1
|
Gilkes JM, Frampton RA, Board AJ, Hudson AO, Price TG, Morris VK, Crittenden DL, Muscroft‐Taylor AC, Sheen CR, Smith GR, Dobson RCJ. A new lysine biosynthetic enzyme from a bacterial endosymbiont shaped by genetic drift and genome reduction. Protein Sci 2024; 33:e5083. [PMID: 38924211 PMCID: PMC11201819 DOI: 10.1002/pro.5083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.
Collapse
Affiliation(s)
- Jenna M. Gilkes
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Rebekah A. Frampton
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Amanda J. Board
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life SciencesRochesterNew YorkUSA
| | - Thomas G. Price
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | - Vanessa K. Morris
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Deborah L. Crittenden
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | | | - Campbell R. Sheen
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Grant R. Smith
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
2
|
Schmitz RA, Dietl A, Müller M, Berben T, Op den Camp HJM, Barends TRM. Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway. Acta Crystallogr F Struct Biol Commun 2020; 76:199-208. [PMID: 32356521 PMCID: PMC7193512 DOI: 10.1107/s2053230x20005294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/15/2020] [Indexed: 11/10/2022] Open
Abstract
The enzyme 4-hydroxy-tetrahydrodipicolinate synthase (DapA) is involved in the production of lysine and precursor molecules for peptidoglycan synthesis. In a multistep reaction, DapA converts pyruvate and L-aspartate-4-semialdehyde to 4-hydroxy-2,3,4,5-tetrahydrodipicolinic acid. In many organisms, lysine binds allosterically to DapA, causing negative feedback, thus making the enzyme an important regulatory component of the pathway. Here, the 2.1 Å resolution crystal structure of DapA from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV is reported. The enzyme crystallized as a contaminant of a protein preparation from native biomass. Genome analysis reveals that M. fumariolicum SolV utilizes the recently discovered aminotransferase pathway for lysine biosynthesis. Phylogenetic analyses of the genes involved in this pathway shed new light on the distribution of this pathway across the three domains of life.
Collapse
Affiliation(s)
- Rob A. Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Melanie Müller
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Tom Berben
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Impey RE, Lee M, Hawkins DA, Sutton JM, Panjikar S, Perugini MA, Soares da Costa TP. Mis-annotations of a promising antibiotic target in high-priority gram-negative pathogens. FEBS Lett 2020; 594:1453-1463. [PMID: 31943170 DOI: 10.1002/1873-3468.13733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022]
Abstract
The rise of antibiotic resistance combined with the lack of new products entering the market has led to bacterial infections becoming one of the biggest threats to global health. Therefore, there is an urgent need to identify novel antibiotic targets, such as dihydrodipicolinate synthase (DHDPS), an enzyme involved in the production of essential metabolites in cell wall and protein synthesis. Here, we utilised a 7-residue sequence motif to identify mis-annotation of multiple DHDPS genes in the high-priority Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. We subsequently confirmed these mis-annotations using a combination of enzyme kinetics and X-ray crystallography. Thus, this study highlights the need to ensure genes encoding promising drug targets, like DHDPS, are annotated correctly, especially for clinically important pathogens. PDB ID: 6UE0.
Collapse
Affiliation(s)
- Rachael E Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Mihwa Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Daniel A Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - J Mark Sutton
- National Infection Service, Research and Development Institute, Public Health England, Salisbury, UK
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, VIC, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, VIC, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Majdi Yazdi M, Saran S, Mrozowich T, Lehnert C, Patel TR, Sanders DAR, Palmer DRJ. Asparagine-84, a regulatory allosteric site residue, helps maintain the quaternary structure of Campylobacter jejuni dihydrodipicolinate synthase. J Struct Biol 2019; 209:107409. [PMID: 31678256 DOI: 10.1016/j.jsb.2019.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.
