1
|
Jones T, Naslavsky N, Caplan S. Eps15 Homology Domain Protein 4 (EHD4) is required for Eps15 Homology Domain Protein 1 (EHD1)-mediated endosomal recruitment and fission. PLoS One 2020; 15:e0239657. [PMID: 32966336 PMCID: PMC7511005 DOI: 10.1371/journal.pone.0239657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
Upon internalization, receptors are trafficked to sorting endosomes (SE) where they undergo sorting and are then packaged into budding vesicles that undergo fission and transport within the cell. Eps15 Homology Domain Protein 1 (EHD1), the best-characterized member of the Eps15 Homology Domain Protein (EHD) family, has been implicated in catalyzing the fission process that releases endosome-derived vesicles for recycling to the plasma membrane. Indeed, recent studies suggest that upon receptor-mediated internalization, EHD1 is recruited from the cytoplasm to endosomal membranes where it catalyzes vesicular fission. However, the mechanism by which this recruitment occurs remains unknown. Herein, we demonstrate that the EHD1 paralog, EHD4, is required for the recruitment of EHD1 to SE. We show that EHD4 preferentially dimerizes with EHD1, and knock-down of EHD4 expression by siRNA, shRNA or by CRISPR/Cas9 gene-editing leads to impaired EHD1 SE-recruitment and enlarged SE. Moreover, we demonstrate that at least 3 different asparagine-proline-phenylalanine (NPF) motif-containing EHD binding partners, Rabenosyn-5, Syndapin2 and MICAL-L1, are required for the recruitment of EHD1 to SE. Indeed, knock-down of any of these SE-localized EHD interaction partners leads to enlarged SE, presumably due to impaired endosomal fission. Overall, we identify a novel mechanistic role for EHD4 in recruitment of EHD1 to SE, thus positioning EHD4 as an essential component of the EHD1-fission machinery at SE.
Collapse
Affiliation(s)
- Tyler Jones
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States of America
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
2
|
Tom EC, Mushtaq I, Mohapatra BC, Luan H, Bhat AM, Zutshi N, Chakraborty S, Islam N, Arya P, Bielecki TA, Iseka FM, Bhattacharyya S, Cypher LR, Goetz BT, Negi SK, Storck MD, Rana S, Barnekow A, Singh PK, Ying G, Guda C, Natarajan A, Band V, Band H. EHD1 and RUSC2 Control Basal Epidermal Growth Factor Receptor Cell Surface Expression and Recycling. Mol Cell Biol 2020; 40:e00434-19. [PMID: 31932478 PMCID: PMC7076251 DOI: 10.1128/mcb.00434-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/26/2019] [Accepted: 12/26/2019] [Indexed: 01/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While postactivation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/preactivation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular structures and at the Golgi compartment. Inducible EHD1 knockdown reduced the cell surface EGFR expression with accumulation at the Golgi compartment, a phenotype rescued by exogenous EHD1. RUSC2 knockdown phenocopied the EHD1 depletion effects. EHD1 or RUSC2 depletion impaired the EGF-induced cell proliferation, demonstrating that the novel, EHD1- and RUSC2-dependent transport of unstimulated EGFR from the Golgi compartment to the cell surface that we describe is functionally important, with implications for physiologic and oncogenic roles of EGFR and targeted cancer therapies.
