1
|
Xu J, Liang Y, Li N, Dang S, Jiang A, Liu Y, Guo Y, Yang X, Yuan Y, Zhang X, Yang Y, Du Y, Shi A, Liu X, Li D, He K. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism. Nat Cell Biol 2024; 26:1652-1668. [PMID: 39300312 DOI: 10.1038/s41556-024-01499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Endocytosis and recycling control the uptake and retrieval of various materials, including membrane proteins and lipids, in all eukaryotic cells. These processes are crucial for cell growth, organization, function and environmental communication. However, the mechanisms underlying efficient, fast endocytic recycling remain poorly understood. Here, by utilizing a biosensor and imaging-based screening, we uncover a recycling mechanism that couples endocytosis and fast recycling, which we name the clathrin-associated fast endosomal recycling pathway (CARP). Clathrin-associated tubulovesicular carriers containing clathrin, AP1, Arf1, Rab1 and Rab11, while lacking the multimeric retrieval complexes, are generated at subdomains of early endosomes and then transported along actin to cell surfaces. Unexpectedly, the clathrin-associated recycling carriers undergo partial fusion with the plasma membrane. Subsequently, they are released from the membrane by dynamin and re-enter cells. Multiple receptors utilize and modulate CARP for fast recycling following endocytosis. Thus, CARP represents a previously unrecognized endocytic recycling mechanism with kiss-and-run membrane fusion.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiqun Liu
- National Center for Protein Sciences and Core Facilities of Life Sciences at Peking University, College of Life Sciences, Peking University, Beijing, China
| | - Yuting Guo
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Yang
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaran Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Butt E, Günder T, Stürzebecher P, Kowalski I, Schneider P, Buschmann N, Schäfer S, Bender A, Hermanns HM, Zernecke A. Cholesterol uptake in the intestine is regulated by the LASP1-AKT-NPC1L1 signaling pathway. Am J Physiol Gastrointest Liver Physiol 2024; 327:G25-G35. [PMID: 38713618 DOI: 10.1152/ajpgi.00222.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.
Collapse
Affiliation(s)
- Elke Butt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten Günder
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Paulina Stürzebecher
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Isabel Kowalski
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Pia Schneider
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Nils Buschmann
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Schäfer
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alicia Bender
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike M Hermanns
- Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Wang S, Link F, Han M, Chaudhary R, Asimakopoulos A, Liebe R, Yao Y, Hammad S, Dropmann A, Krizanac M, Rubie C, Feiner LK, Glanemann M, Ebert MPA, Weiskirchen R, Henis YI, Ehrlich M, Dooley S. The Interplay of TGF-β1 and Cholesterol Orchestrating Hepatocyte Cell Fate, EMT, and Signals for HSC Activation. Cell Mol Gastroenterol Hepatol 2023; 17:567-587. [PMID: 38154598 PMCID: PMC10883985 DOI: 10.1016/j.jcmgh.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor-β1 (TGF-β1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD involves various biological processes including dysfunctional cholesterol metabolism and contributes to progression to metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma. However, the reciprocal regulation of TGF-β1 signaling and cholesterol metabolism in MASLD is yet unknown. METHODS Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA sequencing of murine hepatocyte cell line (alpha mouse liver 12/AML12) and mouse primary hepatocytes treated with TGF-β1. Functional assays were performed on AML12 cells (untreated, TGF-β1 treated, or subjected to cholesterol enrichment [CE] or cholesterol depletion [CD]), and on mice injected with adenovirus-associated virus 8-control/TGF-β1. RESULTS TGF-β1 inhibited messenger RNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, mouse primary hepatocytes, and adenovirus-associated virus-TGF-β1-treated mice. Total cholesterol levels and lipid droplet accumulation in AML12 cells and liver tissue also were reduced upon TGF-β1 treatment. Smad2/3 phosphorylation after 2 hours of TGF-β1 treatment persisted after CE or CD and was mildly increased after CD, whereas TGF-β1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 hours of incubation with TGF-β1, including epithelial-mesenchymal transition, actin polymerization, and apoptosis. CD mimicked the outcome of long-term TGF-β1 administration, an effect that was blocked by an inhibitor of the type I TGF-β receptor. In addition, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. CONCLUSIONS TGF-β1 inhibits cholesterol metabolism whereas cholesterol attenuates TGF-β1 downstream effects in hepatocytes.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mei Han
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Internal Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Roohi Chaudhary
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Seddik Hammad
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Dropmann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Rubie
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Laura Kim Feiner
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Glanemann
- Department of General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias P A Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Aachen, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
4
|
Ferrari A, Whang E, Xiao X, Kennelly JP, Romartinez-Alonso B, Mack JJ, Weston T, Chen K, Kim Y, Tol MJ, Bideyan L, Nguyen A, Gao Y, Cui L, Bedard AH, Sandhu J, Lee SD, Fairall L, Williams KJ, Song W, Munguia P, Russell RA, Martin MG, Jung ME, Jiang H, Schwabe JW, Young SG, Tontonoz P. Aster-dependent nonvesicular transport facilitates dietary cholesterol uptake. Science 2023; 382:eadf0966. [PMID: 37943936 PMCID: PMC11073449 DOI: 10.1126/science.adf0966] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes. Loss of NPC1L1 diminishes accessible plasma membrane (PM) cholesterol and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate PM cholesterol and show endoplasmic reticulum cholesterol depletion. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, the Aster pathway can be targeted with a small-molecule inhibitor to manipulate cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.
Collapse
Affiliation(s)
- Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Emily Whang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | | | - Julia J. Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles; Los Angeles, CA, 90095, USA
| | - Thomas Weston
- Department of Medicine, Division of Cardiology, University of California, Los Angeles; Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Kai Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - Youngjae Kim
- Department of Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Marcus J. Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Lara Bideyan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Alexander H. Bedard
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen D. Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Louise Fairall
- Institute for Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Kevin J. Williams
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
- UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenxin Song
- Department of Medicine, Division of Cardiology, University of California, Los Angeles; Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Priscilla Munguia
- Department of Medicine, Division of Cardiology, University of California, Los Angeles; Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Robert A. Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Martin G. Martin
- Pediatric Gastroenterology, Hepatology, and Nutrition, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Michael E. Jung
- Department of Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
| | - John W.R. Schwabe
- Institute for Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Stephen G. Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles; Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Xiao J, Dong LW, Liu S, Meng FH, Xie C, Lu XY, Zhang WJ, Luo J, Song BL. Bile acids-mediated intracellular cholesterol transport promotes intestinal cholesterol absorption and NPC1L1 recycling. Nat Commun 2023; 14:6469. [PMID: 37833289 PMCID: PMC10575946 DOI: 10.1038/s41467-023-42179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is essential for intestinal cholesterol absorption. Together with the cholesterol-rich and Flotillin-positive membrane microdomain, NPC1L1 is internalized via clathrin-mediated endocytosis and transported to endocytic recycling compartment (ERC). When ERC cholesterol level decreases, NPC1L1 interacts with LIMA1 and moves back to plasma membrane. However, how cholesterol leaves ERC is unknown. Here, we find that, in male mice, intracellular bile acids facilitate cholesterol transport to other organelles, such as endoplasmic reticulum, in a non-micellar fashion. When cholesterol level in ERC is decreased by bile acids, the NPC1L1 carboxyl terminus that previously interacts with the cholesterol-rich membranes via the A1272LAL residues dissociates from membrane, exposing the Q1277KR motif for LIMA1 recruitment. Then NPC1L1 moves back to plasma membrane. This study demonstrates an intracellular cholesterol transport function of bile acids and explains how the substantial amount of cholesterol in NPC1L1-positive compartments is unloaded in enterocytes during cholesterol absorption.
Collapse
Affiliation(s)
- Jian Xiao
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Le-Wei Dong
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Shuai Liu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- Heart Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Fan-Hua Meng
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
- Heart Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
- Affiliated Hospital of Jining Medical University, Jining, 272007, Shandong, China
| | - Chang Xie
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Xiao-Yi Lu
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Jie Luo
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Ferrari A, Whang E, Xiao X, Kennelly JP, Romartinez-Alonso B, Mack JJ, Weston T, Chen K, Kim Y, Tol MJ, Bideyan L, Nguyen A, Gao Y, Cui L, Bedard AH, Sandhu J, Lee SD, Fairall L, Williams KJ, Song W, Munguia P, Russell RA, Martin MG, Jung ME, Jiang H, Schwabe JWR, Young SG, Tontonoz P. Aster-dependent non-vesicular transport facilitates dietary cholesterol uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548168. [PMID: 37503112 PMCID: PMC10369906 DOI: 10.1101/2023.07.07.548168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Intestinal cholesterol absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe (EZ), assists in the initial step of dietary cholesterol uptake. However, how cholesterol moves downstream of NPC1L1 is unknown. Here we show that Aster-B and Aster-C are critical for non-vesicular cholesterol movement in enterocytes, bridging NPC1L1 at the plasma membrane (PM) and ACAT2 in the endoplasmic reticulum (ER). Loss of NPC1L1 diminishes accessible PM cholesterol in enterocytes and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate cholesterol at the PM and display evidence of ER cholesterol depletion, including decreased cholesterol ester stores and activation of the SREBP-2 transcriptional pathway. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, we show that the Aster pathway can be targeted with a small molecule inhibitor to manipulate dietary cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption. One-Sentence Summary Identification of a targetable pathway for regulation of dietary cholesterol absorption.
