1
|
Xia S, Hirao H. The Dissociation Process of NADP + from NADPH-Cytochrome P450 Reductase Studied by Molecular Dynamics Simulation. J Phys Chem B 2024; 128:7148-7159. [PMID: 38991231 DOI: 10.1021/acs.jpcb.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
NADPH-cytochrome P450 reductase (CPR) plays a vital role as a redox partner for mammalian cytochrome P450 enzymes (P450s), facilitating the transfer of two electrons from NADPH to the P450 heme center in a sequential manner. Previous experimental studies revealed substantial domain movements of CPR, transitioning between closed and open states during the electron transfer (ET) cycle. These transitions are essential and are influenced by the binding of NADPH or the release of NADP+. However, the intricate molecular mechanisms governing the CPR-mediated ET cycle have largely remained elusive. This study employed molecular dynamics (MD) simulation techniques to explore the dissociation of NADP+ from CPR, a crucial step preceding the initial ET from CPR to a P450. Alongside the binding structure of NADP+ observed in a crystal structure (pose I), our MD simulations identified an alternative binding structure (pose II). Although pose II exhibits slightly lower stability than pose I, it can be formed through an approximate 210° counterclockwise rotation of the adenine group, with a free energy barrier of only 2.76 kcal/mol. The simulation results further suggest that NADP+ dissociation involves a tentative formation of pose II from pose I before complete dissociation, and that the binding of NADP+ to CPR is primarily governed by nonbonded interactions within the adenosine binding pocket.
Collapse
Affiliation(s)
- Songyan Xia
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
2
|
Bizet M, Byrne D, Biaso F, Gerbaud G, Etienne E, Briola G, Guigliarelli B, Urban P, Dorlet P, Kalai T, Truan G, Martinho M. Structural insights into the semiquinone form of human Cytochrome P450 reductase by DEER distance measurements between a native flavin and a spin labelled non-canonical amino acid. Chemistry 2024; 30:e202304307. [PMID: 38277424 DOI: 10.1002/chem.202304307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.
Collapse
Affiliation(s)
- Maxime Bizet
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Aix Marseille Univ, CNRS, IMM, 13402, Marseille, France
| | - Frédéric Biaso
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Giuseppina Briola
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Tamas Kalai
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, PO Box 99 Szigeti st. 12, H-7602 7624, Pécs, Hungary
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Marlène Martinho
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| |
Collapse
|
3
|
Martinez SE, Pandey AV, Perez Jimenez TE, Zhu Z, Court MH. Pharmacogenomics of poor drug metabolism in greyhounds: Canine P450 oxidoreductase genetic variation, breed heterogeneity, and functional characterization. PLoS One 2024; 19:e0297191. [PMID: 38300925 PMCID: PMC10833530 DOI: 10.1371/journal.pone.0297191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
Greyhounds metabolize cytochrome P450 (CYP) 2B11 substrates more slowly than other dog breeds. However, CYP2B11 gene variants associated with decreased CYP2B11 expression do not fully explain reduced CYP2B11 activity in this breed. P450 oxidoreductase (POR) is an essential redox partner for all CYPs. POR protein variants can enhance or repress CYP enzyme function in a CYP isoform and substrate dependent manner. The study objectives were to identify POR protein variants in greyhounds and determine their effect on coexpressed CYP2B11 and CYP2D15 enzyme function. Gene sequencing identified two missense variants (Glu315Gln and Asp570Glu) forming four alleles, POR-H1 (reference), POR-H2 (570Glu), POR-H3 (315Gln, 570Glu) and POR-H4 (315Gln). Out of 68 dog breeds surveyed, POR-H2 was widely distributed across multiple breeds, while POR-H3 was largely restricted to greyhounds and Scottish deerhounds (35% allele frequencies), and POR-H4 was rare. Three-dimensional protein structure modelling indicated significant effects of Glu315Gln (but not Asp570Glu) on protein flexibility through loss of a salt bridge between Glu315 and Arg519. Recombinant POR-H1 (reference) and each POR variant (H2-H4) were expressed alone or with CYP2B11 or CYP2D15 in insect cells. No substantial effects on POR protein expression or enzyme activity (cytochrome c reduction) were observed for any POR variant (versus POR-H1) when expressed alone or with CYP2B11 or CYP2D15. Furthermore, there were no effects on CYP2B11 or CYP2D15 protein expression, or on CYP2D15 enzyme kinetics by any POR variant (versus POR-H1). However, Vmax values for 7-benzyloxyresorufin, propofol and bupropion oxidation by CYP2B11 were significantly reduced by coexpression with POR-H3 (by 34-37%) and POR-H4 (by 65-72%) compared with POR-H1. Km values were unaffected. Our results indicate that the Glu315Gln mutation (common to POR-H3 and POR-H4) reduces CYP2B11 enzyme function without affecting at least one other major canine hepatic P450 (CYP2D15). Additional in vivo studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Stephanie E. Martinez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Biomedical Research, University Children’s Hospital Bern, Switzerland and Translational Hormone Research Program, University of Bern, Bern, Switzerland
| | - Tania E. Perez Jimenez
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Zhaohui Zhu
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Michael H. Court
- Pharmacogenomics Laboratory, Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
4
|
Burris-Hiday SD, Scott EE. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 2023; 299:105112. [PMID: 37517692 PMCID: PMC10481364 DOI: 10.1016/j.jbc.2023.105112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.
Collapse
Affiliation(s)
- Sarah D Burris-Hiday
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology and Biological Chemistry and the Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
5
|
Esteves F, Almeida CMM, Silva S, Saldanha I, Urban P, Rueff J, Pompon D, Truan G, Kranendonk M. Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism. Biomolecules 2023; 13:1083. [PMID: 37509119 PMCID: PMC10377444 DOI: 10.3390/biom13071083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD-CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations.
Collapse
Affiliation(s)
- Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Sofia Silva
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
| | - Inês Saldanha
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Denis Pompon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 Avenue de Rangueil, 31077 Toulouse, CEDEX 04, France
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
6
|
The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. INORGANICS 2022. [DOI: 10.3390/inorganics10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron-sulfur (Fe/S) clusters are protein cofactors that play a crucial role in essential cellular functions. Their ability to rapidly exchange electrons with several redox active acceptors makes them an efficient system for fulfilling diverse cellular needs. They include the formation of a relay for long-range electron transfer in enzymes, the biosynthesis of small molecules required for several metabolic pathways and the sensing of cellular levels of reactive oxygen or nitrogen species to activate appropriate cellular responses. An emerging family of iron-sulfur cluster binding proteins is CIAPIN1, which is characterized by a C-terminal domain of about 100 residues. This domain contains two highly conserved cysteine-rich motifs, which are both involved in Fe/S cluster binding. The CIAPIN1 proteins have been described so far to be involved in electron transfer pathways, providing electrons required for the biosynthesis of important protein cofactors, such as Fe/S clusters and the diferric-tyrosyl radical, as well as in the regulation of cell death. Here, we have first investigated the occurrence of CIAPIN1 proteins in different organisms spanning the entire tree of life. Then, we discussed the function of this family of proteins, focusing specifically on the role that the Fe/S clusters play. Finally, we describe the nature of the Fe/S clusters bound to CIAPIN1 proteins and which are the cellular pathways inserting the Fe/S clusters in the two cysteine-rich motifs.