Collapse
Affiliation(s)
- Eric C Tom
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Namista Islam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Priyanka Arya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Fany M Iseka
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sohinee Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Luke R Cypher
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Simarjeet K Negi
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angelika Barnekow
- Department of Experimental Tumorbiology, Westfälische Wilhelms University Muenster, Muenster, Germany
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Vanniya S P, Srisailapathy CRS, Kunka Mohanram R. The tip link protein Cadherin-23: From Hearing Loss to Cancer. Pharmacol Res 2018; 130:25-35. [PMID: 29421162 DOI: 10.1016/j.phrs.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 11/26/2022]
Abstract
Cadherin-23 is an atypical member of the cadherin superfamily, with a distinctly long extracellular domain. It has been known to be a part of the tip links of the inner ear mechanosensory hair cells. Several studies have been carried out to understand the role of Cadherin-23 in the hearing mechanism and defects in the CDH23 have been associated with hearing impairment resulting from defective or absence of tip links. Recent studies have highlighted the role of Cadherin-23 in several pathological conditions, including cancer, suggesting the presence of several unknown functions. Initially, it was proposed that Cadherin-23 represents a yet unspecified subtype of Cadherins; however, no other proteins with similar characteristics have been identified, till date. It has a unique cytoplasmic domain that does not bear a β-catenin binding region, but has been demonstrated to mediate cell-cell adhesions. Several protein interacting partners have been identified for Cadherin-23 and the roles of their interactions in various cellular mechanisms are yet to be explored. This review summarizes the characteristics of Cadherin-23 and its roles in several pathologies including cancer.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Taramani campus, Chennai, Tamilnadu, India
| | - Ramkumar Kunka Mohanram
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India.
| |
Collapse
|
4
|
Jain RK, Pingle SK, Tumane RG, Thakkar LR, Jawade AA, Barapatre A, Trivedi M. Cochlear Proteins Associated with Noise-induced Hearing Loss: An Update. Indian J Occup Environ Med 2018; 22:60-73. [PMID: 30319226 PMCID: PMC6176698 DOI: 10.4103/ijoem.ijoem_43_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the major occupational disease that has influence on the quality of life of mining workers. Several reports suggest NIHL is attributed to noise exposure at workplace and approximately 16% of hearing loss is due to it. NIHL occurs as a result of exposure to high-level noise (>85 dB) in the workplace. Noise disrupts proteins present in the micromachinery of the ear that is required for mechano-electric transduction of sound waves. High-level noise exposure can lead to hearing impairment owing to mechanical and metabolic exhaustion in cochlea, the major organ responsible for resilience of sound. Several key proteins of cochlea include tectorial membrane, inner hair cells, outer hair cells, and stereocilia are damaged due to high-level noise exposure. Numerous studies conducted in animals have shown cochlear proteins involvement in NIHL, but the pertinent literature remains limited in humans. Detection of proteins and pathways perturbed within the micromachinery of the ear after excessive sound induction leads toward the early identification of hearing loss. The situation insisted to present this review as an update on cochlear proteins associated with NIHL after an extensive literature search using several electronic databases which help to understand the pathophysiology of NIHL.
Collapse
Affiliation(s)
- Ruchika K Jain
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Shubhangi K Pingle
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Rajani G Tumane
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Lucky R Thakkar
- National Centre for Microbial Resources, National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra, India
| | - Aruna A Jawade
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Anand Barapatre
- Department of Biochemistry, National Institute of Miners' Health JNARDDC Campus, Wadi, Nagpur, Maharashtra, India
| | - Minal Trivedi
- B. K. Birla College of Science, Arts & Commerce (Autonomous), Kalyan, Maharashtra, India
| |
Collapse
|
5
|
Takahashi S, Mui VJ, Rosenberg SK, Homma K, Cheatham MA, Zheng J. Cadherin 23-C Regulates Microtubule Networks by Modifying CAMSAP3's Function. Sci Rep 2016; 6:28706. [PMID: 27349180 PMCID: PMC4923861 DOI: 10.1038/srep28706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Cadherin-related 23 (CDH23) is an adhesive protein important for hearing and vision, while CAMSAP3/Marshalin is a microtubule (MT) minus-end binding protein that regulates MT networks. Although both CDH23 and CAMSAP3/Marshalin are expressed in the organ of Corti, and carry several protein-protein interaction domains, no functional connection between these two proteins has been proposed. In this report, we demonstrate that the C isoform of CDH23 (CDH23-C) directly binds to CAMSAP3/Marshalin and modifies its function by inhibiting CAMSAP3/Marshalin-induced bundle formation, a process that requires a tubulin-binding domain called CKK. We further identified a conserved N-terminal region of CDH23-C that binds to the CKK domain. This CKK binding motif (CBM) is adjacent to the domain that interacts with harmonin, a binding partner of CDH23 implicated in deafness. Because the human Usher Syndrome 1D-associated mutation, CDH23 R3175H, maps to the CBM, we created a matched mutation in mouse CDH23-C at R55H. Both in vivo and in vitro assays decreased the ability of CDH23-C to interact with CAMSAP3/Marshalin, indicating that the interaction between CDH23 and CAMSAP3/Marshalin plays a vital role in hearing and vision. Together, our data suggest that CDH23-C is a CAMSAP3/Marshalin-binding protein that can modify MT networks indirectly through its interaction with CAMSAP3/Marshalin.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Vincent J Mui