Collapse
|
7
|
Rahpeyma M, Sabermoghaddam A, Kiarudi MY, Aghabozorgi AS, Pasdar A. Role of Abelson Helper Integration Site 1, Nebulin, and Paired Box 3 Genes in the Development of Nonsyndromic Strabismus in a Series of Iranian Families: Sequence Analysis and Systematic Review of the Genetics of Nonsyndromic Strabismus. J Curr Ophthalmol 2023; 35:216-225. [PMID: 38681684 PMCID: PMC11047811 DOI: 10.4103/joco.joco_53_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 05/01/2024] Open
Abstract
Purpose To look for causative genetic mutations in a series of Iranian families with strabismus. In addition, we systematically reviewed all the published articles regarding the role of genetic variations in primary and nonsyndromic comitant strabismus. Methods Four families with a history of multiple cases of primary and nonsyndromic comitant strabismus were enrolled in this study. Polymerase chain reaction and Sanger sequencing of exons 23, 11, and 3 of the Abelson helper integration site 1 (AHI1), nebulin (NEB), and paired box 3 (PAX3) genes were performed, respectively. One offspring of a consanguineous marriage underwent whole-exome sequencing (WES) to look for possible causative variants. To conduct a systematic review, we thoroughly searched PubMed, Scopus, and ISI Web of Knowledge extracting relevant publications, released by April 2021. Results We examined four Iranian strabismus pedigrees with multiple affected offspring in different generations. Among these 17 participants, 10 family members had strabismus and 7 were healthy. Sanger sequencing did not reveal a causative mutation. Therefore, to further investigate, one affected offspring was chosen for WES. The WES study demonstrated two possible variants in MYO5B and DHODH genes. These genetic variants showed high allele frequency in our population and are thought to be polymorphisms in our series of Iranian families. Conclusions We demonstrated that mutations in AHI1, NEB, and PAX3 genes were not common in a series of Iranian patients with familial strabismus. Moreover, by performing WES, we revealed that two variants of uncertain significance as possible causative variants for strabismus are not related to this disease in our population.
Collapse
Affiliation(s)
- Maliheh Rahpeyma
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Recent advances in the screening methods of NPC1L1 inhibitors. Biomed Pharmacother 2022; 155:113732. [PMID: 36166964 DOI: 10.1016/j.biopha.2022.113732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
NPC1L1 is a crucial protein involved in sterol lipid absorption and has been shown to play an important role in intestinal cholesterol absorption. Hypercholesterolemia is a significant risk factor for cardiovascular diseases such as coronary heart disease. Screening of NPC1L1 inhibitors is critical for gaining a full understanding of lipid metabolism, developing new cholesterol-lowering medicines, and treating cardiovascular diseases. This work summarized existing methodologies for screening NPC1L1 inhibitors and evaluated their challenges, and will assist the development of novel cholesterol-lowering medications and therapeutic strategies for hypercholesterolemia and other cholesterol-related metabolic disorders.
Collapse
|
9
|
Rab11a promotes the malignant progression of ovarian cancer by inducing autophagy. Genes Genomics 2022; 44:1375-1384. [PMID: 36125654 DOI: 10.1007/s13258-022-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rab11a is a novel identified tumorigenic factor involved in different cancers. OBJECTIVE This study aimed to assess the biological function of Rab11a in ovarian cancer (OC). METHODS GEPIA database and real-time PCR were used to determine Rab11a expression in OC tissues and normal ovarian tissues. CCK-8, cell cycle, wound healing, transwell, and enzyme linked immunosorbent assay were used to detect the effects of Rab11a knockdown or overexpression on the proliferation, migration, and invasion of OC cells. Western blot analysis of autophagy-related markers and immunofluorescence staining of LC3 were performed to determine autophagy induction in Rab11a-silenced or overexpressed OC cells. Moreover, autophagy inhibitor 3-MA was employed to clarify the effects of Rab11a-regulated autophagy on the malignant phenotypes of OC cells. RESULTS The mRNA level of Rab11a was increased in tumor tissues from OC patients as compared to the normal ovarian tissues. Knockdown of Rab11a in OVCAR-3 cells inhibited the growth of OC cells and led to cell cycle arrest, accompanied by reduced expression of PCNA and Cyclin D1. Rab11a deficiency suppressed migration and invasion of OC cells, accompanied by decreased secretion of MMP-2 and MMP-9. Silence of Rab11a impeded autophagy induction, as evidenced by decreased LC3 puncta formation, reduced abundance of LC3II and Beclin1, and increased p62 protein expression. In contrast, the ectopic expression of Rab11a in A2780 cells exerted opposite effects. Interestingly, autophagy inhibitor 3-MA abolished the effects of Rab11a overexpression on autophagy, proliferation, migration, and invasion. CONCLUSIONS Rab11a promotes the malignant phenotypes of OC cells by inducing autophagy.
Collapse
|
10
|
Luo J, Wang JK, Song BL. Lowering low-density lipoprotein cholesterol: from mechanisms to therapies. LIFE METABOLISM 2022; 1:25-38. [PMID: 39872686 PMCID: PMC11749099 DOI: 10.1093/lifemeta/loac004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 01/30/2025]
Abstract
Low-density lipoprotein (LDL) is the main carrier of cholesterol and cholesteryl ester in circulation. High plasma levels of LDL cholesterol (LDL-C) are a major risk factor of atherosclerotic cardiovascular disease (ASCVD). LDL-C lowering is recommended by many guidelines for the prevention and treatment of ASCVD. Statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors are the mainstay of LDL-C-lowering therapy. Novel therapies are also emerging for patients who are intolerant to statins or respond poorly to standard treatments. Here, we review the most recent advances on LDL-C-lowering drugs, focusing on the mechanisms by which they act to reduce LDL-C levels. The article starts with the cornerstone therapies applicable to most patients at risk for ASCVD. Special treatments for those with little or no LDL receptor function then follow. The inhibitors of ATP-citrate lyase and cholesteryl ester transfer protein, which are recently approved and still under investigation for LDL-C lowering, respectively, are also included. Strategies targeting the stability of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol catabolism can be novel regimens to reduce LDL-C levels and cardiovascular risk.
Collapse
Affiliation(s)
- Jie Luo
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Jin-Kai Wang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Colardo M, Martella N, Pensabene D, Siteni S, Di Bartolomeo S, Pallottini V, Segatto M. Neurotrophins as Key Regulators of Cell Metabolism: Implications for Cholesterol Homeostasis. Int J Mol Sci 2021; 22:5692. [PMID: 34073639 PMCID: PMC8198482 DOI: 10.3390/ijms22115692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Silvia Siteni
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| |
Collapse
|
12
|
Ikonen E, Zhou X. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev Cell 2021; 56:1430-1436. [PMID: 34004151 DOI: 10.1016/j.devcel.2021.04.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
Cholesterol represents the most abundant single lipid in mammalian cells. How its asymmetric distribution between subcellular membranes is achieved and maintained attracts considerable interest. One of the challenges is that cholesterol rarely is transported alone, but rather is coupled with heterotypic transport and metabolism of other lipids, in particular phosphoinositides, phosphatidylserine, and sphingolipids. This perspective summarizes the major exo- and endocytic cholesterol transport routes and how lipid transfer proteins at membrane contacts and membrane transport intersect along these routes. It discusses the co-transport of cholesterol with other lipids in mammalian cells and reviews emerging evidence related to the physiological relevance of this process.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
13
|
Venugopal K, Chehade S, Werkmeister E, Barois N, Periz J, Lafont F, Tardieux I, Khalife J, Langsley G, Meissner M, Marion S. Rab11A regulates dense granule transport and secretion during Toxoplasma gondii invasion of host cells and parasite replication. PLoS Pathog 2020; 16:e1008106. [PMID: 32463830 PMCID: PMC7255593 DOI: 10.1371/journal.ppat.1008106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii possesses an armada of secreted virulent factors that enable parasite invasion and survival into host cells. These factors are contained in specific secretory organelles, the rhoptries, micronemes and dense granules that release their content upon host cell recognition. Dense granules are secreted in a constitutive manner during parasite replication and play a crucial role in modulating host metabolic and immune responses. While the molecular mechanisms triggering rhoptry and microneme release upon host cell adhesion have been well studied, constitutive secretion remains a poorly explored aspect of T. gondii vesicular trafficking. Here, we investigated the role of the small GTPase Rab11A, a known regulator of exocytosis in eukaryotic cells. Our data revealed an essential role of Rab11A in promoting the cytoskeleton driven transport of dense granules and the release of their content into the vacuolar space. Rab11A also regulates transmembrane protein trafficking and localization during parasite replication, indicating a broader role of Rab11A in cargo exocytosis at the plasma membrane. Moreover, we found that Rab11A also regulates extracellular parasite motility and adhesion to host cells. In line with these findings, MIC2 secretion was altered in Rab11A-defective parasites, which also exhibited severe morphological defects. Strikingly, by live imaging we observed a polarized accumulation of Rab11A-positive vesicles and dense granules at the apical pole of extracellular motile and invading parasites suggesting that apically polarized Rab11A-dependent delivery of cargo regulates early secretory events during parasite entry into host cells. Toxoplasma gondii (T. gondii) is a highly prevalent parasite infecting a wide range of animals as well as humans. T. gondii secretes numerous virulent factors contained in specific organelles, termed the rhoptries, micronemes and dense granules. These factors are released upon host cell recognition and enable parasite invasion and subsequent development into an intracellular vacuole. In particular, dense granules contain critical effectors that modulate intrinsic defenses of infected host cells ensuring parasite survival and dissemination. The mechanisms regulating dense granule secretion have not been elucidated. In this study, we unraveled a novel role for the T. gondii GTPase Rab11A in promoting dense granule transport along the parasite cytoskeleton and their content release into the vacuolar space during parasite replication. We also found that T. gondii Rab11A regulates extracellular parasite motility and adhesion to host cells suggesting a broader role in distinct secretory pathways essential for parasite virulence.