Collapse
Affiliation(s)
- Mohadeseh Majdi Yazdi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Sagar Saran
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler Mrozowich
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Cheyanne Lehnert
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; Li Ka Shing Institute of Virology and DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
5
|
Impey RE, Panjikar S, Hall CJ, Bock LJ, Sutton JM, Perugini MA, Soares da Costa TP. Identification of two dihydrodipicolinate synthase isoforms from Pseudomonas aeruginosa that differ in allosteric regulation. FEBS J 2019; 287:386-400. [PMID: 31330085 DOI: 10.1111/febs.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/12/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections, accounting for 10% of all hospital-acquired infections. Current antibiotics against P. aeruginosa are becoming increasingly ineffective due to the exponential rise in drug resistance. Thus, there is an urgent need to validate and characterize novel drug targets to guide the development of new classes of antibiotics against this pathogen. One such target is the diaminopimelate (DAP) pathway, which is responsible for the biosynthesis of bacterial cell wall and protein building blocks, namely meso-DAP and lysine. The rate-limiting step of this pathway is catalysed by the enzyme dihydrodipicolinate synthase (DHDPS), typically encoded for in bacteria by a single dapA gene. Here, we show that P. aeruginosa encodes two functional DHDPS enzymes, PaDHDPS1 and PaDHDPS2. Although these isoforms have similar catalytic activities (kcat = 29 s-1 and 44 s-1 for PaDHDPS1 and PaDHDPS2, respectively), they are differentially allosterically regulated by lysine, with only PaDHDPS2 showing inhibition by the end product of the DAP pathway (IC50 = 130 μm). The differences in allostery are attributed to a single amino acid difference in the allosteric binding pocket at position 56. This is the first example of a bacterium that contains multiple bona fide DHDPS enzymes, which differ in allosteric regulation. We speculate that the presence of the two isoforms allows an increase in the metabolic flux through the DAP pathway when required in this clinically important pathogen. DATABASES: PDB ID: 6P90.
Collapse
Affiliation(s)
- Rachael E Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Australia
| | - Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lucy J Bock
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - J Mark Sutton
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
6
|
Gupta R, Hogan CJ, Perugini MA, Soares da Costa TP. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum. PLANTA 2018; 248:381-391. [PMID: 29744651 DOI: 10.1007/s00425-018-2894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a KM (pyruvate) of 0.45 mM, KM (l-aspartate-4-semialdehyde) of 0.07 mM, kcat of 56 s-1, and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a Rg of 33 Å and Dmax of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Campbell J Hogan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Atkinson SC, Dogovski C, Wood K, Griffin MDW, Gorman MA, Hor L, Reboul CF, Buckle AM, Wuttke J, Parker MW, Dobson RCJ, Perugini MA. Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure 2018; 26:948-959.e5. [PMID: 29804823 DOI: 10.1016/j.str.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022]
Abstract
Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lilian Hor
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joachim Wuttke
- Juelich Centre for Neutron Science (JCNS), at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenstrasse 1, Garching 85 747, Germany
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch 4800, New Zealand
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
8
|
Desbois S, John UP, Perugini MA. Dihydrodipicolinate synthase is absent in fungi. Biochimie 2018; 152:73-84. [PMID: 29959064 DOI: 10.1016/j.biochi.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The class I aldolase dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the diaminopimelate (DAP) lysine biosynthesis pathway in bacteria, archaea and plants. Despite the existence, in databases, of numerous fungal sequences annotated as DHDPS, its presence in fungi has been the subject of contradictory claims. We report the characterization of DHDPS candidates from fungi. Firstly, the putative DHDPS from Coccidioides immitis (PDB ID: 3QFE) was shown to have negligible enzyme activity. Sequence analysis of 3QFE showed that three out of the seven amino acid residues critical for DHDPS activity are absent; however, exact matches to catalytic residues from two other class I aldolases, 2-keto-3-deoxygluconate aldolase (KDGA), and 4-hydroxy-2-oxoglutarate aldolase (HOGA), were identified. The presence of both KDGA and HOGA activity in 3QFE was confirmed in vitro using enzyme assays, the first report of such dual activity. Subsequent analyses of all publically available fungal sequences revealed that no entry contains all seven residues important for DHDPS function. The candidate with the highest number of identities (6 of 7), KIW77228 from Fonsecaea pedrosoi, was shown to have trace DHDPS activity in vitro, partially restored by substitution of the seventh critical residue, and to be incapable of complementing DHDPS-deficient E. coli cells. Combined with the presence of all seven sequences for the alternative α-aminoadipate (AAA) lysine biosynthesis pathway in C. immitis and F. pedrosoi, we believe that DHDPS and the DAP pathway are absent in fungi, and further, that robust informed methods for annotating genes need to be implemented.
