PTOX deficiency in chloroplasts, providing a direct evidence for the functional relevance of AOX and PTOX, shedding light on the interaction between mitochondria and chloroplasts and the complex mechanisms of protein dual targeting in plant cells.
Collapse
Affiliation(s)
- Danfeng Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Chunyu Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Cai Li
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Haifeng Song
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jing Qin
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Han Chang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Weihan Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yuhua Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Beibei Li
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yaqi Hao
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
4
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Polymorphisms in plastoquinol oxidase (PTOX) from Arabidopsis accessions indicate SNP-induced structural variants associated with altitude and rainfall. J Bioenerg Biomembr 2019; 51:151-164. [DOI: 10.1007/s10863-018-9784-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
|
6
|
Tang Y, Sun X, Wen T, Liu M, Yang M, Chen X. Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:19-28. [PMID: 28024235 DOI: 10.1016/j.plaphy.2016.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 05/27/2023]
Abstract
The aim of this study is to investigate whether exogenous application of salicylic acid (SA) could modulate the photosynthetic capacity of soybean seedlings in water stress tolerance, and to clarify the potential functions of terminal oxidase (plastid terminal oxidase (PTOX) and alternative oxidase (AOX)) in SA' s regulation on photosynthesis. The effects of SA and water stress on gas exchange, pigment contents, chlorophyll fluorescence, enzymes (guaiacol peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and NADP-malate dehydrogenase (NADP-MDH; EC1.1.1.82)) activity and transcript levels of PTOX, AOX1, AOX2a, AOX2b were examined in a hydroponic cultivation system. Results indicate that water stress significantly decreased the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), pigment contents (Chla + b, Chla/b, Car), maximum quantum yield of PSⅡphotochemistry (Fv/Fm), efficiency of excitation capture of open PSⅡcenter (Fv'/Fm'), quantum efficiency of PSⅡphotochemistry (ΦPSⅡ), photochemical quenching (qP), and increased malondialdehyde (MDA) content and the activity of all the enzymes. SA pretreatment led to significant decreases in Ci and MDA content, and increases in Pn, Gs, E, pigment contents, Fv/Fm, Fv'/Fm', ΦPSⅡ, qP, and the activity of all the enzymes. SA treatment and water stress alone significantly up-regulated the expression of PTOX, AOX1 and AOX2b. SA pretreatment further increased the transcript levels of PTOX and AOX2b of soybean seedling under water stress. These results indicate that SA application alleviates the water stress-induced decrease in photosynthesis may mainly through maintaining a lower reactive oxygen species (ROS) level, a greater PSⅡefficiency, and an enhanced alternative respiration and chlororespiration. PTOX and AOX may play important roles in SA-mediated resistance to water stress.
Collapse
Affiliation(s)
- Yanping Tang
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China; Agrotechnical Extension Station, Agricultural Bureau of Dazhou City, No.52, Heye Street, Tongchuan District, Dazhou, 635000, Sichuan, China.
