1
|
Escarcega RD, Patil AA, Moruno-Manchon JF, Urayama A, Marrelli SP, Kim N, Monchaud D, McCullough LD, Tsvetkov AS. Pirh2-dependent DNA damage in neurons induced by the G-quadruplex ligand pyridostatin. J Biol Chem 2023; 299:105157. [PMID: 37579947 PMCID: PMC10534229 DOI: 10.1016/j.jbc.2023.105157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Noncanonical base pairing between four guanines (G) within single-stranded G-rich sequences leads to formation of а G-quartet. Self-stacking of G-quartets results in a columnar four-stranded DNA structure known as the G-quadruplex (G4 or G4-DNA). In cancer cells, G4-DNA regulates multiple DNA-dependent processes, including transcription, replication, and telomere function. How G4s function in neurons is poorly understood. Here, we performed a genome-wide gene expression analysis (RNA-Seq) to identify genes modulated by a G4-DNA ligand, pyridostatin (PDS), in primary cultured neurons. PDS promotes stabilization of G4 structures, thus allowing us to define genes directly or indirectly responsive to G4 regulation. We found that 901 genes were differentially expressed in neurons treated with PDS out of a total of 18,745 genes with measured expression. Of these, 505 genes were downregulated and 396 genes were upregulated and included gene networks regulating p53 signaling, the immune response, learning and memory, and cellular senescence. Within the p53 network, the E3 ubiquitin ligase Pirh2 (Rchy1), a modulator of DNA damage responses, was upregulated by PDS. Ectopically overexpressing Pirh2 promoted the formation of DNA double-strand breaks, suggesting a new DNA damage mechanism in neurons that is regulated by G4 stabilization. Pirh2 downregulated DDX21, an RNA helicase that unfolds G4-RNA and R-loops. Finally, we demonstrated that Pirh2 increased G4-DNA levels in the neuronal nucleolus. Our data reveal the genes that are responsive to PDS treatment and suggest similar transcriptional regulation by endogenous G4-DNA ligands. They also connect G4-dependent regulation of transcription and DNA damage mechanisms in neuronal cells.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Abhijeet A Patil
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jose F Moruno-Manchon
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Akihiko Urayama
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sean P Marrelli
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas McGovern Medical School at Houston, Houston, Texas, USA
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), UBFC Dijon, CNRS UMR6302, Dijon, France
| | - Louise D McCullough
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Andrey S Tsvetkov
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
2
|
Sun Y, Zhang L, Fang Z, Liu D, Shao M, Liu Y, Liao B, Jin Y. PRPF8 controls alternative splicing of PIRH2 to modulate the p53 pathway and survival of human ESCs. J Cell Physiol 2023; 238:1909-1920. [PMID: 37357506 DOI: 10.1002/jcp.31066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/27/2023]
Abstract
Human embryonic stem cells (hESCs) have great potential for developmental biology and regenerative medicine. However, extensive apoptosis often occurs when hESCs respond to various stresses or injuries. Understanding the molecular control and identifying new factors associated with hESC survival are fundamental to ensure the high quality of hESCs. In this study, we report that PRPF8, an RNA spliceosome component, is essential for hESC survival. PRPF8 knockdown (KD) induces p53 protein accumulation and activates the p53 pathway, leading to apoptosis in hESCs. Strikingly, silencing of p53 rescues PRPF8 KD-induced apoptosis, indicating that PRPF8 KD triggers hESC apoptosis through activating the p53 pathway. In search for the mechanism by which p53 pathway is activated by PRPF8 KD, we find that PRPF8 KD alters alternative splicing of many genes, including PIRH2 which encodes an E3 ubiquitin ligase of p53. PIRH2 has several isoforms such as PIRH2A, PIRH2B, and PIRH2C. Intriguingly, PRPF8 KD specifically increases the transcript level of the PIRH2B isoform, which lacks a RING domain and E3 ligase activity. Functionally, PIRH2B KD partially rescues the reduction in cell numbers and upregulation of P21 caused by PRPF8 KD in hESCs. The finding suggests that PRPF8 controls alternative splicing of PIRH2 to maintain the balance of p53 pathway activity and survival of hESCs. The PRPF8/PIRH2/p53 axis identified here provides new insights into how p53 pathway and hESC survival are precisely regulated at multiple layers, highlighting an important role of posttranscriptional machinery in supporting hESC survival.