Collapse
Affiliation(s)
- Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia
| | - Ulrik P John
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia; Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia.
| |
Collapse
|
9
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
10
|
Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA. Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 2018; 145:85-93. [PMID: 29337198 DOI: 10.1016/j.pep.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
11
|
Soares da Costa TP, Patel M, Desbois S, Gupta R, Faou P, Perugini MA. Identification of a dimeric KDG aldolase from
Agrobacterium tumefaciens. Proteins 2017; 85:2058-2065. [DOI: 10.1002/prot.25359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana P. Soares da Costa
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Madhvi Patel
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Sebastien Desbois
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Ruchi Gupta
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Pierre Faou
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Matthew A. Perugini
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| |
Collapse
|
12
|
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. Subcell Biochem 2017; 83:271-289. [PMID: 28271480 DOI: 10.1007/978-3-319-46503-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.
Collapse
Affiliation(s)
- F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Christensen JB, Soares da Costa TP, Faou P, Pearce FG, Panjikar S, Perugini MA. Structure and Function of Cyanobacterial DHDPS and DHDPR. Sci Rep 2016; 6:37111. [PMID: 27845445 PMCID: PMC5109050 DOI: 10.1038/srep37111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.
Collapse
Affiliation(s)
- Janni B. Christensen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - T. P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Victoria 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
14
|
Soares da Costa TP, Desbois S, Dogovski C, Gorman MA, Ketaren NE, Paxman JJ, Siddiqui T, Zammit LM, Abbott BM, Robins-Browne RM, Parker MW, Jameson GB, Hall NE, Panjikar S, Perugini MA. Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target. Structure 2016; 24:1282-1291. [PMID: 27427481 DOI: 10.1016/j.str.2016.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Natalia E Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Tanzeela Siddiqui
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leanne M Zammit
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Geoffrey B Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Nathan E Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
15
|
Peverelli MG, Soares da Costa TP, Kirby N, Perugini MA. Dimerization of Bacterial Diaminopimelate Decarboxylase Is Essential for Catalysis. J Biol Chem 2016; 291:9785-95. [PMID: 26921318 DOI: 10.1074/jbc.m115.696591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the final step in the diaminopimelate biosynthesis pathway of bacteria. The product of the reaction is the essential amino acid l-lysine, which is an important precursor for the synthesis of the peptidoglycan cell wall, housekeeping proteins, and virulence factors of bacteria. Accordingly, the enzyme is a promising antibacterial target. Previous structural studies demonstrate that DAPDC exists as monomers, dimers, and tetramers in the crystal state. However, the active oligomeric form has not yet been determined. We show using analytical ultracentrifugation, small angle x-ray scattering, and enzyme kinetic analyses in solution that the active form of DAPDC from Bacillus anthracis, Escherichia coli, Mycobacterium tuberculosis, and Vibrio cholerae is a dimer. The importance of dimerization was probed further by generating dimerization interface mutants (N381A and R385A) of V. cholerae DAPDC. Our studies indicate that N381A and R385A are significantly attenuated in catalytic activity, thus confirming that dimerization of DAPDC is essential for function. These findings provide scope for the development of new antibacterial agents that prevent DAPDC dimerization.
Collapse
Affiliation(s)
- Martin G Peverelli
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, and
| | - Tatiana P Soares da Costa
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086
| | - Nigel Kirby
- the The Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Matthew A Perugini
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, the Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, and
| |
Collapse
|
16
|
Skovpen YV, Conly CJT, Sanders DAR, Palmer DRJ. Biomimetic Design Results in a Potent Allosteric Inhibitor of Dihydrodipicolinate Synthase from Campylobacter jejuni. J Am Chem Soc 2016; 138:2014-20. [DOI: 10.1021/jacs.5b12695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| |
Collapse
|
17
|
Abstract
Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.
Collapse
|
18
|
Peverelli MG, Perugini MA. An optimized coupled assay for quantifying diaminopimelate decarboxylase activity. Biochimie 2015; 115:78-85. [PMID: 25986217 DOI: 10.1016/j.biochi.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Diaminopimelate decarboxylase (DAPDC) catalyzes the conversion of meso-DAP to lysine and carbon dioxide in the final step of the diaminopimelate (DAP) pathway in plants and bacteria. Given its absence in humans, DAPDC is a promising antibacterial target, particularly considering the rise in drug-resistant strains from pathogens such as Escherichia coli and Mycobacterium tuberculosis. Here, we report the optimization of a simple quantitative assay for measuring DAPDC catalytic activity using saccharopine dehydrogenase (SDH) as the coupling enzyme. Our results show that SDH has optimal activity at 37 °C, pH 8.0, and in Tris buffer. These conditions were subsequently employed to quantitate the enzyme kinetic properties of DAPDC from three bacterial species. We show that DAPDC from E. coli and M. tuberculosis have [Formula: see text] of 0.97 mM and 1.62 mM and a kcat of 55 s(-1) and 28 s(-1), respectively, which agree well with previous studies using more labor-intensive assays. We subsequently employed the optimized coupled assay to show for the first time that DAPDC from Bacillus anthracis possesses a [Formula: see text] of 0.68 mM and a kcat of 58 s(-1). This optimized coupled assay offers excellent scope to be employed in high throughput drug discovery screens targeting DAPDC from bacterial pathogens.