Collapse
|
7
|
Zhang B, Kang C, Davydov DR. Conformational Rearrangements in the Redox Cycling of NADPH-Cytochrome P450 Reductase from Sorghum bicolor Explored with FRET and Pressure-Perturbation Spectroscopy. BIOLOGY 2022; 11:biology11040510. [PMID: 35453709 PMCID: PMC9030436 DOI: 10.3390/biology11040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary NADPH-cytochrome P450 reductase (CPR) enzymes are known to undergo an ample conformational transition between the closed and open states in the process of their redox cycling. To explore the conformational landscape of CPR from the potential biofuel crop Sorghum bicolor (SbCPR), we incorporated a FRET donor/acceptor pair into the enzyme and employed rapid scanning stop-flow and pressure perturbation spectroscopy to characterize the equilibrium between its open and closed states at different stages of the redox cycle. Our results suggest the presence of several open conformational sub-states differing in the system volume change associated with the opening transition (ΔV0). Although the closed conformation always predominates in the conformational landscape, the population of the open conformations increases by order of magnitude upon the two-electron reduction and the formation of the disemiquinone state of the enzyme. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions. Abstract NADPH-cytochrome P450 reductase (CPR) from Sorghum bicolor (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. This transition is triggered by electron transfer between the FAD and FMN and provides access of the partner protein to the electron-donating FMN domain. To characterize the electron transfer mechanisms in the monolignol biosynthetic pathway better, we explore the conformational transitions in SbCPR with rapid scanning stop-flow and pressure-perturbation spectroscopy. We used FRET between a pair of donor and acceptor probes incorporated into the FAD and FMN domains of SbCPR, respectively, to characterize the equilibrium between the open and closed states and explore its modulation in connection with the redox state of the enzyme. We demonstrate that, although the closed conformation always predominates in the conformational landscape, the population of open state increases by order of magnitude upon the formation of the disemiquinone state. Our results are consistent with several open conformation sub-states differing in the volume change (ΔV0) of the opening transition. While the ΔV0 characteristic of the oxidized enzyme is as large as −88 mL/mol, the interaction of the enzyme with the nucleotide cofactor and the formation of the double-semiquinone state of CPR decrease this value to −34 and −18 mL/mol, respectively. This observation suggests that the interdomain electron transfer in CPR increases protein hydration, while promoting more open conformation. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions.
Collapse
|
8
|
Zhang B, Munske GR, Timokhin VI, Ralph J, Davydov DR, Vermerris W, Sattler SE, Kang C. Functional and structural insight into the flexibility of cytochrome P450 reductases from Sorghum bicolor and its implications for lignin composition. J Biol Chem 2022; 298:101761. [PMID: 35202651 PMCID: PMC8942828 DOI: 10.1016/j.jbc.2022.101761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3′-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3′H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide–binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.
Collapse
Affiliation(s)
- Bixia Zhang
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Gerhard R Munske
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Vitaliy I Timokhin
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Dmitri R Davydov
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Scott E Sattler
- U.S. Department of Agriculture - Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, Lincoln, Nebraska, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
9
|
Martinez MJ, Carder JD, Taylor EL, Jacobo EP, Kang C, Brozik JA. Thermodynamic Driving Forces of Redox-Dependent CPR Insertion into Biomimetic Endoplasmic Reticulum Membranes. J Phys Chem B 2022; 126:1691-1699. [PMID: 35171619 DOI: 10.1021/acs.jpcb.1c09358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 reductase (CPR) is a NADPH-dependent membrane-bound oxidoreductase found in the endoplasmic reticulum (ER) and is the main redox partner for most cytochrome P450 enzymes. Presented are the measured thermodynamic driving forces responsible for how strongly CPR partitions into a biomimetic ER with the same lipid composition of a natural ER. Using temperature-dependent fluorescence correlation spectroscopy and fluorescence single-protein tracking, the standard state free energies, enthalpies, and entropies of the CPR insertion process were all measured. The results of this study demonstrate that the thermodynamic driving forces are dependent on the redox states of CPR. In particular, the partitioning of CPRox into a biomimetic ER is an exothermic process with a small positive change in entropy, while CPRred partitioning is endothermic with a large positive change in entropy. Both resulted in negative free energies and strong association to the biomimetic ER, but the KP of CPRox insertion is measurably smaller than that of CPRred. Using this new information and known results from literature sources, we also present a phenomenological model that accounts for membrane-protein interactions, protein orientation relative to the membrane, and protein conformation as a function of the redox state.
Collapse
Affiliation(s)
- Michael J Martinez
- Department of Chemistry, Washington State University, Pullman, Washington 99163-4630, United States
| | - Jessica D Carder
- Department of Chemistry, Washington State University, Pullman, Washington 99163-4630, United States
| | - Evan L Taylor
- Materials Science & Engineering Program, Washington State University, Pullman, Washington 99163-2711, United States
| | - Eric P Jacobo
- Department of Chemistry, Washington State University, Pullman, Washington 99163-4630, United States
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, Washington 99163-4630, United States
| | - J A Brozik
- Department of Chemistry, Washington State University, Pullman, Washington 99163-4630, United States.,Materials Science & Engineering Program, Washington State University, Pullman, Washington 99163-2711, United States
| |
Collapse
|
10
|
Laursen T, Lam HYM, Sørensen KK, Tian P, Hansen CC, Groves JT, Jensen KJ, Christensen SM. Membrane anchoring facilitates colocalization of enzymes in plant cytochrome P450 redox systems. Commun Biol 2021; 4:1057. [PMID: 34504298 PMCID: PMC8429664 DOI: 10.1038/s42003-021-02604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
Plant metabolism depends on cascade reactions mediated by dynamic enzyme assemblies known as metabolons. In this context, the cytochrome P450 (P450) superfamily catalyze key reactions underpinning the unique diversity of bioactive compounds. In contrast to their soluble bacterial counterparts, eukaryotic P450s are anchored to the endoplasmic reticulum membrane and serve as metabolon nucleation sites. Hence, membrane anchoring appears to play a pivotal role in the evolution of complex biosynthetic pathways. Here, a model membrane assay enabled characterization of membrane anchor dynamics by single molecule microscopy. As a model system, we reconstituted the membrane anchor of cytochrome P450 oxidoreductase (POR), the ubiquitous electron donor to all microsomal P450s. The transmembrane segment in the membrane anchor of POR is relatively conserved, corroborating its functional importance. We observe dynamic colocalization of the POR anchors in our assay suggesting that membrane anchoring might promote intermolecular interactions and in this way impact assembly of metabolic multienzyme complexes.