Collapse
Affiliation(s)
- Yiyang Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dingyu Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Min Shao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yujie Liu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bing Liao
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Daks A, Fedorova O, Parfenyev S, Nevzorov I, Shuvalov O, Barlev NA. The Role of E3 Ligase Pirh2 in Disease. Cells 2022; 11:1515. [PMID: 35563824 PMCID: PMC9101203 DOI: 10.3390/cells11091515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.
Collapse
Affiliation(s)
- Alexandra Daks
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| | | | | | | | | | - Nickolai A. Barlev
- Institute of Cytology RAS, 194064 St. Petersburg, Russia; (O.F.); (S.P.); (I.N.); (O.S.)
| |
Collapse
|
4
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
5
|
Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol 2021; 185:114407. [PMID: 33421376 DOI: 10.1016/j.bcp.2021.114407] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein p53 participates in the control of key biological functions such as cell death, metabolic homeostasis and immune function, which are closely related to various diseases such as tumors, metabolic disorders, infection and neurodegeneration. The p53 gene is also mutated in approximately 50% of human cancer cells. Mutant p53 proteins escape from the ubiquitination-dependent degradation, gain oncogenic function and promote the carcinogenesis, malignant progression, metastasis and chemoresistance. Therefore, the stability of both wild type and mutant p53 needs to be precisely regulated to maintain normal functions and targeting the p53 stability is one of the therapeutic strategies against cancer. Here, we focus on compound-induced degradation of p53 by both the ubiquitination-dependent proteasome and autophagy-lysosome degradation pathways. We also review other posttranslational modifications which control the stability of p53 and the biological functions involved in these processes. This review provides the current theoretical basis for the regulation of p53 abundance and its possible applications in different diseases.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Piao S, Pei HZ, Huang B, Baek SH. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53. Cell Signal 2017; 33:22-29. [DOI: 10.1016/j.cellsig.2017.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
|
7
|
Bridoux L, Deneyer N, Bergiers I, Rezsohazy R. Molecular Analysis of the HOXA2-Dependent Degradation of RCHY1. PLoS One 2015; 10:e0141347. [PMID: 26496426 PMCID: PMC4619689 DOI: 10.1371/journal.pone.0141347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/07/2015] [Indexed: 01/19/2023] Open
Abstract
The homeodomain transcription factor Hoxa2 interacts with the RING-finger type E3 ubiquitin ligase RCHY1 and induces its proteasomal degradation. In this work, we dissected this non-transcriptional activity of Hoxa2 at the molecular level. The Hoxa2-mediated decay of RCHY1 involves both the 19S and 20S proteasome complexes. It relies on both the Hoxa2 homeodomain and C-terminal moiety although no single deletion in the Hoxa2 sequence could disrupt the RCHY1 interaction. That the Hoxa2 homeodomain alone could mediate RCHY1 binding is consistent with the shared ability all the Hox proteins we tested to interact with RCHY1. Nonetheless, the ability to induce RCHY1 degradation although critically relying on the homeodomain is not common to all Hox proteins. This identifies the homeodomain as necessary but not sufficient for what appears to be an almost generic Hox protein activity. Finally we provide evidence that the Hoxa2-induced degradation of RCHY1 is evolutionarily conserved among vertebrates. These data therefore support the hypothesis that the molecular and functional interaction between Hox proteins and RCHY1 is an ancestral Hox property.
Collapse
Affiliation(s)
- Laure Bridoux
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Isabelle Bergiers
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- From the Animal Molecular and Cellular Biology group (AMCB), Life Sciences Institute (ISV), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
8
|
Lui K, An J, Montalbano J, Shi J, Corcoran C, He Q, Sun H, Sheikh MS, Huang Y. Negative regulation of p53 by Ras superfamily protein RBEL1A. J Cell Sci 2013; 126:2436-45. [PMID: 23572512 DOI: 10.1242/jcs.118117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We had previously reported that RBEL1A, a novel Ras-like GTPase, was overexpressed in multiple human malignancies and that its depletion suppressed cell growth. However, the underlying molecular mechanism remained to be elucidated. Here we report that depletion of endogenous RBEL1A results in p53 accumulation due to increased p53 half-life whereas increased expression of RBEL1A reduces p53 levels under unstressed and genotoxic stress conditions. RBEL1A directly interacts with p53 and MDM2, and strongly enhances MDM2-dependent p53 ubiquitylation and degradation. We also found that RBEL1A modulation of p53 ubiquitylation by MDM2 does not depend on its GTPase activity. We have also defined the p53 oligomeric domain and RBEL1A GTPase domain to be the crucial regions for p53-RBEL1A interactions. Importantly, we have found that RBEL1A strongly interferes with p53 transactivation function; thus our results indicate that RBEL1A appears to function as a novel p53 negative regulator that facilitates MDM2-dependent p53 ubiquitylation and degradation.