Collapse
Affiliation(s)
- Martin G Peverelli
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew A Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
19
|
Conly CJT, Skovpen YV, Li S, Palmer DRJ, Sanders DAR. Tyrosine 110 Plays a Critical Role in Regulating the Allosteric Inhibition of Campylobacter jejuni Dihydrodipicolinate Synthase by Lysine. Biochemistry 2014; 53:7396-406. [DOI: 10.1021/bi5012157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cuylar J. T. Conly
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Yulia V. Skovpen
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - Shuo Li
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David R. J. Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science
Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
20
|
Crystal structure and in silico studies of dihydrodipicolinate synthase (DHDPS) from Aquifex aeolicus. Extremophiles 2014; 18:973-85. [PMID: 24996798 DOI: 10.1007/s00792-014-0667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.
Collapse
|
21
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
22
|
Taberman H, Andberg M, Parkkinen T, Richard P, Hakulinen N, Koivula A, Rouvinen J. Purification, crystallization and preliminary X-ray diffraction analysis of a novel keto-deoxy-D-galactarate (KDG) dehydratase from Agrobacterium tumefaciens. Acta Crystallogr F Struct Biol Commun 2014; 70:49-52. [PMID: 24419616 PMCID: PMC3943101 DOI: 10.1107/s2053230x13031361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/15/2013] [Indexed: 11/11/2022] Open
Abstract
D-galacturonic acid is the main component of pectin. It could be used to produce affordable renewable fuels, chemicals and materials through biotechnical conversion. Keto-deoxy-D-galactarate (KDG) dehydratase is an enzyme in the oxidative pathway of D-galacturonic acid in Agrobacterium tumefaciens (At). It converts 3-deoxy-2-keto-L-threo-hexarate to α-ketoglutaric semialdehyde. At KDG dehydratase was crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 169.1, b = 117.8, c = 74.3 Å, β = 112.4° and an asymmetric unit of four monomers. X-ray diffraction data were collected to 1.9 Å resolution using synchrotron radiation. The three-dimensional structure of At KDG dehydratase will provide valuable information on the function of the enzyme and will allow it to be engineered for biorefinery-based applications.
Collapse
Affiliation(s)
- Helena Taberman
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Martina Andberg
- VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Finland
| | - Tarja Parkkinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Peter Richard
- VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland, PO Box 1000, 02044 VTT, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
23
|
Dogovski C, Gorman MA, Ketaren NE, Praszkier J, Zammit LM, Mertens HD, Bryant G, Yang J, Griffin MDW, Pearce FG, Gerrard JA, Jameson GB, Parker MW, Robins-Browne RM, Perugini MA. From knock-out phenotype to three-dimensional structure of a promising antibiotic target from Streptococcus pneumoniae. PLoS One 2013; 8:e83419. [PMID: 24349508 PMCID: PMC3862839 DOI: 10.1371/journal.pone.0083419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.