Collapse
Affiliation(s)
- Tomas Laursen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Cecilie Cetti Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Sune M Christensen
- Department of Chemistry, University of California, Berkeley, CA, USA. .,Enzyme Research, Lyngby, Denmark.
| |
Collapse
|
11
|
Miller WL. Steroidogenic electron-transfer factors and their diseases. Ann Pediatr Endocrinol Metab 2021; 26:138-148. [PMID: 34610701 PMCID: PMC8505039 DOI: 10.6065/apem.2142154.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
Most steroidogenesis disorders are caused by mutations in genes encoding the steroidogenic enzymes, but work in the past 20 years has identified related disorders caused by mutations in the genes encoding the cofactors that transport electrons from NADPH to P450 enzymes. Most P450s are microsomal and require electron donation by P450 oxidoreductase (POR); by contrast, mitochondrial P450s require electron donation via ferredoxin reductase (FdxR) and ferredoxin (Fdx). POR deficiency is the most common and best-described of these new forms of congenital adrenal hyperplasia. Severe POR deficiency is characterized by the Antley-Bixler skeletal malformation syndrome and genital ambiguity in both sexes, and hence is easily recognized, but mild forms may present only with infertility and subtle disorders of steroidogenesis. The common POR polymorphism A503V reduces catalysis by P450c17 (17-hydroxylase/17,20-lyase) and the principal drugmetabolizing P450 enzymes. The 17,20-lyase activity of P450c17 requires the allosteric action of cytochrome b5, which promotes interaction of P450c17 with POR, with consequent electron transfer. Rare b5 mutations are one of several causes of 17,20-lyase deficiency. In addition to their roles with steroidogenic mitochondrial P450s, Fdx and FdxR participate in the synthesis of iron-sulfur clusters used by many enzymes. Disruptions in the assembly of Fe-S clusters is associated with Friedreich ataxia and Parkinson disease. Recent work has identified mutations in FdxR in patients with neuropathic hearing loss and visual impairment, somewhat resembling the global neurologic disorders seen with mitochondrial diseases. Impaired steroidogenesis is to be expected in such individuals, but this has not yet been studied.
Collapse
Affiliation(s)
- Walter L. Miller
- Department of Pediatrics, Center for Reproductive Sciences and Institute for Human Genetics, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot 2021; 11:94-114. [PMID: 34206277 PMCID: PMC8293344 DOI: 10.3390/jox11030007] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Human Cytochrome P450 (CYP) enzymes constitute a superfamily of membrane-bound hemoproteins that are responsible for the metabolism of a wide variety of clinically, physiologically, and toxicologically important compounds. These heme-thiolate monooxygenases play a pivotal role in the detoxification of xenobiotics, participating in the metabolism of many structurally diverge compounds. This short-review is intended to provide a summary on the major roles of CYPs in Phase I xenobiotic metabolism. The manuscript is focused on eight main topics that include the most relevant aspects of past and current CYP research. Initially, (I) a general overview of the main aspects of absorption, distribution, metabolism, and excretion (ADME) of xenobiotics are presented. This is followed by (II) a background overview on major achievements in the past of the CYP research field. (III) Classification and nomenclature of CYPs is briefly reviewed, followed by (IV) a summary description on CYP's location and function in mammals. Subsequently, (V) the physiological relevance of CYP as the cornerstone of Phase I xenobiotic metabolism is highlighted, followed by (VI) reviewing both genetic determinants and (VI) nongenetic factors in CYP function and activity. The last topic of the review (VIII) is focused on the current challenges of the CYP research field.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.R.); (M.K.)
| | | | | |
Collapse
|
13
|
Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase. Nat Commun 2021; 12:2260. [PMID: 33859207 PMCID: PMC8050233 DOI: 10.1038/s41467-021-22562-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Metabolic control is mediated by the dynamic assemblies and function of multiple redox enzymes. A key element in these assemblies, the P450 oxidoreductase (POR), donates electrons and selectively activates numerous (>50 in humans and >300 in plants) cytochromes P450 (CYPs) controlling metabolism of drugs, steroids and xenobiotics in humans and natural product biosynthesis in plants. The mechanisms underlying POR-mediated CYP metabolism remain poorly understood and to date no ligand binding has been described to regulate the specificity of POR. Here, using a combination of computational modeling and functional assays, we identify ligands that dock on POR and bias its specificity towards CYP redox partners, across mammal and plant kingdom. Single molecule FRET studies reveal ligand binding to alter POR conformational sampling, which results in biased activation of metabolic cascades in whole cell assays. We propose the model of biased metabolism, a mechanism akin to biased signaling of GPCRs, where ligand binding on POR stabilizes different conformational states that are linked to distinct metabolic outcomes. Biased metabolism may allow designing pathway-specific therapeutics or personalized food suppressing undesired, disease-related, metabolic pathways.
Collapse
|
14
|
Hubbard PA, Xia C, Shen AL, Kim JJP. Structural and kinetic investigations of the carboxy terminus of NADPH-cytochrome P450 oxidoreductase. Arch Biochem Biophys 2021; 701:108792. [PMID: 33556357 PMCID: PMC8020834 DOI: 10.1016/j.abb.2021.108792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
The influence of the side chains and positioning of the carboxy-terminal residues of NADPH-cytochrome P450 oxidoreductase (CYPOR) on catalytic activity, structure of the carboxy terminus, and interaction with cofactors has been investigated. A tandem deletion of residues Asp675 and Val676, that was expected to shift the position of the functionally important Trp677, resulted in higher cytochrome c reductase activity than that expected from previous studies on the importance of Asp675 and Trp677 in catalysis. Crystallographic determination of the structure of this variant revealed two conformations of the carboxy terminus. In one conformation (Mol A), the last α-helix is partially unwound, resulting in repositioning of all subsequent residues in β-strand 21, from Arg671 to Leu674 (corresponding to Ser673 and Val676 in the wild type structure). This results in the two C-terminal residues, Trp677 and Ser678, being maintained in their wild type positions, with the indole ring of Trp677 stacked against the isoalloxazine ring of FAD as seen in the wild type structure, and Ser673 occupying a similar position to the catalytic residue, Asp675. The other, more disordered conformation is a mixture of the Mol A conformation and one in which the last α-helix is not unwound and the nicotinamide ring is in one of two conformations, out towards the protein surface as observed in the wild type structure (1AMO), or stacked against the flavin ring, similar to that seen in the W677X structure that lacks Trp677 and Ser678 (1JA0). Further kinetic analysis on additional variants showed deletion or substitution of alanine or glycine for Trp677 in conjunction with deletion of Ser678 produced alterations in interactions of CYPOR with NADP+, 2'5'-ADP, and 2'-AMP, as well as the pH dependence of cytochrome c reductase activity. We postulate that deletion of bulky residues at the carboxy terminus permits increased mobility leading to decreased affinity for the 2'5'-ADP and 2'-AMP moieties of NADP+ and subsequent domain movement.