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Samuel K Rosenberg
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Cypher LR, Bielecki TA, Adepegba O, Huang L, An W, Iseka F, Luan H, Tom E, Storck MD, Hoppe AD, Band V, Band H. CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface. Cell Signal 2016; 28:1325-1335. [PMID: 27224507 DOI: 10.1016/j.cellsig.2016.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/23/2022]
Abstract
Colony stimulating factor-1 receptor (CSF-1R), a receptor tyrosine kinase (RTK), is the master regulator of macrophage biology. CSF-1 can bind CSF-1R resulting in receptor activation and signalling essential for macrophage functions such as proliferation, differentiation, survival, polarization, phagocytosis, cytokine secretion, and motility. CSF-1R activation can only occur after the receptor is presented on the macrophage cell surface. This process is reliant upon the underlying macrophage receptor trafficking machinery. However, the mechanistic details governing this process are incompletely understood. C-terminal Eps15 Homology Domain-containing (EHD) proteins have recently emerged as key regulators of receptor trafficking but have not yet been studied in the context of macrophage CSF-1R signalling. In this manuscript, we utilize primary bone-marrow derived macrophages (BMDMs) to reveal a novel function of EHD1 as a regulator of CSF-1R abundance on the cell surface. We report that EHD1-knockout (EHD1-KO) macrophages cell surface and total CSF-1R levels are significantly decreased. The decline in CSF-1R levels corresponds with reduced downstream macrophage functions such as cell proliferation, migration, and spreading. In EHD1-KO macrophages, transport of newly synthesized CSF-1R to the macrophage cell surface was reduced and was associated with the shunting of the receptor to the lysosome, which resulted in receptor degradation. These findings reveal a novel and functionally important role for EHD1 in governing CSF-1R signalling via regulation of anterograde transport of CSF-1R to the macrophage cell surface.
Collapse
Affiliation(s)
- Luke R Cypher
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Timothy Alan Bielecki
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | | | - Lu Huang
- Department of Chemistry and Biochemistry, BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Wei An
- Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fany Iseka
- Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | | | - Eric Tom
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Matthew D Storck
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, BioSNTR, South Dakota State University, Brookings, SD, United States
| | - Vimla Band
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid Band
- Eppley Cancer Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
7
|
Bhattacharyya S, Rainey MA, Arya P, Mohapatra BC, Mushtaq I, Dutta S, George M, Storck MD, McComb RD, Muirhead D, Todd GL, Gould K, Datta K, Gelineau-van Waes J, Band V, Band H. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development. Sci Rep 2016; 6:20727. [PMID: 26884322 PMCID: PMC4756679 DOI: 10.1038/srep20727] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Mark A Rainey
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Priyanka Arya
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | - Samikshan Dutta
- The Department of Biochemistry &Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA
| | - Rodney D McComb
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Muirhead
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gordon L Todd
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karen Gould
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaustubh Datta
- The Department of Biochemistry &Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Vimla Band
- The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hamid Band
- The Department of Pathology &Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.,The Department of Genetics, Cell Biology &Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases,University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Arya P, Rainey MA, Bhattacharyya S, Mohapatra BC, George M, Kuracha MR, Storck MD, Band V, Govindarajan V, Band H. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol 2015; 408:41-55. [PMID: 26455409 DOI: 10.1016/j.ydbio.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis.
Collapse
Affiliation(s)
- Priyanka Arya
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Mark A Rainey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Sohinee Bhattacharyya
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center Omaha, NE 68198-5900, USA.