Collapse
Affiliation(s)
- Kannan Venugopal
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Sylia Chehade
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Javier Periz
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frank Lafont
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Tardieux
- Institute for Advanced Biosciences (IAB), Membrane Dynamics of Parasite-Host Cell Interactions, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes—Sorbonne Paris Cité, France, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Markus Meissner
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sabrina Marion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
14
|
Shen M, Li T, Chen F, Wu P, Wang Y, Chen L, Xie K, Wang J, Zhang G. Transcriptomic Analysis of circRNAs and mRNAs Reveals a Complex Regulatory Network That Participate in Follicular Development in Chickens. Front Genet 2020; 11:503. [PMID: 32499821 PMCID: PMC7243251 DOI: 10.3389/fgene.2020.00503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Follicular development plays a key role in poultry reproduction, affecting clutch traits and thus egg production. Follicular growth is determined by granulosa cells (GCs), theca cells (TCs), and oocyte at the transcription, translation, and secretion levels. With the development of bioinformatic and experimental techniques, non-coding RNAs have been shown to participate in many life events. In this study, we investigated the transcriptomes of GCs and TCs in three different physiological stages: small yellow follicle (SYF), smallest hierarchical follicle (F6), and largest hierarchical follicle (F1) stages. A differential expression (DE) analysis, weighted gene co-expression network analysis (WGCNA), and bioinformatic analyses were performed. A total of 18,016 novel circular RNAs (circRNAs) were detected in GCs and TCs, 8127 of which were abundantly expressed in both cell types. and more circRNAs were differentially expressed between GCs and TCs than mRNAs. Enrichment analysis showed that the DE transcripts were mainly involved in cell growth, proliferation, differentiation, and apoptosis. In the WGCNA analysis, we identified six specific modules that were related to the different cell types in different stages of development. A series of central hub genes, including MAPK1, CITED4, SOD2, STC1, MOS, GDF9, MDH1, CAPN2, and novel_circ0004730, were incorporated into a Cytoscape network. Notably, using both DE analysis and WGCNA, ESR1 was identified as a key gene during follicular development. Our results provide valuable information on the circRNAs involved in follicle development and identify potential genes for further research to determine their roles in the regulation of different biological processes during follicle growth.
Collapse
Affiliation(s)
- Manman Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.,Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Pengfeng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Bhagwat AR, Le Sage V, Nturibi E, Kulej K, Jones J, Guo M, Tae Kim E, Garcia BA, Weitzman MD, Shroff H, Lakdawala SS. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat Commun 2020; 11:23. [PMID: 31911620 PMCID: PMC6946661 DOI: 10.1038/s41467-019-13838-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
Assembly of infectious influenza A viruses (IAV) is a complex process involving transport from the nucleus to the plasma membrane. Rab11A-containing recycling endosomes have been identified as a platform for intracellular transport of viral RNA (vRNA). Here, using high spatiotemporal resolution light-sheet microscopy (~1.4 volumes/second, 330 nm isotropic resolution), we quantify Rab11A and vRNA movement in live cells during IAV infection and report that IAV infection decreases speed and increases arrest of Rab11A. Unexpectedly, infection with respiratory syncytial virus alters Rab11A motion in a manner opposite to IAV, suggesting that Rab11A is a common host component that is differentially manipulated by respiratory RNA viruses. Using two-color imaging we demonstrate co-transport of Rab11A and IAV vRNA in infected cells and provide direct evidence that vRNA-associated Rab11A have altered transport. The mechanism of altered Rab11A movement is likely related to a decrease in dynein motors bound to Rab11A vesicles during IAV infection.
Collapse
Affiliation(s)
- Amar R Bhagwat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Katarzyna Kulej
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Jennifer Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Eui Tae Kim
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Weitzman
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
17
|
Skjesol A, Yurchenko M, Bösl K, Gravastrand C, Nilsen KE, Grøvdal LM, Agliano F, Patane F, Lentini G, Kim H, Teti G, Kumar Sharma A, Kandasamy RK, Sporsheim B, Starheim KK, Golenbock DT, Stenmark H, McCaffrey M, Espevik T, Husebye H. The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathog 2019; 15:e1007684. [PMID: 30883606 PMCID: PMC6438586 DOI: 10.1371/journal.ppat.1007684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 03/28/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is a complex process that eliminates microbes and is performed by specialised cells such as macrophages. Toll-like receptor 4 (TLR4) is expressed on the surface of macrophages and recognizes Gram-negative bacteria. Moreover, TLR4 has been suggested to play a role in the phagocytosis of Gram-negative bacteria, but the mechanisms remain unclear. Here we have used primary human macrophages and engineered THP-1 monocytes to show that the TLR4 sorting adapter, TRAM, is instrumental for phagocytosis of Escherichia coli as well as Staphylococcus aureus. We find that TRAM forms a complex with Rab11 family interacting protein 2 (FIP2) that is recruited to the phagocytic cups of E. coli. This promotes activation of the actin-regulatory GTPases Rac1 and Cdc42. Our results show that FIP2 guided TRAM recruitment orchestrates actin remodelling and IRF3 activation, two events that are both required for phagocytosis of Gram-negative bacteria. The Gram-negative bacteria E. coli is the most common cause of severe human pathological conditions like sepsis. Sepsis is a clinical syndrome defined by pathological changes due to systemic inflammation, resulting in paralysis of adaptive T-cell immunity with IFN-β as a critical factor. TLR4 is a key sensing receptor of lipopolysaccharide on Gram-negative bacteria. Inflammatory signalling by TLR4 is initiated by the use of alternative pair of TIR-adapters, MAL-MyD88 or TRAM-TRIF. MAL-MyD88 signaling occurs mainly from the plasma membrane giving pro-inflammatory cytokines like TNF, while TRAM-TRIF signaling occurs from vacuoles like endosomes and phagosomes to give type I interferons like IFN-β. It has previously been shown that TLR4 can control phagocytosis and phagosomal maturation through MAL-MyD88 in mice, however, these data have been disputed and published before the role of TRAM was defined in the induction of IFN-β. A role for TRAM or TRIF in phagocytosis has not previously been reported. Here we describe a novel mechanism where TRAM and its binding partner Rab11-FIP2 control phagocytosis of E. coli and regulate IRF3 dependent production of IFN-β. The significance of these results is that we define Rab11-FIP2 as a potential target for modulation of TLR4-dependent signalling in different pathological states.
Collapse
Affiliation(s)
- Astrid Skjesol
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Caroline Gravastrand
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene Melsæther Grøvdal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Federica Agliano
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Patane
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Germana Lentini
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hera Kim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Aditya Kumar Sharma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørnar Sporsheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian K. Starheim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Douglas T. Golenbock
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Harald Stenmark
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department for Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo Norway
| | - Mary McCaffrey
- Molecular Cell Biology Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Central Norway Regional Health Authority, St. Olavs Hospital HF, Trondheim, Norway
- * E-mail:
| |
Collapse
|
18
|
Machesky LM. Rab11FIP proteins link endocytic recycling vesicles for cytoskeletal transport and tethering. Biosci Rep 2019; 39:BSR20182219. [PMID: 30622149 PMCID: PMC6356010 DOI: 10.1042/bsr20182219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Regulated trafficking of internalised integrins and growth factor receptors enables polarisation of morphology and motility and enables lumen formation in multicellular structures. Recycling vesicles marked with Rab11 direct internalised cargo back to the plasma membrane to affect biological processes such as polarised trafficking and cancer cell invasion. A recent study by Ji and colleagues, provides insight into how the trafficking protein Rab11FIP2 links with the actin-based motor myo5b and the small GTPase Rab11 to regulate vesicle tethering and transport along actin filaments [1]. The authors used biochemical methods to demonstrate that Rab11a binds directly to the tail of myo5b and that Rab11FIP2 also forms direct interactions with both Rab11a and myo5b tails. These proteins essentially compete for binding to similar regions and thus can regulate the association and activity of each other. Ji and colleagues further demonstrate that Rab11a activates myo5b by binding to its globular tail and relieving a head-tail autoinhibition. Due to differing affinities between Rab11 and myo5b or Rab11FIP2, they propose that Rab11FIP2 mediates the association of myo5b with cargo vesicles, while Rab11a regulates the motor activity of myo5b. The present study thus elucidates how myo5b is regulated by its interactions with Rab11a and Rab11FIP2 and proposes a model for coordination of recycling vesicle tethering and motor activity. The present study has implications for how cells control polarity and motility in health and disease and suggests how Rab11FIP proteins might control motor protein activity and engagement for transport.