Collapse
Affiliation(s)
- Paul A Hubbard
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Anna L Shen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
15
|
Esteves F, Urban P, Rueff J, Truan G, Kranendonk M. Interaction Modes of Microsomal Cytochrome P450s with Its Reductase and the Role of Substrate Binding. Int J Mol Sci 2020; 21:E6669. [PMID: 32933097 PMCID: PMC7555755 DOI: 10.3390/ijms21186669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is degenerated. Recently, we demonstrated that specific CPR mutations in the FMN-domain (FD) may induce a gain in activity for a specific CYP isoform. In the current report, we confirm the CYP isoform dependence of CPR's degenerated binding by demonstrating that the effect of four of the formerly studied FD mutants are indeed exclusive of a specific CYP isoform, as verified by cytochrome c inhibition studies. Moreover, the nature of CYP's substrate seems to have a modulating role in the CPR:CYP interaction. In silico molecular dynamics simulations of the FD evidence that mutations induces very subtle structural alterations, influencing the characteristics of residues formerly implicated in the CPR:CYP interaction or in positioning of the FMN moiety. CPR seems therefore to be able to form effective interaction complexes with its structural diverse partners via a combination of specific structural features of the FD, which are functional in a CYP isoform dependent manner, and dependent on the substrate bound.
Collapse
Affiliation(s)
- Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - José Rueff
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, CEDEX 04, 31077 Toulouse, France; (P.U.); (G.T.)
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| |
Collapse
|
16
|
Insight into the structural and functional analysis of the impact of missense mutation on cytochrome P450 oxidoreductase. J Mol Graph Model 2020; 100:107708. [PMID: 32805558 DOI: 10.1016/j.jmgm.2020.107708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is a steroidogenic and drug-metabolizing enzyme. It helps in the NADPH dependent transfer of electrons to cytochrome P450 (CYP) enzymes for their biological activity. In this study, we employed integrative computational approaches to decipher the impact of proline to leucine missense mutation at position 384 (P384L) in the connecting/hinge domain region which is essential for the catalytic activity of POR. Analysis of protein stability using DUET, MUpro, CUPSAT, I-Mutant2.0, iStable and SAAFEC servers predicted that mutation might alter the structural stability of POR. The significant conformational changes induced by the mutation to the POR structure were analyzed by long-range molecular dynamics simulation. The results revealed that missense mutation decreased the conformational stability of POR as compared to wild type (WT). The PCA based FEL analysis described the mutant-specific conformational alterations and dominant motions essential for the biological activity of POR. The LIGPLOT interaction analysis showed the different binding architecture of FMN, FAD, and NADPH as a result of mutation. The increased number of hydrogen bonds in the FEL conformation of WT proved the strong binding of cofactors in the binding pocket as compared to the mutant. The porcupine plot analysis associated with cross-correlation analysis depicted the high-intensity flexible motion exhibited by functionally important FAD and NADPH binding domain regions. The computational findings unravel the impact of mutation at the structural level, which could be helpful in understanding the molecular mechanism of drug metabolism.
Collapse
|
17
|
Clinical and genetic analysis of cytochrome P450 oxidoreductase (POR) deficiency in a female and the analysis of a novel POR intron mutation causing alternative mRNA splicing : Overall analysis of a female with POR deficiency. J Assist Reprod Genet 2020; 37:2503-2511. [PMID: 32725309 DOI: 10.1007/s10815-020-01899-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To characterize the clinical features of a female with P450 oxidoreductase (POR) deficiency and to investigate the underlying mechanisms of POR inactivation. METHODS The proband was a 35-year-old woman with primary infertility and menstrual irregularity. The reproductive endocrine profile was evaluated. DNA sequencing was conducted for the identification of POR gene mutation. RT-PCR was performed to confirm the impact of the mutation on POR mRNA. A molecular model was built for the structural analysis of mutant POR protein. RESULTS The evaluation of reproductive endocrine profile revealed elevation of serum follicle-stimulating hormone (11.48 mIU/ml), progesterone (11.00 ng/ml), 17α-hydroxyprogesterone (24.24 nmol/l), dehydroepiandrosterone (6300 nmol/l), and androstenedione (3.89 nmol/l) and decreased estradiol (36.02 pg/ml). Sequencing of the POR gene showed the female was a compound heterozygote of the paternal P399_E401 deletion and a novel maternal IVS14-1G>C mutation. Functional analysis revealed IVS14-1G>C mutation caused alternative splicing of POR mRNA, with the loss of 12 nucleotides in exon 15 (c.1898_1909delGTCTACGTCCAG). Also, the resulting mutant POR protein had a V603_Q606 deletion, which inactivated the nucleotide-binding domain of NADPH in POR protein (K602_Q606). CONCLUSION The mutation IVS14-1G>C of the POR gene could cause alternative splicing of POR mRNA and dysfunction of the resulting POR protein. Under proper IVF strategy with glucocorticoid therapy and endometrial preparation, females with mild POR deficiency still have the opportunity to have a live birth.
Collapse
|
18
|
Jeffreys LN, Pacholarz KJ, Johannissen LO, Girvan HM, Barran PE, Voice MW, Munro AW. Characterization of the structure and interactions of P450 BM3 using hybrid mass spectrometry approaches. J Biol Chem 2020; 295:7595-7607. [PMID: 32303637 PMCID: PMC7261786 DOI: 10.1074/jbc.ra119.011630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The cytochrome P450 monooxygenase P450 BM3 (BM3) is a biotechnologically important and versatile enzyme capable of producing important compounds such as the medical drugs pravastatin and artemether, and the steroid hormone testosterone. BM3 is a natural fusion enzyme comprising two major domains: a cytochrome P450 (heme-binding) catalytic domain and a NADPH-cytochrome P450 reductase (CPR) domain containing FAD and FMN cofactors in distinct domains of the CPR. A crystal structure of full-length BM3 enzyme is not available in its monomeric or catalytically active dimeric state. In this study, we provide detailed insights into the protein-protein interactions that occur between domains in the BM3 enzyme and characterize molecular interactions within the BM3 dimer by using several hybrid mass spectrometry (MS) techniques, namely native ion mobility MS (IM-MS), collision-induced unfolding (CIU), and hydrogen-deuterium exchange MS (HDX-MS). These methods enable us to probe the structure, stoichiometry, and domain interactions in the ∼240 kDa BM3 dimeric complex. We obtained high-sequence coverage (88–99%) in the HDX-MS experiments for full-length BM3 and its component domains in both the ligand-free and ligand-bound states. We identified important protein interaction sites, in addition to sites corresponding to heme-CPR domain interactions at the dimeric interface. These findings bring us closer to understanding the structure and catalytic mechanism of P450 BM3.