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center Omaha, NE 68198-5870, USA.
| | - Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Murali R Kuracha
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA.
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA.
| | - Venkatesh Govindarajan
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Hamid Band
- Department of Genetics, Cell Biology & Anatomy, College of Medicine, University of Nebraska Medical Center, 985805 Nebraska Medical Center Omaha, NE 68198-5805, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, NE 68198-5950, USA; Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center Omaha, NE 68198-5900, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, 985870 Nebraska Medical Center Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 985950 Nebraska Medical Center Omaha, NE 68198-5950, USA.
| |
Collapse
|
9
|
Zheng J, Furness D, Duan C, Miller KK, Edge RM, Chen J, Homma K, Hackney CM, Dallos P, Cheatham MA. Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biol Open 2013; 2:1192-202. [PMID: 24244856 PMCID: PMC3828766 DOI: 10.1242/bio.20135603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 12/30/2022] Open
Abstract
Dramatic structural changes in microtubules (MT) and the assembly of complicated intercellular connections are seen during the development of the cellular matrix of the sense organ for hearing, the organ of Corti. This report examines the expression of marshalin, a minus-end binding protein, during this process of cochlear development. We discovered that marshalin is abundantly expressed in both sensory hair cells and supporting cells. In the adult, prominent marshalin expression is observed in the cuticular plates of hair cells and in the noncentrosomal MT organization centers (MTOC) of Deiters' and pillar cells. Based upon differences in marshalin expression patterns seen in the organ of Corti, we identified eight isoforms ranging from 863 to 1280 amino acids. mRNAs/proteins associated with marshalin's isoforms are detected at different times during development. These isoforms carry various protein-protein interacting domains, including coiled-coil (CC), calponin homology (CH), proline-rich (PR), and MT-binding domains, referred to as CKK. We, therefore, examined membranous organelles and structural changes in the cytoskeleton induced by expressing two of these marshalin isoforms in vitro. Long forms containing CC and PR domains induce thick, spindle-shaped bundles, whereas short isoforms lacking CC and PR induce more slender variants that develop into densely woven networks. Together, these data suggest that marshalin is closely associated with noncentrosomal MTOCs, and may be involved in MT bundle formation in supporting cells. As a scaffolding protein with multiple isoforms, marshalin is capable of modifying cytoskeletal networks, and consequently organelle positioning, through interactions with various protein partners present in different cells.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL 60611 , USA ; Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University , Evanston, IL 60208 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Selvakumar D, Drescher MJ, Drescher DG. Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. J Biol Chem 2013; 288:7215-29. [PMID: 23329832 DOI: 10.1074/jbc.m112.443226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca(2+)-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463-476). Here, we provide evidence for organ of Corti proteins, of Ca(2+)-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca(2+)-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628-37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link.
Collapse
Affiliation(s)
- Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
11
|
Mate SE, Van Der Meulen JH, Arya P, Bhattacharyya S, Band H, Hoffman EP. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction. Skelet Muscle 2012; 2:19. [PMID: 22974368 PMCID: PMC3541266 DOI: 10.1186/2044-5040-2-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/10/2012] [Indexed: 01/19/2023] Open
Abstract
Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ). We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD)1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.
Collapse
Affiliation(s)
- Suzanne E Mate
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.