| | - Xin Sun
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Tao Wen
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Mingjie Liu
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Mingyan Yang
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuefei Chen
- College of Agronomy, Sichuan Agricultural University, No.211, Huimin Road, Gongping Town, Wenjiang District, Chengdu, 611130, Sichuan, China
| |
Collapse
|
7
|
Wang D, Fu A. The Plastid Terminal Oxidase is a Key Factor Balancing the Redox State of Thylakoid Membrane. Enzymes 2016; 40:143-171. [PMID: 27776780 DOI: 10.1016/bs.enz.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondria possess oxygen-consuming respiratory electron transfer chains (RETCs), and the oxygen-evolving photosynthetic electron transfer chain (PETC) resides in chloroplasts. Evolutionarily mitochondria and chloroplasts are derived from ancient α-proteobacteria and cyanobacteria, respectively. However, cyanobacteria harbor both RETC and PETC on their thylakoid membranes. It is proposed that chloroplasts could possess a RETC on the thylakoid membrane, in addition to PETC. Identification of a plastid terminal oxidase (PTOX) in the chloroplast from the Arabidopsis variegation mutant immutans (im) demonstrated the presence of a RETC in chloroplasts, and the PTOX is the committed oxidase. PTOX is distantly related to the mitochondrial alternative oxidase (AOX), which is responsible for the CN-insensitive alternative RETC. Similar to AOX, an ubiquinol (UQH2) oxidase, PTOX is a plastoquinol (PQH2) oxidase on the chloroplast thylakoid membrane. Lack of PTOX, Arabidopsis im showed a light-dependent variegation phenotype; and mutant plants will not survive the mediocre light intensity during its early development stage. PTOX is very important for carotenoid biosynthesis, since the phytoene desaturation, a key step in the carotenoid biosynthesis, is blocked in the white sectors of Arabidopsis im mutant. PTOX is found to be a stress-related protein in numerous research instances. It is generally believed that PTOX can protect plants from various environmental stresses, especially high light stress. PTOX also plays significant roles in chloroplast development and plant morphogenesis. Global physiological roles played by PTOX could be a direct or indirect consequence of its PQH2 oxidase activity to maintain the PQ pool redox state on the thylakoid membrane. The PTOX-dependent chloroplast RETC (so-called chlororespiration) does not contribute significantly when chloroplast PETC is normally developed and functions well. However, PTOX-mediated RETC could be the major force to regulate the PQ pool redox balance in the darkness, under conditions of stress, in nonphotosynthetic plastids, especially in the early development from proplastids to chloroplasts.
Collapse
Affiliation(s)
- D Wang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - A Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China.
| |
Collapse
|
8
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Johnson GN, Stepien P. Plastid Terminal Oxidase as a Route to Improving Plant Stress Tolerance: Known Knowns and Known Unknowns. PLANT & CELL PHYSIOLOGY 2016; 57:1387-1396. [PMID: 26936791 DOI: 10.1093/pcp/pcw042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/21/2016] [Indexed: 05/24/2023]
Abstract
A plastid-localized terminal oxidase, PTox, was first described due to its role in chloroplast development, with plants lacking PTox producing white sectors on their leaves. This phenotype is explained as being due to PTox playing a role in carotenoid biosynthesis, as a cofactor of phytoene desaturase. Co-occurrence of PTox with a chloroplast-localized NADPH dehydrogenase (NDH) has suggested the possibility of a functional respiratory pathway in plastids. Evidence has also been found that, in certain stress-tolerant plant species, PTox can act as an electron acceptor from PSII, making it a candidate for engineering stress-tolerant crops. However, attempts to induce such a pathway via overexpression of the PTox protein have failed to date. Here we review the current understanding of PTox function in higher plants and discuss possible barriers to inducing PTox activity to improve stress tolerance.
Collapse
Affiliation(s)
- Giles N Johnson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Piotr Stepien
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wroclaw, Poland
| |
Collapse
|
10
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
11
|
Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:49-74. [PMID: 25580838 DOI: 10.1146/annurev-arplant-043014-114744] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastids have retained from their cyanobacterial ancestor a fragment of the respiratory electron chain comprising an NADPH dehydrogenase and a diiron oxidase, which sustain the so-called chlororespiration pathway. Despite its very low turnover rates compared with photosynthetic electron flow, knocking out the plastid terminal oxidase (PTOX) in plants or microalgae leads to severe phenotypes that encompass developmental and growth defects together with increased photosensitivity. On the basis of a phylogenetic and structural analysis of the enzyme, we discuss its physiological contribution to chloroplast metabolism, with an emphasis on its critical function in setting the redox poise of the chloroplast stroma in darkness. The emerging picture of PTOX is that of an enzyme at the crossroads of a variety of metabolic processes, such as, among others, the regulation of cyclic electron transfer and carotenoid biosynthesis, which have in common their dependence on the redox state of the plastoquinone pool, set largely by the activity of PTOX in darkness.