Collapse
Affiliation(s)
- Ki Lui
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lin Y, Lu Z, Kokontis J, Xiang J. Androgen receptor primes prostate cancer cells to apoptosis through down-regulation of basal p21 expression. Biochem Biophys Res Commun 2012; 430:289-93. [PMID: 23159636 DOI: 10.1016/j.bbrc.2012.10.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 11/27/2022]
Abstract
The androgen receptor (AR) for the male hormone androgen plays an important role in regulation of cell survival or death depending on the nature of cellular context and extracellular stimuli. The pro-survival function of AR is mediated mainly by transcriptional regulation of its target genes. By contrast, the pro-death function of AR can be transcription-dependent or -independent, although the underlying mechanism of the latter is incompletely understood. Here we report that, in androgen-independent prostate cancer cells, AR promotes UV-induced apoptosis through down-regulation of basal expression of p21 independently of its transcriptional activity. Down-regulation of basal p21 expression depends on AR N-terminal interacting protein PIRH2, an E3 ligase for proteasomal degradation of p53. Silencing of PIRH2 up-regulates p53, which in turn activates p21 transcription. Consistent with this, knockdown of PIRH2 suppresses UV-induced AR-dependent apoptosis. Our data suggest that AR primes androgen-independent prostate cancer cells to DNA damage-induced apoptosis through the PIRH2-p53-p21 axis.
Collapse
Affiliation(s)
- Yuting Lin
- Biology Division, Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, United States
| | | | | | | |
Collapse
|
10
|
Jung YS, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: its role in tumorigenesis and cancer therapy. FEBS Lett 2012; 586:1397-402. [PMID: 22673504 DOI: 10.1016/j.febslet.2012.03.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/12/2023]
Abstract
The ubiquitin-dependent proteasome system plays a critical role in many cellular processes and pathogenesis of various human diseases, including cancer. Although there are a large number of E3 ubiquitin ligases, the majority are RING-finger type E3s. Pirh2, a target of p53 transcription factor, contains a highly conserved C(3)H(2)C(3) type RING domain. Importantly, Pirh2 was found to regulate a group of key factors dedicated to the DNA damage response, such as p53, p73, PolH, and c-Myc. Interestingly, Pirh2 was upregulated or downregulated in different types of cancers. These suggest that Pirh2 is implicated in either promoting or suppressing tumor progression in a tissue-dependent manner. This review will focus on the major findings in these studies and discuss the potential to explore Pirh2 as a cancer therapeutic target.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Comparative Oncology Laboratory, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
11
|
Soond SM, Chantry A. How ubiquitination regulates the TGF-β signalling pathway: new insights and new players: new isoforms of ubiquitin-activating enzymes in the E1-E3 families join the game. Bioessays 2012; 33:749-58. [PMID: 21932223 DOI: 10.1002/bies.201100057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ubiquitination of protein species in regulating signal transduction pathways is universally accepted as of fundamental importance for normal development, and defects in this process have been implicated in the progression of many human diseases. One pathway that has received much attention in this context is transforming growth factor-beta (TGF-β) signalling, particularly during the regulation of epithelial-mesenchymal transition (EMT) and tumour progression. While E3-ubiquitin ligases offer themselves as potential therapeutic targets, much remains to be unveiled regarding mechanisms that culminate in their regulation. With this in mind, the focus of this review highlights the regulation of the ubiquitination pathway and the significance of a recently described group of NEDD4 E3-ubiquitin ligase isoforms in the context of TGF-β pathway regulation. Moreover, we now broaden these observations to incorporate a growing number of protein isoforms within the ubiquitin ligase superfamily as a whole, and discuss their relevance in defining a new 'iso-ubiquitinome'.