Collapse
Affiliation(s)
- Laura N Jeffreys
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kamila J Pacholarz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Linus O Johannissen
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Hazel M Girvan
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita E Barran
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael W Voice
- Cypex Ltd., 6 Tom McDonald Avenue, Dundee, DD2 1NH, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, School of Natural Sciences, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom .,Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
19
|
Esteves F, Campelo D, Gomes BC, Urban P, Bozonnet S, Lautier T, Rueff J, Truan G, Kranendonk M. The Role of the FMN-Domain of Human Cytochrome P450 Oxidoreductase in Its Promiscuous Interactions With Structurally Diverse Redox Partners. Front Pharmacol 2020; 11:299. [PMID: 32256365 PMCID: PMC7094780 DOI: 10.3389/fphar.2020.00299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
NADPH cytochrome P450 oxidoreductase (CPR) is the obligatory electron supplier that sustains the activity of microsomal cytochrome P450 (CYP) enzymes. The variant nature of the isoform-specific proximal interface of microsomal CYPs indicates that CPR is capable of multiple degenerated interactions with CYPs for electron transfer, through different binding mechanisms, and which are still not well-understood. Recently, we showed that CPR dynamics allows formation of open conformations that can be sampled by its structurally diverse redox partners in a CYP-isoform dependent manner. To further investigate the role of the CPR FMN-domain in effective binding of CPR to its diverse acceptors and to clarify the underlying molecular mechanisms, five different CPR-FMN-domain random mutant libraries were created. These libraries were screened for mutants with increased activity when combined with specific CYP-isoforms. Seven CPR-FMN-domain mutants were identified, supporting a gain in activity for CYP1A2 (P117H, G144C, A229T), 2A6 (P117L/L125V, G175D, H183Y), or 3A4 (N151D). Effects were evaluated using extended enzyme kinetic analysis, cytochrome b 5 competition, ionic strength effect on CYP activity, and structural analysis. Mutated residues were located either in or adjacent to several acidic amino acid stretches - formerly indicated to be involved in CPR:CYP interactions - or close to two tyrosine residues suggested to be involved in FMN binding. Several of the identified positions co-localize with mutations found in naturally occurring CPR variants that were previously shown to cause CYP-isoform-dependent effects. The mutations do not seem to significantly alter the geometry of the FMN-domain but are likely to cause very subtle alterations leading to improved interaction with a specific CYP. Overall, these data suggest that CYPs interact with CPR using an isoform specific combination of several binding motifs of the FMN-domain.
Collapse
Affiliation(s)
- Francisco Esteves
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diana Campelo
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Philippe Urban
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Sophie Bozonnet
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Thomas Lautier
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - José Rueff
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gilles Truan
- Centre National de la Recherche, Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliqu es de Toulouse, Toulouse Biotechnology Institute, Universit de Toulouse, Toulouse, France
| | - Michel Kranendonk
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Huma Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis. Sci Rep 2019; 9:20088. [PMID: 31882753 PMCID: PMC6934812 DOI: 10.1038/s41598-019-56516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Cytochrome P450 reductases (CPRs) are diflavin oxidoreductases that supply electrons to type II cytochrome P450 monooxygenases (CYPs). In addition, it can also reduce other proteins and molecules, including cytochrome c, ferricyanide, and different drugs. Although various CPRs have been functionally and structurally characterized, the overall mechanism and its interaction with different redox acceptors remain elusive. One of the main problems regarding electron transfer between CPRs and CYPs is the so-called “uncoupling”, whereby NAD(P)H derived electrons are lost due to the reduced intermediates’ (FAD and FMN of CPR) interaction with molecular oxygen. Additionally, the decay of the iron-oxygen complex of the CYP can also contribute to loss of reducing equivalents during an unproductive reaction cycle. This phenomenon generates reactive oxygen species (ROS), leading to an inefficient reaction. Here, we present the study of the CPR from Candida tropicalis (CtCPR) lacking the hydrophobic N-terminal part (Δ2–22). The enzyme supports the reduction of cytochrome c and ferricyanide, with an estimated 30% uncoupling during the reactions with cytochrome c. The ROS produced was not influenced by different physicochemical conditions (ionic strength, pH, temperature). The X-ray structures of the enzyme were solved with and without its cofactor, NADPH. Both CtCPR structures exhibited the closed conformation. Comparison with the different solved structures revealed an intricate ionic network responsible for the regulation of the open/closed movement of CtCPR.
Collapse
|
21
|
Ebrecht AC, van der Bergh N, Harrison STL, Smit MS, Sewell BT, Opperman DJ. Biochemical and structural insights into the cytochrome P450 reductase from Candida tropicalis. Sci Rep 2019; 9:20088. [PMID: 31882753 DOI: 10.1101/711317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/04/2019] [Indexed: 05/28/2023] Open
Abstract
Cytochrome P450 reductases (CPRs) are diflavin oxidoreductases that supply electrons to type II cytochrome P450 monooxygenases (CYPs). In addition, it can also reduce other proteins and molecules, including cytochrome c, ferricyanide, and different drugs. Although various CPRs have been functionally and structurally characterized, the overall mechanism and its interaction with different redox acceptors remain elusive. One of the main problems regarding electron transfer between CPRs and CYPs is the so-called "uncoupling", whereby NAD(P)H derived electrons are lost due to the reduced intermediates' (FAD and FMN of CPR) interaction with molecular oxygen. Additionally, the decay of the iron-oxygen complex of the CYP can also contribute to loss of reducing equivalents during an unproductive reaction cycle. This phenomenon generates reactive oxygen species (ROS), leading to an inefficient reaction. Here, we present the study of the CPR from Candida tropicalis (CtCPR) lacking the hydrophobic N-terminal part (Δ2-22). The enzyme supports the reduction of cytochrome c and ferricyanide, with an estimated 30% uncoupling during the reactions with cytochrome c. The ROS produced was not influenced by different physicochemical conditions (ionic strength, pH, temperature). The X-ray structures of the enzyme were solved with and without its cofactor, NADPH. Both CtCPR structures exhibited the closed conformation. Comparison with the different solved structures revealed an intricate ionic network responsible for the regulation of the open/closed movement of CtCPR.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Naadia van der Bergh
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research (CeBER), Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - Martha S Smit
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa
| | - B Trevor Sewell
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7700, South Africa.
| | - Diederik J Opperman
- Department of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein, 9301, South Africa.
- South African DST-NRF Centre of Excellence in Catalysis (c*Change), University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa.
| |
Collapse
|
22
|
A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Biochimie 2019; 162:156-166. [DOI: 10.1016/j.biochi.2019.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
|
23
|
Coupling of Redox and Structural States in Cytochrome P450 Reductase Studied by Molecular Dynamics Simulation. Sci Rep 2019; 9:9341. [PMID: 31249341 PMCID: PMC6597723 DOI: 10.1038/s41598-019-45690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023] Open
Abstract
Cytochrome P450 reductase (CPR) is the key protein that regulates the electron transfer from NADPH to various heme-containing monooxygenases. CPR has two flavin-containing domains: one with flavin adenine dinucleotide (FAD), called FAD domain, and the other with flavin mononucleotide (FMN), called FMN domain. It is considered that the electron transfer occurs via FAD and FMN (NADPH → FAD → FMN → monooxygenase) and is regulated by an interdomain open-close motion. It is generally thought that the structural state is coupled with the redox state, which, however, has not yet been firmly established. In this report, we studied the coupling of the redox and the structural states by full-scale molecular dynamics (MD) simulation of CPR (total 86.4 μs). Our MD result showed that while CPR predominantly adopts the closed state both in the oxidized and reduced states, it exhibits a tendency to open in the reduced state. We also found a correlation between the FAD-FMN distance and the predicted FMN-monooxygenase distance, which is embedded in the equilibrium thermal fluctuation of CPR. Based on these results, a physical mechanism for the electron transfer by CPR is discussed.