Collapse
Affiliation(s)
- Laura M Machesky
- CRUK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, U.K.
| |
Collapse
|
19
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
20
|
Dong W, Li H, Wu X. Rab11-FIP2 suppressed tumor growth via regulation of PGK1 ubiquitination in non-small cell lung cancer. Biochem Biophys Res Commun 2018; 508:60-65. [PMID: 30471866 DOI: 10.1016/j.bbrc.2018.11.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Mounting evidence has shown that the Rab11-FIP2 has critical roles in cancer cell growth. However, the clinical significance of Rab11-FIP2 in Non-small cell lung cancer (NSCLC) remains to be fully elucidated. In this study, we investigated the expression of Rab11-FIP2 using immunohistochemistry in 150 patients with NSCLC. We found that its expression level in NSCLC was much lower than that in the corresponding adjacent normal tissues. The DNA methylation data revealed that Rab11-FIP2 were significantly hypermethylated in NSCLC. The methylation level in the gene body was negatively correlated with the expression level of Rab11-FIP2 in NSCLC. Furthermore, enforced expression of Rab11-FIP2 dramatically reduced cancer cell proliferation and tumorigenesis, indicating a tumor suppressor role of PGK1 in NSCLC progression. Mechanistic investigations showed that Rab11-FIP2 interacted with the glycolytic kinase PGK1 and promoted its ubiquitination in NSCLC cells, leading to inactivation of the oncogenic AKT/mTOR signaling pathway. Overall, our data indicate that reduced expression of Rab11-FIP2 by DNA hypermethylation plays an important role in NSCLC tumor growth.
Collapse
Affiliation(s)
- Wenjie Dong
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China.
| | - Huixia Li
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China
| | - Xinai Wu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital, Zhengzhou University, China.
| |
Collapse
|
21
|
Zhang YY, Fu ZY, Wei J, Qi W, Baituola G, Luo J, Meng YJ, Guo SY, Yin H, Jiang SY, Li YF, Miao HH, Liu Y, Wang Y, Li BL, Ma YT, Song BL. A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science 2018; 360:1087-1092. [DOI: 10.1126/science.aao6575] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 02/07/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
A high concentration of low-density lipoprotein cholesterol (LDL-C) is a major risk factor for cardiovascular disease. Although LDL-C levels vary among humans and are heritable, the genetic factors affecting LDL-C are not fully characterized. We identified a rare frameshift variant in the LIMA1 (also known as EPLIN or SREBP3) gene from a Chinese family of Kazakh ethnicity with inherited low LDL-C and reduced cholesterol absorption. In a mouse model, LIMA1 was mainly expressed in the small intestine and localized on the brush border membrane. LIMA1 bridged NPC1L1, an essential protein for cholesterol absorption, to a transportation complex containing myosin Vb and facilitated cholesterol uptake. Similar to the human phenotype, Lima1-deficient mice displayed reduced cholesterol absorption and were resistant to diet-induced hypercholesterolemia. Through our study of both mice and humans, we identify LIMA1 as a key protein regulating intestinal cholesterol absorption.
Collapse
|
22
|
Zhang ZH, Zhao WQ, Ma FF, Zhang H, Xu XH. Rab10 Disruption Results in Delayed OPC Maturation. Cell Mol Neurobiol 2017; 37:1303-1310. [PMID: 28132130 PMCID: PMC11482111 DOI: 10.1007/s10571-017-0465-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Oligodendrocyte precursor cell (OPC) maturation requires membrane addition for myelin sheath formation. Since the Rab system has been shown to contribute to membrane addition in other cell types, in this study, we explored the role of Rab in OPC maturation. SiRNA and shRNA techniques and conditional knockout mice provided in vitro and in vivo evidence that Rab10 is involved in OPC maturation and may affect myelination during OPC development.
Collapse
Affiliation(s)
- Zhao-Huan Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Department of Neurology, Changzheng Hospital, Shanghai, 200003, China
| | - Wei-Qian Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fan-Fei Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiao-Hui Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
23
|
Lapierre LA, Manning EH, Mitchell KM, Caldwell CM, Goldenring JR. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell 2017; 28:1088-1100. [PMID: 28228550 PMCID: PMC5391185 DOI: 10.1091/mbc.e16-04-0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/26/2017] [Accepted: 02/17/2017] [Indexed: 12/25/2022] Open
Abstract
MARK2 regulates the establishment of polarity in Madin-Darby canine kidney (MDCK) cells in part through phosphorylation of serine 227 of Rab11-FIP2. We identified Eps15 as an interacting partner of phospho-S227-Rab11-FIP2 (pS227-FIP2). During recovery from low calcium, Eps15 localized to the lateral membrane before pS227-FIP2 arrival. Later in recovery, Eps15 and pS227-FIP2 colocalized at the lateral membrane. In MDCK cells expressing the pseudophosphorylated FIP2 mutant FIP2(S227E), during recovery from low calcium, Eps15 was trapped and never localized to the lateral membrane. Mutation of any of the three NPF domains within GFP-FIP2(S227E) rescued Eps15 localization at the lateral membrane and reestablished single-lumen cyst formation in GFP-FIP2(S227E)-expressing cells in three-dimensional (3D) culture. Whereas expression of GFP-FIP2(S227E) induced the loss of E-cadherin and occludin, mutation of any of the NPF domains of GFP-FIP2(S227E) reestablished both proteins at the apical junctions. Knockdown of Eps15 altered the spatial and temporal localization of pS227-FIP2 and also elicited formation of multiple lumens in MDCK 3D cysts. Thus an interaction of Eps15 and pS227-FIP2 at the appropriate time and location in polarizing cells is necessary for proper establishment of epithelial polarity.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Elizabeth H Manning
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Kenya M Mitchell
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - Cathy M Caldwell
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232.,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232 .,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232.,Nashville VA Medical Center, Nashville, TN 37212.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Vanderbilt Ingram Cancer Center, Nashville, TN 37232
| |
Collapse
|
24
|
Yuan Q, Fu Z, Wei J, Li PS, Miao HH, Qu YX, Xu J, Qin J, Li BL, Song BL, Ma Y. Identification and characterization of NPC1L1 variants in Uygur and Kazakh with extreme low-density lipoprotein cholesterol. Biochem Biophys Res Commun 2016; 479:628-635. [DOI: 10.1016/j.bbrc.2016.09.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 01/20/2023]
|
25
|
Gupta A, Schell MJ, Bhattacharjee A, Lutsenko S, Hubbard AL. Myosin Vb mediates Cu+ export in polarized hepatocytes. J Cell Sci 2016; 129:1179-89. [PMID: 26823605 DOI: 10.1242/jcs.175307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
The cellular machinery responsible for Cu(+)-stimulated delivery of the Wilson-disease-associated protein ATP7B to the apical domain of hepatocytes is poorly understood. We demonstrate that myosin Vb regulates the Cu(+)-stimulated delivery of ATP7B to the apical domain of polarized hepatic cells, and that disruption of the ATP7B-myosin Vb interaction reduces the apical surface expression of ATP7B. Overexpression of the myosin Vb tail, which competes for binding of subapical cargos to myosin Vb bound to subapical actin, disrupted the surface expression of ATP7B, leading to reduced cellular Cu(+) export. The myosin-Vb-dependent targeting step occurred in parallel with hepatocyte-like polarity. If the myosin Vb tail was expressed acutely in cells just prior to the establishment of polarity, it appeared as part of an intracellular apical compartment, centered on γ-tubulin. ATP7B became selectively arrested in this compartment at high [Cu(+)] in the presence of myosin Vb tail, suggesting that these compartments are precursors of donor-acceptor transfer stations for apically targeted cargos of myosin Vb. Our data suggest that reduced hepatic Cu(+) clearance in idiopathic non-Wilsonian types of disease might be associated with the loss of function of myosin Vb.