Collapse
Affiliation(s)
- Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Michael A. Gorman
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalia E. Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Judy Praszkier
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Leanne M. Zammit
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Gary Bryant
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ji Yang
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Callaghan Innovation, Lower Hutt, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Soares da Costa TP, Yap MY, Perugini MA, Wallace JC, Abell AD, Wilce MCJ, Polyak SW, Booker GW. Dual roles of F123 in protein homodimerization and inhibitor binding to biotin protein ligase fromStaphylococcus aureus. Mol Microbiol 2013; 91:110-20. [DOI: 10.1111/mmi.12446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Min Y. Yap
- School of Biomedical Science; Monash University; Victoria 3800 Australia
| | - Matthew A. Perugini
- Department of Biochemistry; La Trobe Institute for Molecular Science; La Trobe University; Victoria 3086 Australia
| | - John C. Wallace
- School of Molecular and Biomedical Science; University of Adelaide; South Australia 5005 Australia
| | - Andrew D. Abell
- School of Chemistry and Physics; University of Adelaide; South Australia 5005 Australia
- Centre for Molecular Pathology; University of Adelaide; South Australia 5005 Australia
| | | | - Steven W. Polyak
- School of Molecular and Biomedical Science; University of Adelaide; South Australia 5005 Australia
- Centre for Molecular Pathology; University of Adelaide; South Australia 5005 Australia
| | - Grant W. Booker
- School of Molecular and Biomedical Science; University of Adelaide; South Australia 5005 Australia
- Centre for Molecular Pathology; University of Adelaide; South Australia 5005 Australia
| |
Collapse
|
25
|
Siddiqui T, Paxman JJ, Dogovski C, Panjikar S, Perugini MA. Cloning to crystallization of dihydrodipicolinate synthase from the intracellular pathogen Legionella pneumophila. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1177-81. [PMID: 24100576 PMCID: PMC3792684 DOI: 10.1107/s1744309113024639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/03/2013] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the rate-limiting step in the biosynthesis of meso-diaminopimelate and lysine. Here, the cloning, expression, purification and crystallization of DHDPS from the intracellular pathogen Legionella pneumophila are described. Crystals grown in the presence of high-molecular-weight PEG precipitant and magnesium chloride were found to diffract beyond 1.65 Å resolution. The crystal lattice belonged to the hexagonal space group P6₁22, with unit-cell parameters a=b=89.31, c=290.18 Å, and contained two molecules in the asymmetric unit. The crystal structure was determined by molecular replacement using a single chain of Pseudomonas aeruginosa DHDPS as the search model.
Collapse
Affiliation(s)
- Tanzeela Siddiqui
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | | | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
26
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hor L, Dobson RCJ, Downton MT, Wagner J, Hutton CA, Perugini MA. Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 2013; 288:9238-48. [PMID: 23426375 DOI: 10.1074/jbc.m113.450148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Balali-Mood M, Moshiri M, Etemad L. Medical aspects of bio-terrorism. Toxicon 2013; 69:131-42. [PMID: 23339855 DOI: 10.1016/j.toxicon.2013.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/02/2013] [Accepted: 01/09/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Bioterrorism is a terrorist action involving the intentional release or dissemination of a biological warfare agent (BWA), which includes some bacteria, viruses, rickettsiae, fungi or biological toxins. BWA is a naturally occurring or human-modified form that may kill or incapacitate humans, animals or plants as an act of war or terrorism. BWA is a weapon of choice for mass destruction and terrorism, because of the incubation period, less effective amount than chemical warfare agents, easily distribution, odorless, colorless, difficult to detect, no need of specialized equipment for production and naturally distribution which can easily be obtained. BWA may be disseminating as an aerosol, spray, explosive device, and by food or water. CLASSIFICATION Based on the risk for human health, BWAs have been prioritized into three categories of A, B and C. Category A includes microorganisms or toxins that easily spread, leading to intoxication with high death rates such as Anthrax, Botulism, Plague, Smallpox, Tularemia and Viral hemorrhagic fevers. Category B has lower toxicity with wider range, including Staphylococcal Entrotoxin type B (SEB), Epsilon toxin of Clostridium perfringens, Ricin, Saxotoxins, Abrin and Trichothecene mycotoxins. The C category includes emerging pathogens that could also be engineered for mass spread such as Hanta viruses, multidrug-resistant tuberculosis, Nipah virus, the tick-borne encephalitis viruses, hemorrhagic fever viruses and yellow fever. CLINICAL MANIFESTATIONS OF BIOTOXINS IN HUMAN: Clinical features and severity of intoxication depend on the agent and exposed dose, route of entry, individual variation and environmental factors. Onset of symptoms varies from 2-24 h in Ricin to 24-96 h in Botulism. Clinical manifestations also vary from irritation of the eyes, skin and mucus membranes in T2 toxin to an acute flaccid paralysis of bilateral cranial nerve impairment of descending manner in botulism. Most of the pyrogenic toxins such as SEB produce the same signs and symptoms as toxic shock syndrome including a rapid drop in blood pressure, elevated temperature, and multiple organ failure. MANAGEMENT There is no specific antidote or effective treatment for most of the biotoxins. The clinical management is thus more supportive and symptomatic. Fortunately vaccines are now available for most of BWA. Therefore, immunization of personnel at risk of exposure is recommended. CONCLUSION Biotoxins are very wide and bioterrorism is a heath and security threat that may induce national and international problems. Therefore, the security authorities, health professional and even public should be aware of bioterrorism.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91735-348, Islamic Republic of Iran.