Collapse
|
24
|
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci 2019; 28:928-940. [PMID: 30861250 DOI: 10.1002/pro.3603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane-bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2-CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2-CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid-solubilized CYP2J2-CPR system by increasing the Km and decreasing the Vmax , and effect that is size-dependent. Crowding also affects the CYP2J2-CPR-ND system by decreasing both the Km and Vmax for Dextran-based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2-CPR membrane protein system.
Collapse
Affiliation(s)
- Hannah C Huff
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Demetri Maroutsos
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Aditi Das
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, Division of Nutritional Science, Neuroscience Program, and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
25
|
Hedison TM, Scrutton NS. Tripping the light fantastic in membrane redox biology: linking dynamic structures to function in ER electron transfer chains. FEBS J 2019; 286:2004-2017. [PMID: 30657259 PMCID: PMC6563164 DOI: 10.1111/febs.14757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/16/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
How the dynamics of proteins assist catalysis is a contemporary issue in enzymology. In particular, this holds true for membrane‐bound enzymes, where multiple structural, spectroscopic and biochemical approaches are needed to build up a comprehensive picture of how dynamics influence enzyme reaction cycles. Of note are the recent studies of cytochrome P450 reductases (CPR)–P450 (CYP) endoplasmic reticulum redox chains, showing the relationship between dynamics and electron flow through flavin and haem redox centres and the impact this has on monooxygenation chemistry. These studies have led to deeper understanding of mechanisms of electron flow, including the timing and control of electron delivery to protein‐bound cofactors needed to facilitate CYP‐catalysed reactions. Individual and multiple component systems have been used to capture biochemical behaviour and these have led to the emergence of more integrated models of catalysis. Crucially, the effects of membrane environment and composition on reaction cycle chemistry have also been probed, including effects on coenzyme binding/release, thermodynamic control of electron transfer, conformational coupling between partner proteins and vectorial versus ‘off pathway’ electron flow. Here, we review these studies and discuss evidence for the emergence of dynamic structural models of electron flow along human microsomal CPR–P450 redox chains.
Collapse
Affiliation(s)
- Tobias M Hedison
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, UK
| |
Collapse
|
26
|
Quast RB, Fatemi F, Kranendonk M, Margeat E, Truan G. Accurate Determination of Human CPR Conformational Equilibrium by smFRET Using Dual Orthogonal Noncanonical Amino Acid Labeling. Chembiochem 2019; 20:659-666. [DOI: 10.1002/cbic.201800607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Robert B. Quast
- LISBP; Université de Toulouse; CNRS; INRA; INSA; 135 Avenue de Rangueil 31077 Toulouse France
| | - Fataneh Fatemi
- Protein Research Center; Shahid Beheshti University, G.C.; Evin 1983969411 Tehran Iran
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics); Genetics, Oncology and Human Toxicology; NOVA Medical School; Faculdade de Ciências Médicas; Universidade Nova de Lisboa; Rua Câmara Pestana, no. 6 1150-082 Lisboa Portugal
| | - Emmanuel Margeat
- BS; CNRS; CINSERM; Université de Montpellier; Montpellier France
| | - Gilles Truan
- LISBP; Université de Toulouse; CNRS; INRA; INSA; 135 Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|
27
|
The Catalytic Mechanism of Steroidogenic Cytochromes P450 from All-Atom Simulations: Entwinement with Membrane Environment, Redox Partners, and Post-Transcriptional Regulation. Catalysts 2019. [DOI: 10.3390/catal9010081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cytochromes P450 (CYP450s) promote the biosynthesis of steroid hormones with major impact on the onset of diseases such as breast and prostate cancers. By merging distinct functions into the same catalytic scaffold, steroidogenic CYP450s enhance complex chemical transformations with extreme efficiency and selectivity. Mammalian CYP450s and their redox partners are membrane-anchored proteins, dynamically associating to form functional machineries. Mounting evidence signifies that environmental factors are strictly intertwined with CYP450s catalysis. Atomic-level simulations have the potential to provide insights into the catalytic mechanism of steroidogenic CYP450s and on its regulation by environmental factors, furnishing information often inaccessible to experimental means. In this review, after an introduction of computational methods commonly employed to tackle these systems, we report the current knowledge on three steroidogenic CYP450s—CYP11A1, CYP17A1, and CYP19A1—endowed with multiple catalytic functions and critically involved in cancer onset. In particular, besides discussing their catalytic mechanisms, we highlight how the membrane environment contributes to (i) regulate ligand channeling through these enzymes, (ii) modulate their interactions with specific protein partners, (iii) mediate post-transcriptional regulation induced by phosphorylation. The results presented set the basis for developing novel therapeutic strategies aimed at fighting diseases originating from steroid metabolism dysfunction.
Collapse
|
28
|
Campelo D, Esteves F, Brito Palma B, Costa Gomes B, Rueff J, Lautier T, Urban P, Truan G, Kranendonk M. Probing the Role of the Hinge Segment of Cytochrome P450 Oxidoreductase in the Interaction with Cytochrome P450. Int J Mol Sci 2018; 19:ijms19123914. [PMID: 30563285 PMCID: PMC6321550 DOI: 10.3390/ijms19123914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is the unique redox partner of microsomal cytochrome P450s (CYPs). CPR exists in a conformational equilibrium between open and closed conformations throughout its electron transfer (ET) function. Previously, we have shown that electrostatic and flexibility properties of the hinge segment of CPR are critical for ET. Three mutants of human CPR were studied (S243P, I245P and R246A) and combined with representative human drug-metabolizing CYPs (isoforms 1A2, 2A6 and 3A4). To probe the effect of these hinge mutations different experimental approaches were employed: CYP bioactivation capacity of pre-carcinogens, enzyme kinetic analysis, and effect of the ionic strength and cytochrome b5 (CYB5) on CYP activity. The hinge mutations influenced the bioactivation of pre-carcinogens, which seemed CYP isoform and substrate dependent. The deviations of Michaelis-Menten kinetic parameters uncovered tend to confirm this discrepancy, which was confirmed by CYP and hinge mutant specific salt/activity profiles. CPR/CYB5 competition experiments indicated a less important role of affinity in CPR/CYP interaction. Overall, our data suggest that the highly flexible hinge of CPR is responsible for the existence of a conformational aggregate of different open CPR conformers enabling ET-interaction with structural varied redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bernardo Brito Palma
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - José Rueff
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| |
Collapse
|
29
|
Doyle J, Glass KC, Racz M, Teng J. Student-directed interactive animation for learning cytochrome P450-mediated drug metabolism. CURRENTS IN PHARMACY TEACHING & LEARNING 2018; 10:1565-1573. [PMID: 30527821 DOI: 10.1016/j.cptl.2018.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/06/2018] [Accepted: 08/31/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION In this study, we introduced a student self-directed interactive animation tool created to enhance student understanding of cytochrome P450 (CYP450) mediated drug metabolism. METHODS The online learning tool was constructed in HTML5 computer code. It was implemented over four years in a second year pharmacy degree course where CYP450 metabolism was taught. Assessment was by comparing test scores of students using the learning tool with a previous class that did not and through survey data from the student users. RESULTS Use of the Cyber-CYP learning tool enhanced test performance on CYP450 metabolism-related questions in all years tested. Survey responses indicated that the learning tool was easy to use and facilitated student learning of CYP450-mediated drug metabolism. CONCLUSIONS This study has shown that complex and dynamic processes, such as CYP450 metabolism, can be more effectively communicated using student-centered, self-paced and interactive animations.