Collapse
Affiliation(s)
- Arnab Gupta
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael J Schell
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ann L Hubbard
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Park SW, Schonhoff CM, Webster CRL, Anwer MS. Rab11, but not Rab4, facilitates cyclic AMP- and tauroursodeoxycholate-induced MRP2 translocation to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 2014; 307:G863-70. [PMID: 25190474 PMCID: PMC4200318 DOI: 10.1152/ajpgi.00457.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rab proteins (Ras homologous for brain) play an important role in vesicle trafficking. Rab4 and Rab11 are involved in vesicular trafficking to the plasma membrane from early endosomes and recycling endosomes, respectively. Tauroursodeoxycholate (TUDC) and cAMP increase bile formation, in part, by increasing plasma membrane localization of multidrug resistance-associated protein 2 (MRP2). The goal of the present study was to determine the role of these Rab proteins in the trafficking of MRP2 by testing the hypothesis that Rab11 and/or Rab4 facilitate cAMP- and TUDC-induced MRP2 translocation to the plasma membrane. Studies were conducted in HuH-NTCP cells (HuH7 cells stably transfected with human NTCP), which constitutively express MRP2. HuH-NTCP cells were transfected with Rab11-WT and GDP-locked dominant inactive Rab11-GDP or with Rab4-GDP to study the role of Rab11 and Rab4. A biotinylation method and a GTP overlay assay were used to determine plasma membrane MRP2 and activation of Rab proteins (Rab11 and Rab4), respectively. Cyclic AMP and TUDC increased plasma membrane MRP2 and stimulated Rab11 activity. Plasma membrane translocation of MRP2 by cAMP and TUDC was increased and inhibited in cells transfected with Rab11-WT and Rab11-GDP, respectively. Cyclic AMP (previous study) and TUDC increased Rab4 activity. However, cAMP- and TUDC-induced increases in MRP2 were not inhibited by Rab4-GDP. Taken together, these results suggest that Rab11 is involved in cAMP- and TUDC-induced MRP2 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Se Won Park
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Christopher M Schonhoff
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R L Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
27
|
Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis. PLoS Genet 2014; 10:e1004614. [PMID: 25233349 PMCID: PMC4169241 DOI: 10.1371/journal.pgen.1004614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 07/18/2014] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.
Collapse
|
28
|
Zhou L, Yang H, Okoro EU, Guo Z. Up-regulation of cholesterol absorption is a mechanism for cholecystokinin-induced hypercholesterolemia. J Biol Chem 2014; 289:12989-99. [PMID: 24692543 DOI: 10.1074/jbc.m113.534388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Excessive absorption of intestinal cholesterol is a risk factor for atherosclerosis. This report examines the effect of cholecystokinin (CCK) on plasma cholesterol level and intestinal cholesterol absorption using the in vivo models of C57BL/6 wild-type and low density lipoprotein receptor knock-out (LDLR(-/-)) mice. These data were supported by in vitro studies involving mouse primary intestinal epithelial cells and human Caco-2 cells; both express CCK receptor 1 and 2 (CCK1R and CCK2R). We found that intravenous injection of [Thr(28),Nle(31)]CCK increased plasma cholesterol levels and intestinal cholesterol absorption in both wild-type and LDLR(-/-) mice. Treatment of mouse primary intestinal epithelial cells with [Thr(28),Nle(31)]CCK increased cholesterol absorption, whereas selective inhibition of CCK1R and CCK2R with antagonists attenuated CCK-induced cholesterol absorption. In Caco-2 cells, CCK enhanced CCK1R/CCK2R heterodimerization. Knockdown of both CCK1R and CCK2 or either one of them diminished CCK-induced cholesterol absorption to the same extent. CCK also increased cell surface-associated NPC1L1 (Niemann-Pick C1-like 1) transporters but did not alter their total protein expression. Inhibition or knockdown of NPC1L1 attenuated CCK-induced cholesterol absorption. CCK enhanced phosphatidylinositide 3-kinase (PI3K) and Akt phosphorylation and augmented the interaction between NPC1L1 and Rab11a (Rab-GTPase-11a), whereas knockdown of CCK receptors or inhibition of G protein βγ dimer (Gβγ) diminished CCK-induced PI3K and Akt phosphorylation. Inhibition of PI3K and Akt or knockdown of PI3K diminished CCK-induced NPC1L1-Rab11a interaction and cholesterol absorption. Knockdown of Rab11a suppressed CCK-induced NPC1L1 translocation and cholesterol absorption. These data imply that CCK enhances cholesterol absorption by activation of a pathway involving CCK1R/CCK2R, Gβγ, PI3K, Akt, Rab11a, and NPC1L.
Collapse
Affiliation(s)
- LiChun Zhou
- From the Department of Physiology, Meharry Medical College, Nashville, Tennessee 37208
| | | | | | | |
Collapse
|
29
|
Myosin Vb controls biogenesis of post-Golgi Rab10 carriers during axon development. Nat Commun 2013; 4:2005. [PMID: 23770993 DOI: 10.1038/ncomms3005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/13/2013] [Indexed: 12/28/2022] Open
Abstract
Polarized membrane addition is crucial for axon development and elongation during neuronal morphogenesis. This process is believed to be regulated by directed membrane trafficking of Rab10-containing post-Golgi carriers. However, the mechanisms underlying the biogenesis of these carriers remain unclear. Here, we report that Rab10 interaction with myosin Vb (MYO5B) determines the formation of Rab10 carriers and is important for axon development. Rab10 interacts with the exon D-encoded domain of MYO5B. Downregulating the expression of MYO5B (+D) or blocking its interaction with Rab10 impairs the fission of Rab10 vesicles from trans-Golgi membranes, causes a decrease in the number of Rab10 transport carriers and inhibits axon development in cultured hippocampal neurons. Furthermore, the MYO5B-Rab10 system is required for axon development of vertebrate neocortical neurons or zebrafish retinal ganglion cells in vivo. Thus, specific interaction between Rab10 and MYO5B controls the formation of Rab10 vesicles, which is required for axon development.
Collapse
|
30
|
Thoeni CE, Vogel GF, Tancevski I, Geley S, Lechner S, Pfaller K, Hess MW, Müller T, Janecke AR, Avitzur Y, Muise A, Cutz E, Huber LA. Microvillus inclusion disease: loss of Myosin vb disrupts intracellular traffic and cell polarity. Traffic 2013; 15:22-42. [PMID: 24138727 DOI: 10.1111/tra.12131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 10/11/2013] [Accepted: 10/18/2013] [Indexed: 12/23/2022]
Abstract
Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by loss of apical microvilli and formation of cytoplasmic inclusions lined by microvilli in enterocytes. MVID is caused by mutations in the MYO5B gene, coding for the myosin Vb motor protein. Although myosin Vb is implicated in the organization of intracellular transport and cell surface polarity in epithelial cells, its precise role in the pathogenesis of MVID is unknown. We performed correlative immunohistochemistry analyses of sections from duodenal biopsies of a MVID patient, compound heterozygous for two novel MYO5B mutations, predicting loss of function of myosin Vb in duodenal enterocytes together with a stable MYO5B CaCo2 RNAi cell system. Our findings show that myosin Vb-deficient enterocytes display disruption of cell polarity as reflected by mislocalized apical and basolateral transporter proteins, altered distribution of certain endosomal/lysosomal constituents including Rab GTPases. Together, this severe disturbance of epithelial cell function could shed light on the pathology and symptoms of MVID.
Collapse
Affiliation(s)
- Cornelia E Thoeni
- Division of Cell Biology, Biocenter Innsbruck, Medical University Innsbruck, Innsbruck, Austria; Division of Pathology, Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
MYO5B is epigenetically silenced and associated with MET signaling in human gastric cancer. Dig Dis Sci 2013; 58:2038-45. [PMID: 23456500 DOI: 10.1007/s10620-013-2600-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous study has shown that MYO5B is downregulated in gastric cancer. However, the mechanism by which the expression of MYO5B was inhibited remains unknown. METHODS Inspection of the human MYO5B locus uncovered a large and dense CpG island within the 5' region of this gene. Methylation-specific PCR (MSP) and bisulfite sequencing (BSP) were used for determination of MYO5B promoter methylation in gastric cancer cell lines and gastric cancer samples. Involvement of histone H3 methylation in those cell lines were examined by ChIP assay. RESULTS The densely methylated MYO5B promoter region was confirmed by MSP and BSP. Enhanced gene expression was detected when the cells were treated with the DNA-demethylating agent 5-aza-2'-deoxycytidine (DAC) and trichostatin A (TSA), a histone deacetylase inhibitor. Knockdown of MYO5B expression in gastric cancer cells expressing endogenous MYO5B inhibits HGF-stimulated MET degradation, concomitant with sustained c-MET levels and signaling. CONCLUSION The results of our study showed for the first time that MYO5B is epigenetically silenced in gastric cancer cells by aberrant DNA methylation and histone modification. Inactivation of MYO5B expression in gastric cancer cells expressing endogenous MYO5B inhibits HGF-stimulated MET degradation, concomitant with sustained c-MET levels and signaling.
Collapse
|
32
|
Abstract
Dendritic arborization of neurons is regulated by brain-derived neurotrophic factor (BDNF) together with its receptor, TrkB. Endocytosis is required for dendritic branching and regulates TrkB signaling, but how postendocytic trafficking determines the neuronal response to BDNF is not well understood. The monomeric GTPase Rab11 regulates the dynamics of recycling endosomes and local delivery of receptors to specific dendritic compartments. We investigated whether Rab11-dependent trafficking of TrkB in dendrites regulates BDNF-induced dendritic branching in rat hippocampal neurons. We report that TrkB in dendrites is a cargo for Rab11 endosomes and that both Rab11 and its effector, MyoVb, are required for BDNF/TrkB-induced dendritic branching. In addition, BDNF induces the accumulation of Rab11-positive endosomes and GTP-bound Rab11 in dendrites and the expression of a constitutively active mutant of Rab11 is sufficient to increase dendritic branching by increasing TrkB localization in dendrites and enhancing sensitization to endogenous BDNF. We propose that Rab11-dependent dendritic recycling provides a mechanism to retain TrkB in dendrites and to increase local signaling to regulate arborization.