| | | | | | | | | | | |
Collapse
|
12
|
George M, Rainey MA, Naramura M, Foster KW, Holzapfel MS, Willoughby LL, Ying G, Goswami RM, Gurumurthy CB, Band V, Satchell SC, Band H. Renal thrombotic microangiopathy in mice with combined deletion of endocytic recycling regulators EHD3 and EHD4. PLoS One 2011; 6:e17838. [PMID: 21408024 PMCID: PMC3052385 DOI: 10.1371/journal.pone.0017838] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/15/2011] [Indexed: 11/19/2022] Open
Abstract
Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3(-/-) mice and assessed renal development and pathology. Ehd3(-/-) animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3(-/-) mice and suggested functional compensation, we generated and analyzed Ehd3(-/-); Ehd4(-/-) mice. These mice were smaller, possessed smaller and paler kidneys, were proteinuric and died between 3-24 weeks of age. Detailed analyses of Ehd3(-/-); Ehd4(-/-) kidneys demonstrated thrombotic microangiopathy (TMA)-like glomerular lesions including thickening and duplication of glomerular basement membrane, endothelial swelling and loss of fenestrations. Other changes included segmental podocyte foot process effacement, mesangial interposition, and abnormal podocytic and mesangial marker expression. The glomerular lesions observed were strikingly similar to those seen in human pre-eclampsia and mouse models of reduced VEGF expression. As altered glomerular endothelial VEGFR2 expression and localization and increased apoptosis was observed in the absence of EHD3 and EHD4, we propose that EHD-mediated endocytic traffic of key surface receptors such as VEGFR2 is essential for physiological control of glomerular function. Furthermore, Ehd3(-/-); Ehd4(-/-) mice provide a unique model to elucidate mechanisms of glomerular endothelial injury which is observed in a wide variety of human renal and extra-renal diseases.
Collapse
Affiliation(s)
- Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MG); (MN); (HB)
| | - Mark A. Rainey
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Mayumi Naramura
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MG); (MN); (HB)
| | - Kirk W. Foster
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Laura L. Willoughby
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - GuoGuang Ying
- Oncology Central Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Rasna M. Goswami
- Abbott Laboratories, Abbott Park, Illinois, United States of America
| | - Channabasavaiah B. Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Vimla Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Departments of Biochemistry and Molecular Biology, and Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (MG); (MN); (HB)
| |
Collapse
|
13
|
Carcinoembryonic antigen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4). Proc Natl Acad Sci U S A 2011; 108:4218-23. [PMID: 21368133 DOI: 10.1073/pnas.1005842108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report on a secreted protein found in mammalian cochlear outer hair cells (OHC) that is a member of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of adhesion proteins. Ceacam16 mRNA is expressed in OHC, and its protein product localizes to the tips of the tallest stereocilia and the tectorial membrane (TM). This specific localization suggests a role in maintaining the integrity of the TM as well as in the connection between the OHC stereocilia and TM, a linkage essential for mechanical amplification. In agreement with this role, CEACAM16 colocalizes and coimmunoprecipitates with the TM protein α-tectorin. In addition, we show that mutation of CEACAM16 leads to autosomal dominant nonsyndromic deafness (ADNSHL) at the autosomal dominant hearing loss (DFNA4) locus. In aggregate, these data identify CEACAM16 as an α-tectorin-interacting protein that concentrates at the point of attachment of the TM to the stereocilia and, when mutated, results in ADNSHL at the DFNA4 locus.
Collapse
|
14
|
EHD proteins: key conductors of endocytic transport. Trends Cell Biol 2010; 21:122-31. [PMID: 21067929 DOI: 10.1016/j.tcb.2010.10.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022]
Abstract
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently less was known about the four mammalian dynamin-like C-terminal Eps15 homology domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field.