Collapse
Affiliation(s)
- Wojciech J Nawrocki
- Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, UMR 7141, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Putarjunan A, Liu X, Nolan T, Yu F, Rodermel S. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. PHOTOSYNTHESIS RESEARCH 2013; 116:437-53. [PMID: 23703455 DOI: 10.1007/s11120-013-9855-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 05/07/2023]
Abstract
Chloroplast biogenesis is an essential light-dependent process involving the differentiation of photosynthetically competent chloroplasts from precursors that include undifferentiated proplastids in leaf meristems, as well as etioplasts in dark-grown seedlings. The mechanisms that govern these developmental processes are poorly understood, but entail the coordinated expression of nuclear and plastid genes. This coordination is achieved, in part, by signals generated in response to the metabolic and developmental state of the plastid that regulate the transcription of nuclear genes for photosynthetic proteins (retrograde signaling). Variegation mutants are powerful tools to understand pathways of chloroplast biogenesis, and over the years our lab has focused on immutans (im) and variegated2 (var2), two nuclear gene-induced variegations of Arabidopsis. im and var2 are among the best-characterized chloroplast biogenesis mutants, and they define the genes for plastid terminal oxidase (PTOX) and the AtFtsH2 subunit of the thylakoid FtsH metalloprotease complex, respectively. To gain insight into the function of these proteins, forward and reverse genetic approaches have been used to identify second-site suppressors of im and var2 that replace or bypass the need for PTOX and AtFtsH2 during chloroplast development. In this review, we provide a brief update of im and var2 and the functions of PTOX and AtFtsH2. We then summarize information about second-site suppressors of im and var2 that have been identified to date, and describe how they have provided insight into mechanisms of photosynthesis and pathways of chloroplast development.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | |
Collapse
|
14
|
Laureau C, De Paepe R, Latouche G, Moreno-Chacón M, Finazzi G, Kuntz M, Cornic G, Streb P. Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialis L. PLANT, CELL & ENVIRONMENT 2013; 36:1296-310. [PMID: 23301628 DOI: 10.1111/pce.12059] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/18/2012] [Indexed: 05/03/2023]
Abstract
Ranunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade-leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun-leaves. Carbon assimilation/light and Ci response curves were not different in sun- and shade-leaves, but photosynthetic capacity was the highest in sun-leaves. Based on calculation of the apparent specificity factor of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), the magnitude of alternative electron flow unrelated to carboxylation and oxygenation of Rubisco correlated to the PTOX content in sun-, shade- and growth chamber-leaves. Similarly, fluorescence induction kinetics indicated more complete and more rapid reoxidation of the plastoquinone (PQ) pool in sun- than in shade-leaves. Blocking electron flow to assimilation, photorespiration and the Mehler reaction with appropriate inhibitors showed that sun-leaves were able to maintain higher electron flow and PQ oxidation. The results suggest that PTOX can act as a safety valve in R. glacialis leaves under conditions where incident photon flux density (PFD) exceeds the growth PFD and under conditions where the plastoquinone pool is highly reduced. Such conditions can occur frequently in alpine climates due to rapid light and temperature changes.