Collapse
Affiliation(s)
- James Doyle
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States.
| | - Karen C Glass
- Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT 05446, United States.
| | - Michael Racz
- Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States.
| | - Judy Teng
- Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|
30
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
31
|
Prade E, Mahajan M, Im S, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elke Prade
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Mukesh Mahajan
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Sang‐Choul Im
- Department of Anesthesiology University of Michigan and VA Medical Center Ann Arbor MI 48105-1055 USA
| | - Meng Zhang
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Katherine A. Gentry
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | | | - Lucy Waskell
- Department of Anesthesiology University of Michigan and VA Medical Center Ann Arbor MI 48105-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| |
Collapse
|
32
|
Prade E, Mahajan M, Im SC, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew Chem Int Ed Engl 2018; 57:8458-8462. [PMID: 29722926 DOI: 10.1002/anie.201802210] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Structural interactions that enable electron transfer to cytochrome-P450 (CYP450) from its redox partner CYP450-reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane-bound functional complex to reveal interactions between the full-length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome-b5 (cyt-b5 ), Arg 125 on the C-helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein-protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.
Collapse
Affiliation(s)
- Elke Prade
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mukesh Mahajan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Meng Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Katherine A Gentry
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | | | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
33
|
Direct observation of multiple conformational states in Cytochrome P450 oxidoreductase and their modulation by membrane environment and ionic strength. Sci Rep 2018; 8:6817. [PMID: 29717147 PMCID: PMC5931563 DOI: 10.1038/s41598-018-24922-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is the primary electron donor in eukaryotic cytochrome P450 (CYP) containing systems. A wealth of ensemble biophysical studies of Cytochrome P450 oxidoreductase (POR) has reported a binary model of the conformational equilibrium directing its catalytic efficiency and biomolecular recognition. In this study, full length POR from the crop plant Sorghum bicolor was site-specifically labeled with Cy3 (donor) and Cy5 (acceptor) fluorophores and reconstituted in nanodiscs. Our single molecule fluorescence resonance energy transfer (smFRET) burst analyses of POR allowed the direct observation and quantification of at least three dominant conformational sub-populations, their distribution and occupancies. Moreover, the state occupancies were remodeled significantly by ionic strength and the nature of reconstitution environment, i.e. phospholipid bilayers (nanodiscs) composed of different lipid head group charges vs. detergent micelles. The existence of conformational heterogeneity in POR may mediate selective activation of multiple downstream electron acceptors and association in complexes in the ER membrane.
Collapse
|
34
|
Bodenheimer AM, O'Dell WB, Oliver RC, Qian S, Stanley CB, Meilleur F. Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms. Biochim Biophys Acta Gen Subj 2018; 1862:1031-1039. [DOI: 10.1016/j.bbagen.2018.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 01/08/2023]
|
35
|
Freeman SL, Martel A, Devos JM, Basran J, Raven EL, Roberts GCK. Solution structure of the cytochrome P450 reductase-cytochrome c complex determined by neutron scattering. J Biol Chem 2018; 293:5210-5219. [PMID: 29475945 PMCID: PMC5892573 DOI: 10.1074/jbc.ra118.001941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/20/2018] [Indexed: 01/22/2023] Open
Abstract
Electron transfer in all living organisms critically relies on formation of complexes between the proteins involved. The function of these complexes requires specificity of the interaction to allow for selective electron transfer but also a fast turnover of the complex, and they are therefore often transient in nature, making them challenging to study. Here, using small-angle neutron scattering with contrast matching with deuterated protein, we report the solution structure of the electron transfer complex between cytochrome P450 reductase (CPR) and its electron transfer partner cytochrome c This is the first reported solution structure of a complex between CPR and an electron transfer partner. The structure shows that the interprotein interface includes residues from both the FMN- and FAD-binding domains of CPR. In addition, the FMN is close to the heme of cytochrome c but distant from the FAD, indicating that domain movement is required between the electron transfer steps in the catalytic cycle of CPR. In summary, our results reveal key details of the CPR catalytic mechanism, including interactions of two domains of the reductase with cytochrome c and motions of these domains relative to one another. These findings shed light on interprotein electron transfer in this system and illustrate a powerful approach for studying solution structures of protein-protein complexes.
Collapse
Affiliation(s)
- Samuel L Freeman
- From the Departments of Chemistry and.,Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and
| | - Anne Martel
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Juliette M Devos
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Jaswir Basran
- From the Departments of Chemistry and.,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and.,Molecular and Cell Biology and
| | - Emma L Raven
- From the Departments of Chemistry and .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and
| | - Gordon C K Roberts
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom and .,Molecular and Cell Biology and
| |
Collapse
|
36
|
Xia C, Rwere F, Im S, Shen AL, Waskell L, Kim JJP. Structural and Kinetic Studies of Asp632 Mutants and Fully Reduced NADPH-Cytochrome P450 Oxidoreductase Define the Role of Asp632 Loop Dynamics in the Control of NADPH Binding and Hydride Transfer. Biochemistry 2018; 57:945-962. [PMID: 29308883 PMCID: PMC5967631 DOI: 10.1021/acs.biochem.7b01102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Conformational changes in NADPH-cytochrome P450 oxidoreductase (CYPOR) associated with electron transfer from NADPH to electron acceptors via FAD and FMN have been investigated via structural studies of the four-electron-reduced NADP+-bound enzyme and kinetic and structural studies of mutants that affect the conformation of the mobile Gly631-Asn635 loop (Asp632 loop). The structure of four-electron-reduced, NADP+-bound wild type CYPOR shows the plane of the nicotinamide ring positioned perpendicular to the FAD isoalloxazine with its carboxamide group forming H-bonds with N1 of the flavin ring and the Thr535 hydroxyl group. In the reduced enzyme, the C8-C8 atoms of the two flavin rings are ∼1 Å closer than in the fully oxidized and one-electron-reduced structures, which suggests that flavin reduction facilitates interflavin electron transfer. Structural and kinetic studies of mutants Asp632Ala, Asp632Phe, Asp632Asn, and Asp632Glu demonstrate that the carboxyl group of Asp632 is important for stabilizing the Asp632 loop in a retracted position that is required for the binding of the NADPH ribityl-nicotinamide in a hydride-transfer-competent conformation. Structures of the mutants and reduced wild type CYPOR permit us to identify a possible pathway for NADP(H) binding to and release from CYPOR. Asp632 mutants unable to form stable H-bonds with the backbone amides of Arg634, Asn635, and Met636 exhibit decreased catalytic activity and severely impaired hydride transfer from NADPH to FAD, but leave interflavin electron transfer intact. Intriguingly, the Arg634Ala mutation slightly increases the cytochrome P450 2B4 activity. We propose that Asp632 loop movement, in addition to facilitating NADP(H) binding and release, participates in domain movements modulating interflavin electron transfer.