Collapse
|
33
|
Khandelwal P, Prakasam HS, Clayton DR, Ruiz WG, Gallo LI, van Roekel D, Lukianov S, Peränen J, Goldenring JR, Apodaca G. A Rab11a-Rab8a-Myo5B network promotes stretch-regulated exocytosis in bladder umbrella cells. Mol Biol Cell 2013; 24:1007-19. [PMID: 23389633 PMCID: PMC3608489 DOI: 10.1091/mbc.e12-08-0568] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/03/2022] Open
Abstract
Multiple Rabs are associated with secretory granules/vesicles, but how these GTPases are coordinated to promote regulated exocytosis is not well understood. In bladder umbrella cells a subapical pool of discoidal/fusiform-shaped vesicles (DFVs) undergoes Rab11a-dependent regulated exocytosis in response to bladder filling. We show that Rab11a-associated vesicles are enmeshed in an apical cytokeratin meshwork and that Rab11a likely acts upstream of Rab8a to promote exocytosis. Surprisingly, expression of Rabin8, a previously described Rab11a effector and guanine nucleotide exchange factor for Rab8, stimulates stretch-induced exocytosis in a manner that is independent of its catalytic activity. Additional studies demonstrate that the unconventional motor protein myosin5B motor (Myo5B) works in association with the Rab8a-Rab11a module to promote exocytosis, possibly by ensuring transit of DFVs through a subapical, cortical actin cytoskeleton before fusion. Our results indicate that Rab11a, Rab8a, and Myo5B function as part of a network to promote stretch-induced exocytosis, and we predict that similarly organized Rab networks will be common to other regulated secretory pathways.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | | - Dennis R. Clayton
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wily G. Ruiz
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Luciana I. Gallo
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Daniel van Roekel
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Stefan Lukianov
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - James R. Goldenring
- Department of Surgery and Epithelial Biology Center, Vanderbilt University, Nashville, TN 37232
| | - Gerard Apodaca
- Departments of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
34
|
Baetz NW, Goldenring JR. Rab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system. Mol Biol Cell 2013; 24:643-58. [PMID: 23283983 PMCID: PMC3583667 DOI: 10.1091/mbc.e12-09-0659] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Rab11-family interacting proteins (Rab11-FIPs) facilitate Rab11-dependent vesicle recycling. We hypothesized that Rab11-FIPs define discrete subdomains and carry out temporally distinct roles within the recycling system. We used live-cell deconvolution microscopy of HeLa cells expressing chimeric fluorescent Rab11-FIPs to examine Rab11-FIP localization, transferrin passage through Rab11-FIP-containing compartments, and overlap among Rab11-FIPs within the recycling system. FIP1A, FIP2, and FIP5 occupy widely distributed mobile tubules and vesicles, whereas FIP1B, FIP1C, and FIP3 localize to perinuclear tubules. Internalized transferrin entered Rab11-FIP-containing compartments within 5 min, reaching maximum colocalization with FIP1B and FIP2 early in the time course, whereas localization with FIP1A, FIP1C, FIP3, and FIP5 was delayed until 10 min or later. Whereas direct interactions with FIP1A were only observed for FIP1B and FIP1C, FIP1A also associated with membranes containing FIP3. Live-cell dual-expression studies of Rab11-FIPs revealed the tubular dynamics of Rab11-FIP-containing compartments and demonstrated a series of selective associations among Rab11-FIPs in real time. These findings suggest that Rab11-FIP1 proteins participate in spatially and temporally distinct steps of the recycling process along a complex and dynamic tubular network in which Rab11-FIPs occupy discrete domains.
Collapse
Affiliation(s)
- Nicholas W Baetz
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
35
|
Abstract
As intracellular pathogens, enveloped viruses must usurp the host cell machinery for many stages of the viral life cycle in order to produce a new generation of infectious virions. In one of the less understood steps of viral assembly, viral components including the transmembrane glycoproteins, structural proteins and the viral genome must be targeted to the site of viral budding, where they assemble and are incorporated into a newly formed virion that gains a lipid envelope from a cellular membrane. Recent work has revealed that the cellular recycling endosome pathway, in particular Rab11, plays an important role in the assembly of negative-strand RNA viruses such as respiratory syncytial virus, influenza A virus, Andes virus and Sendai virus. The present mini-review discusses this emerging field and explores the potential roles of the Rab11 pathway in the trafficking, assembly and budding steps of these viruses.
Collapse
|
36
|
Xie 谢畅 C, Zhou 周章森 ZS, Li 李钠 N, Bian 卞艳 Y, Wang 王永建 YJ, Wang 王丽娟 LJ, Li 李伯良 BL, Song 宋保亮 BL. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J Lipid Res 2012; 53:2092-2101. [PMID: 22811412 PMCID: PMC3435542 DOI: 10.1194/jlr.m027359] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/05/2012] [Indexed: 11/20/2022] Open
Abstract
The multiple transmembrane protein Niemann-Pick C1 like1 (NPC1L1) is essential for intestinal cholesterol absorption. Ezetimibe binds to NPC1L1 and is a clinically used cholesterol absorption inhibitor. Recent studies in cultured cells have shown that NPC1L1 mediates cholesterol uptake through vesicular endocytosis that can be blocked by ezetimibe. However, how NPC1L1 and ezetimibe work in the small intestine is unknown. In this study, we found that NPC1L1 distributed in enterocytes of villi and transit-amplifying cells of crypts. Acyl-CoA cholesterol acyltransferase 2 (ACAT2), another important protein for cholesterol absorption by providing cholesteryl esters to chylomicrons, was mainly presented in the apical cytoplasm of enterocytes. NPC1L1 and ACAT2 were highly expressed in jejunum and ileum. ACAT1 presented in the Paneth cells of crypts and mesenchymal cells of villi. In the absence of cholesterol, NPC1L1 was localized on the brush border of enterocytes. Dietary cholesterol induced the internalization of NPC1L1 to the subapical layer beneath the brush border and became partially colocalized with the endosome marker Rab11. Ezetimibe blocked the internalization of NPC1L1 and cholesterol and caused their retention in the plasma membrane. This study demonstrates that NPC1L1 mediates cholesterol entering enterocytes through vesicular endocytosis and that ezetimibe blocks this step in vivo.
Collapse
Affiliation(s)
- Chang Xie 谢畅
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhang-Sen Zhou 周章森
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Li 李钠
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Bian 卞艳
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Jian Wang 王永建
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Juan Wang 王丽娟
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo-Liang Li 李伯良
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Bao-Liang Song 宋保亮
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
37
|
Walters JW, Anderson JL, Bittman R, Pack M, Farber SA. Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid. CHEMISTRY & BIOLOGY 2012; 19:913-25. [PMID: 22749558 PMCID: PMC3408837 DOI: 10.1016/j.chembiol.2012.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 05/24/2012] [Accepted: 05/31/2012] [Indexed: 01/01/2023]
Abstract
The small intestine is the primary site of dietary lipid absorption in mammals. The balance of nutrients, microorganisms, bile, and mucus that determine intestinal luminal environment cannot be recapitulated ex vivo, thus complicating studies of lipid absorption. We show that fluorescently labeled lipids can be used to visualize and study lipid absorption in live zebrafish larvae. We demonstrate that the addition of a BODIPY-fatty acid to a diet high in atherogenic lipids enables imaging of enterocyte lipid droplet dynamics in real time. We find that a lipid-rich meal promotes BODIPY-cholesterol absorption into an endosomal compartment distinguishable from lipid droplets. We also show that dietary fatty acids promote intestinal cholesterol absorption by rapid re-localization of NPC1L1 to the intestinal brush border. These data illustrate the power of the zebrafish system to address longstanding questions in vertebrate digestive physiology.
Collapse
Affiliation(s)
- James W Walters
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
38
|
Lapierre LA, Avant KM, Caldwell CM, Oztan A, Apodaca G, Knowles BC, Roland JT, Ducharme NA, Goldenring JR. Phosphorylation of Rab11-FIP2 regulates polarity in MDCK cells. Mol Biol Cell 2012; 23:2302-18. [PMID: 22553350 PMCID: PMC3374749 DOI: 10.1091/mbc.e11-08-0681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ser-227 phosphorylation of Rab11-FIP2 by Par1b/MARK2 regulates the establishment of polarized epithelial monolayers in three-dimensional MDCK cell cultures and has an ongoing influence on the composition of both adherens and tight junctions in polarized epithelial cells. The Rab11 effector Rab11-family interacting protein 2 (Rab11-FIP2) regulates transcytosis through its interactions with Rab11a and myosin Vb. Previous studies implicated Rab11-FIP2 in the establishment of polarity in Madin–Darby canine kidney (MDCK) cells through phosphorylation of Ser-227 by MARK2. Here we examine the dynamic role of Rab11-FIP2 phosphorylation on MDCK cell polarity. Endogenous Rab11-FIP2 phosphorylated on Ser-227 coalesces on vesicular plaques during the reestablishment of polarity after either monolayer wounding or calcium switch. Whereas expression of the nonphosphorylatable Rab11-FIP2(S227A) elicits a loss in lumen formation in MDCK cell cysts grown in Matrigel, the putative pseudophosphorylated Rab11-FIP2(S227E) mutant induces the formation of cysts with multiple lumens. On permeable filters, Rab11-FIP2(S227E)–expressing cells exhibit alterations in the composition of both the adherens and tight junctions. At the adherens junction, p120 catenin and K-cadherin are retained, whereas the majority of the E-cadherin is lost. Although ZO-1 is retained at the tight junction, occludin is lost and the claudin composition is altered. Of interest, the effects of Rab11-FIP2 on cellular polarity did not involve myosin Vb or Rab11a. These results indicate that Ser-227 phosphorylation of Rab11-FIP2 regulates the composition of both adherens and tight junctions and is intimately involved in the regulation of polarity in epithelial cells.