Collapse
Affiliation(s)
- Constance Laureau
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405 Orsay cedex, France
| | - Rosine De Paepe
- Institut de Biologie des Plantes, Université Paris-Sud 11, UMR-CNRS 8618, Bâtiment 630, 91405, Orsay cedex, France
| | - Gwendal Latouche
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Maria Moreno-Chacón
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Giovanni Finazzi
- Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, Centre National Recherche Scientifique, F-38054, Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France
- Université Grenoble 1, F-38041, Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054, Grenoble, France
| | - Marcel Kuntz
- Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, Centre National Recherche Scientifique, F-38054, Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054, Grenoble, France
- Université Grenoble 1, F-38041, Grenoble, France
- Institut National Recherche Agronomique, UMR1200, F-38054, Grenoble, France
| | - Gabriel Cornic
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| | - Peter Streb
- Ecologie, Systématique et Evolution, Université Paris-Sud 11, UMR-CNRS 8079, Bâtiment 362, 91405, Orsay cedex, France
| |
Collapse
|
15
|
Fu A, Liu H, Yu F, Kambakam S, Luan S, Rodermel S. Alternative oxidases (AOX1a and AOX2) can functionally substitute for plastid terminal oxidase in Arabidopsis chloroplasts. THE PLANT CELL 2012; 24:1579-95. [PMID: 22534126 PMCID: PMC3398565 DOI: 10.1105/tpc.112.096701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/09/2012] [Accepted: 04/10/2012] [Indexed: 05/19/2023]
Abstract
The immutans (im) variegation mutant of Arabidopsis thaliana is caused by an absence of PTOX, a plastid terminal oxidase bearing similarity to mitochondrial alternative oxidase (AOX). In an activation tagging screen for suppressors of im, we identified one suppression line caused by overexpression of AOX2. AOX2 rescued the im defect by replacing the activity of PTOX in the desaturation steps of carotenogenesis. Similar results were obtained when AOX1a was reengineered to target the plastid. Chloroplast-localized AOX2 formed monomers and dimers, reminiscent of AOX regulation in mitochondria. Both AOX2 and AOX1a were present in higher molecular weight complexes in plastid membranes. The presence of these proteins did not generally affect steady state photosynthesis, aside from causing enhanced nonphotochemical quenching in both lines. Because AOX2 was imported into chloroplasts using its own transpeptide, we propose that AOX2 is able to function in chloroplasts to supplement PTOX activity during early events in chloroplast biogenesis. We conclude that the ability of AOX1a and AOX2 to substitute for PTOX in the correct physiological and developmental contexts is a striking example of the capacity of a mitochondrial protein to replace the function of a chloroplast protein and illustrates the plasticity of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Aigen Fu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- College of Life Sciences, Northwest University, Xian, Shanxi 710069, People’s Republic of China
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Huiying Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Yangling, Shanxi 712100, People’s Republic of China
| | - Sekhar Kambakam
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Steve Rodermel
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
16
|
McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:954-67. [PMID: 21056542 DOI: 10.1016/j.bbabio.2010.10.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/27/2022]
Abstract
Oxygenic photosynthesis depends on a highly conserved electron transport system, which must be particularly dynamic in its response to environmental and physiological changes, in order to avoid an excess of excitation energy and subsequent oxidative damage. Apart from cyclic electron flow around PSII and around PSI, several alternative electron transport pathways exist including a plastoquinol terminal oxidase (PTOX) that mediates electron flow from plastoquinol to O(2). The existence of PTOX was first hypothesized in 1982 and this was verified years later based on the discovery of a non-heme, di-iron carboxylate protein localized to thylakoid membranes that displayed sequence similarity to the mitochondrial alternative oxidase. The absence of this protein renders higher plants susceptible to excitation pressure dependant variegation combined with impaired carotenoid synthesis. Chloroplasts, as well as other plastids (i.e. etioplasts, amyloplasts and chromoplasts), fail to assemble organized internal membrane structures correctly, when exposed to high excitation pressure early in development. While the role of PTOX in plastid development is established, its physiological role under stress conditions remains equivocal and we postulate that it serves as an alternative electron sink under conditions where the acceptor side of PSI is limited. The aim of this review is to provide an overview of the past achievements in this field and to offer directions for future investigative efforts. Plastoquinol terminal oxidase (PTOX) is involved in an alternative electron transport pathway that mediates electron flow from plastoquinol to O(2). This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, Wilfrid Laurier University, Science Building, 75 University Avenue West, Waterloo, Ontario, Canada N2L 3C5.
| | | | | | | | | | | |
Collapse
|