| | | | | |
Collapse
|
29
|
Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Protein Expr Purif 2012; 85:66-76. [DOI: 10.1016/j.pep.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/22/2022]
|
30
|
Atkinson SC, Dogovski C, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from Agrobacterium tumefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1040-7. [PMID: 22949190 PMCID: PMC3433193 DOI: 10.1107/s1744309112033052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP_354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| |
Collapse
|
31
|
Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RCJ, Wagner J, Perugini MA. Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 2012; 7:e38318. [PMID: 22761676 PMCID: PMC3382604 DOI: 10.1371/journal.pone.0038318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Matthew T. Downton
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Cyril F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Reboul CF, Porebski BT, Griffin MDW, Dobson RCJ, Perugini MA, Gerrard JA, Buckle AM. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase. PLoS Comput Biol 2012; 8:e1002537. [PMID: 22685390 PMCID: PMC3369909 DOI: 10.1371/journal.pcbi.1002537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/16/2012] [Indexed: 11/18/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.
Collapse
Affiliation(s)
- C. F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - B. T. Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - M. D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - R. C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Biomolecular Interaction Centre, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - M. A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - J. A. Gerrard
- Biomolecular Interaction Centre, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - A. M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
33
|
Schnell R, Oehlmann W, Sandalova T, Braun Y, Huck C, Maringer M, Singh M, Schneider G. Tetrahydrodipicolinate N-succinyltransferase and dihydrodipicolinate synthase from Pseudomonas aeruginosa: structure analysis and gene deletion. PLoS One 2012; 7:e31133. [PMID: 22359568 PMCID: PMC3281039 DOI: 10.1371/journal.pone.0031133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
The diaminopimelic acid pathway of lysine biosynthesis has been suggested to provide attractive targets for the development of novel antibacterial drugs. Here we report the characterization of two enzymes from this pathway in the human pathogen Pseudomonas aeruginosa, utilizing structural biology, biochemistry and genetics. We show that tetrahydrodipicolinate N-succinyltransferase (DapD) from P. aeruginosa is specific for the L-stereoisomer of the amino substrate L-2-aminopimelate, and its D-enantiomer acts as a weak inhibitor. The crystal structures of this enzyme with L-2-aminopimelate and D-2-aminopimelate, respectively, reveal that both compounds bind at the same site of the enzyme. Comparison of the binding interactions of these ligands in the enzyme active site suggests misalignment of the amino group of D-2-aminopimelate for nucleophilic attack on the succinate moiety of the co-substrate succinyl-CoA as the structural basis of specificity and inhibition. P. aeruginosa mutants where the dapA gene had been deleted were viable and able to grow in a mouse lung infection model, suggesting that DapA is not an optimal target for drug development against this organism. Structure-based sequence alignments, based on the DapA crystal structure determined to 1.6 Å resolution revealed the presence of two homologues, PA0223 and PA4188, in P. aeruginosa that could substitute for DapA in the P. aeruginosa PAO1ΔdapA mutant. In vitro experiments using recombinant PA0223 protein could however not detect any DapA activity.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wulf Oehlmann
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
| | - Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yvonne Braun
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
| | | | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics, Braunschweig, Germany
- * E-mail: (MS); (GS)
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MS); (GS)
| |
Collapse
|
34
|
Atkinson SC, Dogovski C, Newman J, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1537-41. [PMID: 22139160 PMCID: PMC3232133 DOI: 10.1107/s1744309111038395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS from the grapevine Vitis vinifera (Vv-DHDPS). Following in-drop cleavage of the hexahistidine tag, cocrystals of Vv-DHDPS with the substrate pyruvate were grown in 0.1 M Bis-Tris propane pH 8.2, 0.2 M sodium bromide, 20%(w/v) PEG 3350. X-ray diffraction data in space group P1 at a resolution of 2.2 Å are presented. Preliminary diffraction data analysis indicated the presence of eight molecules per asymmetric unit (V(M) = 2.55 Å(3) Da(-1), 52% solvent content). The pending crystal structure of Vv-DHDPS will provide insight into the molecular evolution in quaternary structure of DHDPS enzymes.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Janet Newman
- CSIRO Division of Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
35
|
Griffin MDW, Billakanti JM, Gerrard JA, Dobson RCJ, Pearce FG. Crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase 2 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1386-90. [PMID: 22102238 PMCID: PMC3212457 DOI: 10.1107/s1744309111033276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the first committed step of the lysine-biosynthetic pathway in plants and bacteria. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS2 from Arabidopsis thaliana are reported. Diffraction-quality protein crystals belonged to space group P2(1)2(1)2.