Collapse
Affiliation(s)
- Lynne A Lapierre
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gidon A, Bardin S, Cinquin B, Boulanger J, Waharte F, Heliot L, Salle H, Hanau D, Kervrann C, Goud B, Salamero J. A Rab11A/Myosin Vb/Rab11-FIP2 Complex Frames Two Late Recycling Steps of Langerin from the ERC to the Plasma Membrane. Traffic 2012; 13:815-33. [DOI: 10.1111/j.1600-0854.2012.01354.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/29/2023]
Affiliation(s)
- Alexandre Gidon
- UMR 144, Molecular Mechanisms of Intracellular Transport Laboratory; CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | - Sabine Bardin
- UMR 144, Molecular Mechanisms of Intracellular Transport Laboratory; CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | | | - Jerome Boulanger
- Cell and Tissue Imaging Facility, PICT-IBiSA & Nikon Imaging Center; UMR 144 CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | - François Waharte
- Cell and Tissue Imaging Facility, PICT-IBiSA & Nikon Imaging Center; UMR 144 CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | - Laurent Heliot
- Interdisciplinary Research Institute, Molecular Dynamics and Interaction in Living Cell; 59658; Villeneuve d'Ascq; France
| | - Henri Salle
- INSERM U 725, Biology of Human Dendritic Cells; Strasbourg; France
| | - Daniel Hanau
- INSERM U 725, Biology of Human Dendritic Cells; Strasbourg; France
| | - Charles Kervrann
- INRIA Rennes - Bretagne Atlantique. Team SERPICO; Campus de Beaulieu; 35042; Rennes cedex; France
| | - Bruno Goud
- UMR 144, Molecular Mechanisms of Intracellular Transport Laboratory; CNRS-Institut Curie; 26 rue d'Ulm; 75248; Paris cedex 05; France
| | | |
Collapse
|
40
|
Niemann-Pick C1-Like 1 and cholesterol uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:964-72. [PMID: 22480541 DOI: 10.1016/j.bbalip.2012.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 01/27/2023]
Abstract
Niemann-Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein responsible for dietary cholesterol and biliary cholesterol absorption. Consistent with its functions, NPC1L1 distributes on the brush border membrane of enterocytes and the canalicular membrane of hepatocytes in humans. As the molecular target of ezetimibe, a hypocholesterolemic drug, its physiological and pathological significance has been recognized and intensively studied for years. Recently, plenty of new findings reveal the molecular mechanism of NPC1L1's role in cholesterol uptake, which may provide new insights on our understanding of cholesterol absorption. In this review, we summarized recent progress in these studies and proposed a working model, hoping to provide new perspectives on the regulation of cholesterol transport and metabolism.
Collapse
|
41
|
Chang TH, Segovia J, Sabbah A, Mgbemena V, Bose S. Cholesterol-rich lipid rafts are required for release of infectious human respiratory syncytial virus particles. Virology 2011; 422:205-13. [PMID: 22088217 DOI: 10.1016/j.virol.2011.10.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 10/28/2011] [Indexed: 11/26/2022]
Abstract
Cholesterol and sphingolipid enriched lipid raft micro-domains in the plasma membrane play an important role in the life-cycle of numerous enveloped viruses. Although human respiratory syncytial virus (RSV) proteins associate with the raft domains of infected cells and rafts are incorporated in RSV virion particles, the functional role of raft during RSV infection was unknown. In the current study we have identified rafts as an essential component of host cell that is required for RSV infection. Treatment of human lung epithelial cells with raft disrupting agent methyl-beta-cyclodextrin (MBCD) led to drastic loss of RSV infectivity due to diminished release of infectious progeny RSV virion particles from raft disrupted cells. RSV infection of raft deficient Niemann-Pick syndrome type C human fibroblasts and normal human embryonic lung fibroblasts revealed that during productive RSV infection, raft is required for release of infectious RSV particles.
Collapse
Affiliation(s)
- Te-Hung Chang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
42
|
Coordinated regulation of caveolin-1 and Rab11a in apical recycling compartments of polarized epithelial cells. Exp Cell Res 2011; 318:103-13. [PMID: 22036648 DOI: 10.1016/j.yexcr.2011.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/24/2011] [Accepted: 10/11/2011] [Indexed: 12/29/2022]
Abstract
Recent studies have identified caveolin-1, a protein best known for its functions in caveolae, in apical endocytic recycling compartments in polarized epithelial cells. However, very little is known about the regulation of caveolin-1 in the endocytic recycling pathway. To address this question, in the current study we compared the relationship between compartments enriched in sub-apical caveolin-1 and Rab11a, a well-defined marker of apical recycling endosomes, using polarized MDCK cells as a model. We show that caveolin-1-containing vesicles define a compartment that partially overlaps with Rab11a, and that the distribution of subapical caveolin-1 and Rab11a shows a similar dependence on microtubule disruption. Mutants of the Rab11a effector, Rab11-FIP2 also altered the localization of caveolin-1. These findings indicate that caveolin-1 is coordinately regulated with Rab11a within the apical recycling system of polarized epithelial cells, suggesting that the two proteins are components of the same pathway.
Collapse
|
43
|
Li X, DiFiglia M. The recycling endosome and its role in neurological disorders. Prog Neurobiol 2011; 97:127-41. [PMID: 22037413 DOI: 10.1016/j.pneurobio.2011.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 02/08/2023]
Abstract
The recycling endosome (RE) is an organelle in the endocytic pathway where plasma membranes (proteins and lipids) internalized by endocytosis are processed back to the cell surface for reuse. Endocytic recycling is the primary way for the cell to maintain constituents of the plasma membrane (Griffiths et al., 1989), i.e., to maintain the abundance of receptors and transporters on cell surfaces. Membrane traffic through the RE is crucial for several key cellular processes including cytokinesis and cell migration. In polarized cells, including neurons, the RE is vital for the generation and maintenance of the polarity of the plasma membrane. Many RE dependent cargo molecules are known to be important for neuronal function and there is evidence that improper function of key proteins in RE-associated pathways may contribute to the pathogenesis of neurological disorders, including Huntington's disease. The function of the RE in neurons is poorly understood. Therefore, there is need to understand how membrane dynamics in RE-associated pathways are affected or participate in the development or progression of neurological diseases. This review summarizes advances in understanding endocytic recycling associated with the RE, challenges in elucidating molecular mechanisms underlying RE function, and evidence for RE dysfunction in neurological disorders.
Collapse
Affiliation(s)
- Xueyi Li
- Laboratory of Cellular Neurobiology and Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
44
|
Xie C, Li N, Chen ZJ, Li BL, Song BL. The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner. J Biol Chem 2011; 286:35933-35942. [PMID: 21844200 DOI: 10.1074/jbc.m111.270199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is a multi-transmembrane protein that mediates the absorption of dietary and biliary cholesterol through vesicular endocytosis. The subcellular localization of NPC1L1 is regulated by cholesterol. Cholesterol depletion induces the transport of NPC1L1 to plasma membrane (PM) from endocytic recycling compartment that requires MyoVb·Rab11a·Rab11-FIP2 triple complex, and cholesterol-replenishment renders the internalization of NPC1L1 together with cholesterol. Here, we find that GTP-bound Cdc42 interacts with NPC1L1. Cholesterol depletion regulates the activation of Cdc42 and enhances NPC1L1-Cdc42 interaction. Overexpression of constitutive GTP-bound Cdc42 mutant form or knockdown of Cdc42 inhibits the transport of NPC1L1 to the PM and disturbs the cholesterol-regulated binding of NPC1L1 to Rab11a, MyoVb, and actin. Knockdown of Cdc42 downstream effectors N-WASP or Arp3 also leads to the similar results. In liver-specific Cdc42 knock-out (Cdc42 LKO) mice, NPC1L1 fails to localize to bile canaliculi, and the biliary cholesterol cannot be efficiently reabsorbed. These results indicate that Cdc42 controls the cholesterol-regulated transport and localization of NPC1L1, and plays a role in cholesterol absorption.