Collapse
Affiliation(s)
- Surinder M Soond
- University of East Anglia, School Of Biological Sciences, Norwich, Norfolk, UK.
| | | |
Collapse
|
12
|
An J, Shi J, He Q, Lui K, Liu Y, Huang Y, Sheikh MS. CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J Biol Chem 2012; 287:7411-26. [PMID: 22228767 DOI: 10.1074/jbc.m111.277103] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural integrity of mitochondrial cristae is crucial for mitochondrial functions; however, the molecular events controlling the structural integrity and biogenesis of mitochondrial cristae remain to be fully elucidated. Here, we report the functional characterization of a novel mitochondrial protein named CHCM1 (coiled coil helix cristae morphology 1)/CHCHD6. CHCM1/CHCHD6 harbors a coiled coil helix-coiled coil helix domain at its C-terminal end and predominantly localizes to mitochondrial inner membrane. CHCM1/CHCHD6 knockdown causes severe defects in mitochondrial cristae morphology. The mitochondrial cristae in CHCM1/CHCHD6-deficient cells become hollow with loss of structural definitions and reduction in electron-dense matrix. CHCM1/CHCHD6 depletion also leads to reductions in cell growth, ATP production, and oxygen consumption. CHCM1/CHCHD6 through its C-terminal end strongly and directly interacts with the mitochondrial inner membrane protein mitofilin, which is known to also control mitochondrial cristae morphology. CHCM1/CHCHD6 also interacts with other mitofilin-associated proteins, including DISC1 and CHCHD3. Knockdown of CHCM1/CHCHD6 reduces mitofilin protein levels; conversely, mitofilin knockdown leads to reduction in CHCM1 levels, suggesting coordinate regulation between these proteins. Our results further indicate that genotoxic anticancer drugs that induce DNA damage down-regulate CHCM1/CHCHD6 expression in multiple human cancer cells, whereas mitochondrial respiratory chain inhibitors do not affect CHCM1/CHCHD6 levels. CHCM1/CHCHD6 knockdown in human cancer cells enhances chemosensitivity to genotoxic anticancer drugs, whereas its overexpression increases resistance. Collectively, our results indicate that CHCM1/CHCHD6 is linked to regulation of mitochondrial cristae morphology, cell growth, ATP production, and oxygen consumption and highlight its potential as a possible target for cancer therapeutics.
Collapse
Affiliation(s)
- Jie An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhong J, Cao RX, Hong T, Yang J, Zu XY, Xiao XH, Liu JH, Wen GB. Identification and expression analysis of a novel transcript of the human PRMT2 gene resulted from alternative polyadenylation in breast cancer. Gene 2011; 487:1-9. [PMID: 21820040 DOI: 10.1016/j.gene.2011.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/10/2011] [Accepted: 06/18/2011] [Indexed: 10/18/2022]
Abstract
The arginine N-methyltransferase 2 protein (PRMT2, also known as HRMT1L1) is thought to act as a coactivator of ERα. The present results show the occurrence of a novel transcript by alternative polyadenylation in the human PRMT2 gene. We demonstrated that the newly identified intron-retaining PRMT2L2 transcript is functionally intact, efficiently translated into protein in vivo. PRMT2 and PRMT2L2 mRNA expression profiles overlap with the distribution of ERα, with the strongest abundance in estrogen target tissues. Transient co-transfection assays demonstrated that PRMT2L2 enhance ERα-mediated transactivation activity of ERE-Luc in a ligand-dependent manner. Confocal microscopy scanning revealed a distinct intra-cellular localization of their fusion proteins, suggesting that the C-terminal region absent in PRMT2L2 is critical for the localization. Statistical analysis further showed that both PRMT2 and PRMT2L2 mRNAexpressions were up-regulated in breast cancer tissues, and significantly associated with ERα positivity status. Thus, post-transcriptional processing mechanism as alternative polyadenylation and splicing may play a crucial role in regulating human PRMT2 gene expression.