Collapse
|
15
|
Xu Z, Oshima K, Heller S. PIST regulates the intracellular trafficking and plasma membrane expression of cadherin 23. BMC Cell Biol 2010; 11:80. [PMID: 20958966 PMCID: PMC2967513 DOI: 10.1186/1471-2121-11-80] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/19/2010] [Indexed: 02/02/2023] Open
Abstract
Background The atypical cadherin protein cadherin 23 (CDH23) is crucial for proper function of retinal photoreceptors and inner ear hair cells. As we obtain more and more information about the specific roles of cadherin 23 in photoreceptors and hair cells, the regulatory mechanisms responsible for the transport of this protein to the plasma membrane are largely unknown. Results PIST, a Golgi-associated, PDZ domain-containing protein, interacted with cadherin 23 via the PDZ domain of PIST and the C-terminal PDZ domain-binding interface (PBI) of cadherin 23. By binding to cadherin 23, PIST retained cadherin 23 in the trans-Golgi network of cultured cells. The retention was released when either of the two known cadherin 23-binding proteins MAGI-1 and harmonin was co-expressed. Similar to MAGI-1 and harmonin, PIST was detected in mouse inner ear sensory hair cells. Conclusions PIST binds cadherin 23 via its PDZ domain and retains cadherin 23 in trans-Golgi network. MAGI-1 and harmonin can compete with PIST for binding cadherin 23 and release cadherin 23 from PIST's retention. Our finding suggests that PIST, MAGI-1 and harmonin collaborate in intracellular trafficking of cadherin 23 and regulate the plasma membrane expression of cadherin 23.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Otolaryngology--Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
16
|
George M, Rainey MA, Naramura M, Ying G, Harms DW, Vitaterna MH, Doglio L, Crawford SE, Hess RA, Band V, Band H. Ehd4 is required to attain normal prepubertal testis size but dispensable for fertility in male mice. Genesis 2010; 48:328-42. [PMID: 20213691 DOI: 10.1002/dvg.20620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulate endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4(-/-) mice confirmed EHD4 deletion. Ehd4(-/-) mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (Day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (Day 31) were seen in the Ehd4(-/-) testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium, and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4(-/-) males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and EHD4 levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age-dependent manner. We conclude that high levels of EHD1 in the adult Ehd4(-/-) testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of postmitotic and postmeiotic germ cells and implicate EHD protein-mediated endocytic recycling as an important process in germ cell development and testis function.
Collapse
Affiliation(s)
- Manju George
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC-Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alterations of EHD1/EHD4 protein levels interfere with L1/NgCAM endocytosis in neurons and disrupt axonal targeting. J Neurosci 2010; 30:6646-57. [PMID: 20463227 DOI: 10.1523/jneurosci.5428-09.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Axon growth is regulated by many proteins, including adhesion molecules, which need to be trafficked correctly to axons. The adhesion molecule L1/neuron-glia cell adhesion molecule (NgCAM) travels to axons via an endocytosis-dependent pathway (transcytosis), traversing somatodendritic endosomes. The Eps15 homology domain (EHD) family proteins (EHD1-EHD4) play important roles in endosomal recycling and possibly in endocytosis. We investigated whether EHD1 regulates L1/NgCAM trafficking in neurons. Both short hairpin-mediated downregulation and overexpression of EHD1 led to dendritic mistargeting of NgCAM. Downregulation of EHD1 showed increased endosomal accumulation of NgCAM, whereas, surprisingly, overexpression of EHD1 led to impairment of L1/NgCAM internalization in neurons but not in fibroblasts. Transferrin internalization, however, was unaffected. At longer overexpression times of EHD1, NgCAM endocytosis returned to normal, suggesting rapid upregulation of compensatory endocytic pathways. EHD1 is capable of hetero-oligomerization, and an endogenous complex of EHD1 and EHD4 was identified previously. We therefore tested whether short-term overexpression of other EHD family members showed a similar endocytosis defect. Expression of EHD4, but not of EHD3, also caused a defect in L1/NgCAM endocytosis. Oligomerization of EHD1 was required to cause NgCAM endocytosis defects, and simultaneous expression of EHD1 and EHD4 rescued NgCAM endocytosis. Therefore, balanced levels of EHD1-EHD4 are important for NgCAM endocytosis in neurons. Our data suggest that EHD1 plays roles in both endosomal recycling and a specialized endocytosis pathway in neurons used by NgCAM. We propose that EHD1 and EHD4 act as hetero-oligomeric complexes in this pathway.
Collapse
|
18
|
Gudmundsson H, Hund TJ, Wright PJ, Kline CF, Snyder JS, Qian L, Koval OM, Cunha SR, George M, Rainey MA, Kashef FE, Dun W, Boyden PA, Anderson ME, Band H, Mohler PJ. EH domain proteins regulate cardiac membrane protein targeting. Circ Res 2010; 107:84-95. [PMID: 20489164 DOI: 10.1161/circresaha.110.216713] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes. OBJECTIVE We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes. METHODS AND RESULTS We report the initial characterization of a large family of membrane trafficking proteins in human heart. We used a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified 4 members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are coexpressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart. CONCLUSIONS Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.
Collapse
Affiliation(s)
- Hjalti Gudmundsson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|