Collapse
Affiliation(s)
- Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
36
|
Pearce FG, Dobson RCJ, Jameson GB, Perugini MA, Gerrard JA. Characterization of monomeric dihydrodipicolinate synthase variant reveals the importance of substrate binding in optimizing oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1900-9. [PMID: 21803176 DOI: 10.1016/j.bbapap.2011.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 01/15/2023]
Abstract
To gain insights into the role of quaternary structure in the TIM-barrel family of enzymes, we introduced mutations to the DHDPS enzyme of Thermotoga maritima, which we have previously shown to be a stable tetramer in solution. These mutations were aimed at reducing the number of salt bridges at one of the two tetramerization interface of the enzyme, which contains many more interactions than the well characterized equivalent interface of the mesophilic Escherichia coli DHDPS enzyme. The resulting variants had altered quaternary structure, as shown by analytical ultracentrifugation, gel filtration liquid chromatography, and small angle X-ray scattering, and X-ray crystallographic studies confirmed that one variant existed as an independent monomer, but with few changes to the secondary and tertiary structure. Reduction of higher order assembly resulted in a loss of thermal stability, as measured by a variety of methods, and impaired catalytic function. Binding of pyruvate increased the oligomeric status of the variants, with a concomitant increase in thermal stability, suggesting a role for substrate binding in optimizing stable, higher order structures. The results of this work show that the salt bridges located at the tetramerization interface of DHDPS play a significant role in maintaining higher order structures, and demonstrate the importance of quaternary structure in determining protein stability and in the optimization of enzyme catalysis.
Collapse
Affiliation(s)
- F Grant Pearce
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
37
|
Dommaraju SR, Dogovski C, Czabotar PE, Hor L, Smith BJ, Perugini MA. Catalytic mechanism and cofactor preference of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Arch Biochem Biophys 2011; 512:167-74. [PMID: 21704017 DOI: 10.1016/j.abb.2011.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12μM) as a cofactor more effectively than NADH (K(m)=26μM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5μM) relative to NADH (K(d)=29μM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.
Collapse
Affiliation(s)
- Sudhir R Dommaraju
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Evans G, Schuldt L, Griffin MDW, Devenish SRA, Grant Pearce F, Perugini MA, Dobson RCJ, Jameson GB, Weiss MS, Gerrard JA. A tetrameric structure is not essential for activity in dihydrodipicolinate synthase (DHDPS) from Mycobacterium tuberculosis. Arch Biochem Biophys 2011; 512:154-9. [PMID: 21672512 DOI: 10.1016/j.abb.2011.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 11/19/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) is a validated antibiotic target for which a new approach to inhibitor design has been proposed: disrupting native tetramer formation by targeting the dimer-dimer interface. In this study, rational design afforded a variant of Mycobacterium tuberculosis, Mtb-DHDPS-A204R, with disrupted quaternary structure. X-ray crystallography (at a resolution of 2.1Å) revealed a dimeric protein with an identical fold and active-site structure to the tetrameric wild-type enzyme. Analytical ultracentrifugation confirmed the dimeric structure in solution, yet the dimeric mutant has similar activity to the wild-type enzyme. Although the affinity for both substrates was somewhat decreased, the high catalytic competency of the enzyme was surprising in the light of previous results showing that dimeric variants of the Escherichia coli and Bacillus anthracis DHDPS enzymes have dramatically reduced activity compared to their wild-type tetrameric counterparts. These results suggest that Mtb-DHDPS-A204R is similar to the natively dimeric enzyme from Staphylococcus aureus, and highlight our incomplete understanding of the role played by oligomerisation in relating protein structure and function.
Collapse
Affiliation(s)
- Genevieve Evans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dobson RCJ, Girón I, Hudson AO. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development. PLoS One 2011; 6:e20439. [PMID: 21633707 PMCID: PMC3102117 DOI: 10.1371/journal.pone.0020439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/29/2011] [Indexed: 11/21/2022] Open
Abstract
In some bacterial species and photosynthetic cohorts, including algae, the enzyme
l,l-diaminopimelate aminotransferase
(DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid
L-lysine. DapL catalyzes the conversion of
tetrahydrodipicolinate (THDPA) to
l,l-diaminopimelate
(l,l-DAP), in one step bypassing the
DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here
we present an in vivo and in vitro
characterization of the DapL ortholog from the alga Chlamydomonas
reinhardtii (Cr-DapL). The in
vivo analysis illustrated that the enzyme is able to functionally
complement the E. coli dap auxotrophs and was essential for
plant development in Arabidopsis. In vitro, the enzyme was able
to inter-convert THDPA and l,l-DAP, showing
strong substrate specificity. Cr-DapL was dimeric in both
solution and when crystallized. The structure of Cr-DapL was
solved in its apo form, showing an overall architecture of a
α/β protein with each monomer in the dimer adopting a pyridoxal
phosphate-dependent transferase-like fold in a V-shaped conformation. The active
site comprises residues from both monomers in the dimer and shows some
rearrangement when compared to the apo-DapL structure from
Arabidopsis. Since animals do not possess the enzymatic machinery necessary for
the de novo synthesis of the amino acid
l-lysine, enzymes involved in this pathway are
attractive targets for the development of antibiotics, herbicides and
algaecides.