Collapse
Affiliation(s)
- Chang Xie
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Na Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zheng-Jun Chen
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Bo-Liang Li
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Bao-Liang Song
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
45
|
Zhang JH, Ge L, Qi W, Zhang L, Miao HH, Li BL, Yang M, Song BL. The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem 2011; 286:25088-97. [PMID: 21602275 PMCID: PMC3137082 DOI: 10.1074/jbc.m111.244475] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is a multitransmembrane protein playing a crucial role in dietary and biliary cholesterol absorption. Cholesterol promotes the formation and endocytosis of NPC1L1-flotillin-cholesterol membrane microdomains, which is an early step in cholesterol uptake. How cholesterol is sensed in this step is unknown. Here, we find that the N-terminal domain (NTD) of NPC1L1 binds cholesterol. Mutation of residue Leu-216 in NPC1L1-NTD eliminates cholesterol binding, decreases the formation of NPC1L1-flotillin-cholesterol membrane microdomains, and prevents NPC1L1-mediated cholesterol uptake in culture cells and mice livers. NPC1L1-NTD specifically binds cholesterol but not plant sterols, which may account for the selective cholesterol absorption in intestine. Furthermore, 25- or 27-hydroxycholesterol competes with cholesterol to bind NPC1L1-NTD and inhibits the cholesterol induced endocytosis of NPC1L1. Together, these results demonstrate that plasma membrane-localized NPC1L1 binds exogenous cholesterol via its NTD, and facilitates the formation of NPC1L1-flotillin-cholesterol membrane microdomains that are then internalized into cells through the clathrin-AP2 pathway. Our study uncovers the mechanism of cholesterol sensing by NPC1L1 and proposes a mechanism for selective cholesterol absorption.
Collapse
Affiliation(s)
- Jin-Hui Zhang
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Liang Ge
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Wei Qi
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Liqing Zhang
- the Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Hua Miao
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Bo-Liang Li
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| | - Maojun Yang
- the Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bao-Liang Song
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and
| |
Collapse
|
46
|
Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 2011; 73:239-59. [PMID: 20809793 DOI: 10.1146/annurev-physiol-012110-142233] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased blood cholesterol is an independent risk factor for atherosclerotic cardiovascular disease. Cholesterol homeostasis in the body is controlled mainly by endogenous synthesis, intestinal absorption, and hepatic excretion. Niemann-Pick C1-Like 1 (NPC1L1) is a polytopic transmembrane protein localized at the apical membrane of enterocytes and the canalicular membrane of hepatocytes. It functions as a sterol transporter to mediate intestinal cholesterol absorption and counter-balances hepatobiliary cholesterol excretion. NPC1L1 is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that is widely used in treating hypercholesterolemia. Recent findings suggest that NPC1L1 deficiency or ezetimibe treatment also prevents diet-induced hepatic steatosis and obesity in addition to reducing blood cholesterol. Future studies should focus on molecular mechanisms underlying NPC1L1-dependent cholesterol transport and elucidation of how a cholesterol transporter modulates the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Lin Jia
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | |
Collapse
|
47
|
Kumar P, Malhotra P, Ma K, Singla A, Hedroug O, Saksena S, Dudeja PK, Gill RK, Alrefai WA. SREBP2 mediates the modulation of intestinal NPC1L1 expression by curcumin. Am J Physiol Gastrointest Liver Physiol 2011; 301:G148-55. [PMID: 21527728 PMCID: PMC3129937 DOI: 10.1152/ajpgi.00119.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin, the major phenolic compound in the spice turmeric, exhibits numerous biological effects, including lowering plasma cholesterol and preventing diet-induced hypercholesterolemia. The mechanisms underlying the hypocholesterolemic effect of curcumin are not fully understood. In this regard, intestinal Niemann-Pick C1-like 1 (NPC1L1) cholesterol transporter, the molecular target of intestinal cholesterol absorption inhibitor ezetimibe, plays an essential role in the maintenance of cholesterol homeostasis. The current studies were designed to investigate the effect of curcumin on NPC1L1 function, expression, and promoter activity in intestinal Caco-2 monolayers. NPC1L1 function was evaluated by the measurement of ezetimibe-sensitive [(3)H]cholesterol esterification. Relative abundance of NPC1L1 mRNA and protein was evaluated by real-time PCR and Western blotting, respectively. Luciferase assays were used to measure NPC1L1 promoter activity. Our results showed that curcumin significantly inhibited ezetimibe-sensitive cholesterol esterification in a dose-dependent manner with a maximum decrease (by 52% compared with control) occurring at 50 μM concentration. Curcumin treatment of Caco-2 monolayers also significantly decreased NPC1L1 mRNA and protein expression. Similarly, the promoter activity of the NPC1L1 gene was inhibited significantly (55%) by 50 μM curcumin. The decrease in NPC1L1 promoter activity by curcumin was associated with a reduction in the expression and the DNA-binding activity of the sterol response element-binding protein 2 (SREBP2) transcription factor. Furthermore, the overexpression of active SREBP2 protected NPC1L1 from the inhibitory effect of curcumin. Our studies demonstrate that curcumin directly modulates intestinal NPC1L1 expression via transcriptional regulation and the involvement of SREBP2 transcription factor.
Collapse
Affiliation(s)
- Pradeep Kumar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pooja Malhotra
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ke Ma
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amika Singla
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Omar Hedroug
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The discovery of Niemann-Pick C1-like 1 (NPC1L1) and ezetimibe, a drug that lowers intestinal cholesterol absorption, has contributed to the recognition of the intestine as an important organ in whole-body cholesterol homeostasis. Unfortunately, the majority of the studies on NPC1L1 have been conducted in rodent models, which, in contrast to humans, do not express this protein in the liver. Thus the function of NPC1L1 in the liver is still not defined in detail. In this review, we discuss some of the recent progress in the understanding of the role of hepatic NPC1L1 in cholesterol metabolism. RECENT FINDINGS Mice expressing human NPC1L1 in the liver have decreased biliary cholesterol concentration, suggesting the involvement of this protein in the hepatic reabsorption of biliary cholesterol. Studies in gallstone patients have shown that only women have decreased hepatic NPC1L1 expression, suggesting a possible role for the sex-related differences in cholesterol gallstone disease. Also, several transcription factors (e.g., sterol regulatory element-binding protein 2, hepatocyte nuclear factor 1α) appear to modulate the expression of NPC1L1. SUMMARY Evidence suggests the involvement of NPC1L1 in biliary cholesterol uptake, HDL metabolism and cholesterol gallstone disease. Although difficult, studies in humans are required to further elucidate the function of this protein in the liver.
Collapse
Affiliation(s)
- Camilla Pramfalk
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
49
|
Wang LJ, Wang J, Li N, Ge L, Li BL, Song BL. Molecular characterization of the NPC1L1 variants identified from cholesterol low absorbers. J Biol Chem 2010; 286:7397-408. [PMID: 21189420 DOI: 10.1074/jbc.m110.178368] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick C1-like 1 (NPC1L1) is an essential protein for dietary cholesterol absorption. Nonsynonymous (NS) variants of NPC1L1 in humans have been suggested to associate with cholesterol absorption variations. However, information concerning the characteristics and mechanism of these variants in cholesterol uptake is limited. In this study, we analyzed the cholesterol uptake ability of the 19 reported NS variants of NPC1L1 identified from cholesterol low absorbers. Among these variants, L110F, R306C, A395V, G402S, T413M, R693C, R1214H, and R1268H could partially mediate cellular cholesterol uptake and were categorized as partially dysfunctional variants. The other 11 variants including T61M, N132S, D398G, R417W, G434R, T499M, S620C, I647N, G672R, S881L, and R1108W could barely facilitate cholesterol uptake, and were classified into the severely dysfunctional group. The partially dysfunctional variants showed mild defects in one or multiple aspects of cholesterol-regulated recycling, subcellular localization, glycosylation, and protein stability. The severely dysfunctional ones displayed remarkable defects in all these aspects and were rapidly degraded through the ER-associated degradation (ERAD) pathway. In vivo analyses using adenovirus-mediated expression in mouse liver confirmed that the S881L variant failed to localize to liver canalicular membrane, and the mice showed defects in biliary cholesterol re-absorption, while the G402S variant appeared to be similar to wild-type NPC1L1 in mouse liver. This study suggests that the dysfunction of the 19 variants on cholesterol absorption is due to the impairment of recycling, subcellular localization, glycosylation, or stability of NPC1L1.
Collapse
Affiliation(s)
- Li-Juan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
50
|
Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci U S A 2010; 108:551-6. [PMID: 21187433 DOI: 10.1073/pnas.1014434108] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dietary absorption is a major way for mammals to obtain cholesterol, which is mediated by Niemann-Pick C1-like 1 (NPC1L1) via vesicular endocytosis. One fundamental question in this process is how free cholesterol is efficiently taken up through the internalization of NPC1L1. Using exogenously expressed NPC1L1-EGFP, we show that the lipid raft proteins flotillins associate with NPC1L1 and their localization is regulated by NPC1L1 during intracellular trafficking. Furthermore, flotillins are essential for NPC1L1-mediated cellular cholesterol uptake, biliary cholesterol reabsorption, and the regulation of lipid levels in mice. Together with NPC1L1, they form cholesterol-enriched membrane microdomains, which function as carriers for bulk of cholesterol. The hypocholesterolemic drug ezetimibe disrupts the association between NPC1L1 and flotillins, which blocks the formation of the cholesterol-enriched microdomains. Our findings reveal a functional role of flotillins in NPC1L1-mediated cholesterol uptake and elucidate the formation of NPC1L1-flotillins-postive cholesterol-enriched membrane microdomains as a mechanism for efficient cholesterol absorption.
Collapse
|