Collapse
Affiliation(s)
- Jing Zhong
- University of South China, Hengyang 421001, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Pirh2 (p53-induced RING-H2) is an E3 ubiquitin ligase that can target p53 for degradation and thereby repress a diverse group of biological activities regulated by p53. Notably, Pirh2, rather than MDM2, is the primary degrader of active p53 under conditions of DNA damage. Moreover, Pirh2 is highly expressed in multiple cancer cell lines regardless of p53 status. Recent research has shown that Pirh2 is involved in many signalling pathways related to the genesis and evolution of cancer. This review aims to summarize a comprehensive picture of the role of Pirh2 in cellular processes and its significance to tumorigenesis. Furthermore, this review focuses on its potential role as a cancer therapeutic target.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Medicine, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
15
|
Expression of Pirh2, a p27(Kip1) ubiquitin ligase, in hepatocellular carcinoma: correlation with p27(Kip1) and cell proliferation. Hum Pathol 2011; 42:507-15. [PMID: 21236467 DOI: 10.1016/j.humpath.2010.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/17/2010] [Accepted: 04/21/2010] [Indexed: 10/18/2022]
Abstract
p53-Induced ring-H2 protein (Pirh2), a recently identified ubiquitin-protein ligase, interacts with p27(Kip1) to promote ubiquitination of p27(Kip1) independently of p53. High Pirh2 and low p27(Kip1) immunoreactivity are associated with a poor prognosis in several cancers, including resistant phenotypes. In the present study, we investigated the role of Pirh2 and p27(Kip1) in human hepatocellular carcinoma (HCC) progression. Immunohistochemical analysis was performed on formalin-fixed paraffin sections of 87 specimens. Statistical analysis showed that expression of Pirh2 was negatively related to p27(Kip1) expression (r = 0.787; P < .05), and Pirh2 expression correlated significantly with histologic grade (P < .001), venous invasion (P = .004), tumor size (P = .024), and the presence of multiple tumor-bearing lymph nodes (P = .017), whereas p27(Kip1) expression correlated significantly with histologic grade (P < .001), venous invasion (P = .048), and cirrhosis (P = .028). By Kaplan-Meier analysis, the survival curves of low versus high expressers of Pirh2 and p27(Kip1) showed significant separation (P < .01). Molecular interaction could be demonstrated between Pirh2 and p27(Kip1) in three HCC cell lines. In vitro, following release of two HCC cell lines from serum starvation, the expression of Pirh2 was upregulated, whereas p27(Kip1) was downregulated. Our results suggest that Pirh2 mediates the degradation of p27(Kip1) and participates in cell proliferation in human HCC. These findings provide a rational framework for further development of Pirh2 inhibitors as a novel class of anti-tumor agents.
Collapse
|
16
|
A novel hPirh2
splicing variant without ubiquitin protein ligase activity interacts with p53 and is down-regulated in hepatocellular carcinoma. FEBS Lett 2010; 584:2772-8. [DOI: 10.1016/j.febslet.2010.04.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 04/13/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
|
17
|
Lorès P, Visvikis O, Luna R, Lemichez E, Gacon G. The SWI/SNF protein BAF60b is ubiquitinated through a signalling process involving Rac GTPase and the RING finger protein Unkempt. FEBS J 2010; 277:1453-64. [PMID: 20148946 DOI: 10.1111/j.1742-4658.2010.07575.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The SWI/SNF chromatin remodelling complexes are important regulators of transcription; they consist of large multisubunit assemblies containing either Brm or Brg1 as the catalytic ATPase subunit and a variable subset of approximately 10 Brg/Brm-associated factors (BAF). Among these factors, BAF60 proteins (BAF60a, BAF60b or BAF60c), which are found in most complexes, are thought to bridge interactions between transcription factors and SWI/SNF complexes. We report here on a Rac-dependent process leading to BAF60b ubiquitination. Using two-hybrid cloning procedures, we identified a mammalian RING finger protein homologous to drosophila Unkempt as a new partner of the activated form of RacGTPases and demonstrated that mammalian Unkempt specifically binds to BAF60b and promotes its ubiquitination in a Rac1-dependent manner. Immunofluorescence studies demonstrated that Unkempt is primarily localized in the cytoplasmic compartment, but has the ability to shuttle between the nucleus and the cytoplasm, suggesting that the Rac- and Unkempt-dependent process leading to BAF60b ubiquitination takes place in the nuclear compartment. Ubiquitinated forms of BAF60b were found to accumulate upon treatment with the proteasome inhibitor MG132, indicating that BAF60b ubiquitination is of the degradative type and could regulate the level of BAF60b in SWI/SNF complexes. Our observations support the new idea of a direct connection between Rac signalling and chromatin remodelling.
Collapse
Affiliation(s)
- Patrick Lorès
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
| | | | | | | | | |
Collapse
|