Collapse
Affiliation(s)
- Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science
and Biotechnology Institute, The University of Melbourne, Parkville, Victoria,
Australia
- Biomolecular Interaction Centre, School of Biological Sciences,
University of Canterbury, Christchurch, New Zealand
- * E-mail: (RCJD); (AOH)
| | - Irma Girón
- School of Biological Sciences, Rochester Institute of Technology,
Rochester, New York, United States of America
| | - André O. Hudson
- School of Biological Sciences, Rochester Institute of Technology,
Rochester, New York, United States of America
- * E-mail: (RCJD); (AOH)
| |
Collapse
|
40
|
Biochemical studies and crystal structure determination of dihydrodipicolinate synthase from Pseudomonas aeruginosa. Int J Biol Macromol 2011; 48:779-87. [PMID: 21396954 DOI: 10.1016/j.ijbiomac.2011.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/20/2022]
Abstract
The intracellular enzyme dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52) from Pseudomonas aeruginosa is a potential drug target because it is essential for the growth of bacteria while it is absent in humans. Therefore, in order to design new compounds using structure based approach for inhibiting the function of DHDPS from P. aeruginosa (Ps), we have cloned, characterized biochemically and biophysically and have determined its three-dimensional structure. The gene encoding DHDPS (dapA) was cloned in a vector pET-28c(+) and the recombinant protein was overexpressed in the Escherichia coli host. The K(m) values of the recombinant enzyme estimated for the substrates, pyruvate and (S)-aspartate-β-semialdehyde [(S)-ASA] were found to be 0.90±0.13 mM and 0.17±0.02 mM, respectively. The circular dichroism studies showed that the enzyme adopts a characteristic β/α conformation which is retained up to 65°C. The fluorescence data indicated the presence of exposed tryptophan residues in the enzyme. The three-dimensional structure determination showed that DHDPS forms a homodimer which is stabilized by several hydrogen bonds and van der Waals forces at the interface. The active site formed with residues Thr44, Tyr107 and Tyr133 is found to be stereochemically suitable for catalytic function. It may be noted that Tyr107 of the catalytic triad belongs to the partner molecule in the dimer. The structure of the complex of PsDHDPS with (S)-lysine determined at 2.65 Å resolution revealed the positions of three lysine molecules bound to the protein.
Collapse
|
41
|
Wubben JM, Dogovski C, Dobson RCJ, Codd R, Gerrard JA, Parker MW, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the psychrophile Shewanella benthica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1511-6. [PMID: 21045309 PMCID: PMC3001662 DOI: 10.1107/s1744309110036791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/14/2010] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) is an oligomeric enzyme that catalyzes the first committed step of the lysine-biosynthesis pathway in plants and bacteria, which yields essential building blocks for cell-wall and protein synthesis. DHDPS is therefore of interest to drug-discovery research as well as to studies that probe the importance of quaternary structure to protein function, stability and dynamics. Accordingly, DHDPS from the psychrophilic (cold-dwelling) organism Shewanella benthica (Sb-DHDPS) was cloned, expressed, purified and crystallized. The best crystals of Sb-DHDPS were grown in 200 mM ammonium sulfate, 100 mM bis-tris pH 5.0-6.0, 23-26%(w/v) PEG 3350, 0.02%(w/v) sodium azide and diffracted to beyond 2.5 Å resolution. Processing of diffraction data to 2.5 Å resolution resulted in a unit cell with space group P2(1)2(1)2(1) and dimensions a = 73.1, b = 84.0, c = 143.7 Å. These studies of the first DHDPS enzyme to be characterized from a bacterial psychrophile will provide insight into the molecular evolution of enzyme structure and dynamics.
Collapse
Affiliation(s)
- Jacinta M. Wubben
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- St Vincents Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|