Collapse
Affiliation(s)
- Chuanwu Xia
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Freeborn Rwere
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Sangchoul Im
- University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Anna L. Shen
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Lucy Waskell
- University of Michigan Medical School, Ann Arbor, Michigan 48105,Corresponding Author: Correspondence should be addressed to Lucy Waskell, M.D., Ph.D., Department of Anesthesiology, University of Michigan, Mail Stop 151, 2215 Fuller Rd., Ann Arbor, MI 48109-0112. . OR Jung Ja Kim, Ph.D., Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226.
| | - Jung-Ja P. Kim
- Medical College of Wisconsin, Milwaukee, Wisconsin 53226,Corresponding Author: Correspondence should be addressed to Lucy Waskell, M.D., Ph.D., Department of Anesthesiology, University of Michigan, Mail Stop 151, 2215 Fuller Rd., Ann Arbor, MI 48109-0112. . OR Jung Ja Kim, Ph.D., Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226.
| |
Collapse
|
37
|
Harnessing the Combined Power of SAXS and NMR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:171-180. [DOI: 10.1007/978-981-13-2200-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
38
|
Campelo D, Lautier T, Urban P, Esteves F, Bozonnet S, Truan G, Kranendonk M. The Hinge Segment of Human NADPH-Cytochrome P450 Reductase in Conformational Switching: The Critical Role of Ionic Strength. Front Pharmacol 2017; 8:755. [PMID: 29163152 PMCID: PMC5670117 DOI: 10.3389/fphar.2017.00755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is a redox partner of microsomal cytochromes P450 and is a prototype of the diflavin reductase family. CPR contains 3 distinct functional domains: a FMN-binding domain (acceptor reduction), a linker (hinge), and a connecting/FAD domain (NADPH oxidation). It has been demonstrated that the mechanism of CPR exhibits an important step in which it switches from a compact, closed conformation (locked state) to an ensemble of open conformations (unlocked state), the latter enabling electron transfer to redox partners. The conformational equilibrium between the locked and unlocked states has been shown to be highly dependent on ionic strength, reinforcing the hypothesis of the presence of critical salt interactions at the interface between the FMN and connecting FAD domains. Here we show that specific residues of the hinge segment are important in the control of the conformational equilibrium of CPR. We constructed six single mutants and two double mutants of the human CPR, targeting residues G240, S243, I245 and R246 of the hinge segment, with the aim of modifying the flexibility or the potential ionic interactions of the hinge segment. We measured the reduction of cytochrome c at various salt concentrations of these 8 mutants, either in the soluble or membrane-bound form of human CPR. All mutants were found capable of reducing cytochrome c yet with different efficiency and their maximal rates of cytochrome c reduction were shifted to lower salt concentration. In particular, residue R246 seems to play a key role in a salt bridge network present at the interface of the hinge and the connecting domain. Interestingly, the effects of mutations, although similar, demonstrated specific differences when present in the soluble or membrane-bound context. Our results demonstrate that the electrostatic and flexibility properties of the hinge segment are critical for electron transfer from CPR to its redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
39
|
Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet Genomics 2017; 27:337-346. [DOI: 10.1097/fpc.0000000000000297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Orchestrated Domain Movement in Catalysis by Cytochrome P450 Reductase. Sci Rep 2017; 7:9741. [PMID: 28852004 PMCID: PMC5575293 DOI: 10.1038/s41598-017-09840-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
NADPH-cytochrome P450 reductase is a multi-domain redox enzyme which is a key component of the P450 mono-oxygenase drug-metabolizing system. We report studies of the conformational equilibrium of this enzyme using small-angle neutron scattering, under conditions where we are able to control the redox state of the enzyme precisely. Different redox states have a profound effect on domain orientation in the enzyme and we analyse the data in terms of a two-state equilibrium between compact and extended conformations. The effects of ionic strength show that the presence of a greater proportion of the extended form leads to an enhanced ability to transfer electrons to cytochrome c. Domain motion is intrinsically linked to the functionality of the enzyme, and we can define the position of the conformational equilibrium for individual steps in the catalytic cycle.
Collapse
|
41
|
Barnaba C, Martinez MJ, Taylor E, Barden AO, Brozik JA. Single-Protein Tracking Reveals That NADPH Mediates the Insertion of Cytochrome P450 Reductase into a Biomimetic of the Endoplasmic Reticulum. J Am Chem Soc 2017; 139:5420-5430. [PMID: 28347139 DOI: 10.1021/jacs.7b00663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater. All experiments were performed in a solid-supported cushioned lipid bilayer that closely matched the chemical composition of the human endoplasmic reticulum and served as an ER biomimetic. The phase characteristics and fluidity of the ER biomimetic was characterized with fluorescence micrographs and temperature-dependent fluorescence recovery after photobleaching. The interactions of CPR with the ER biomimetic were directly observed by tracking single CPR molecules using time-lapse single-molecule fluorescence imaging and subsequent analysis of tracks. These studies revealed dramatic changes in diffusion coefficient and the degree of partitioning of CPR as a function of NADPH concentration.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Michael J Martinez
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Adam O Barden
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
42
|
Bodenheimer AM, O'Dell WB, Stanley CB, Meilleur F. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering. Carbohydr Res 2017; 448:200-204. [PMID: 28291519 DOI: 10.1016/j.carres.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/12/2023]
Abstract
Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.
Collapse
Affiliation(s)
- Annette M Bodenheimer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - William B O'Dell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Christopher B Stanley
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
43
|
Niu G, Zhao S, Wang L, Dong W, Liu L, He Y. Structure of the
Arabidopsis thaliana
NADPH
‐cytochrome P450 reductase 2 (ATR2) provides insight into its function. FEBS J 2017; 284:754-765. [DOI: 10.1111/febs.14017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Guoqi Niu
- College of Life Sciences Capital Normal University Beijing China
| | - Shun Zhao
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lei Wang
- College of Life Sciences Capital Normal University Beijing China
| | - Wei Dong
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Lin Liu
- Key Laboratory of Photobiology CAS Center for Excellence in Molecular Plant Sciences Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yikun He
- College of Life Sciences Capital Normal University Beijing China
| |
Collapse
|
44
|
Flück CE, Pandey AV. Impact on CYP19A1 activity by mutations in NADPH cytochrome P450 oxidoreductase. J Steroid Biochem Mol Biol 2017; 165:64-70. [PMID: 27032764 DOI: 10.1016/j.jsbmb.2016.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/23/2022]
Abstract
Cytochrome P450 aromatase (CYP19A1), in human placenta metabolizes androgens to estrogens and uses reduced nicotinamide adenine dinucleotide phosphate through cytochrome P450 oxidoreductase (POR) for the energy requirements of its metabolic activities. Mutations in the human POR lead to congenital adrenal hyperplasia due to loss of activities of several steroid metabolizing enzymatic reactions conducted by the cytochrome P450 proteins located in the endoplasmic reticulum. Effect of POR mutations on different P450 activities depend on individual partner proteins. In this report we have studied the impact of mutations found in the POR on the enzymatic activity of CYP19A1. We expressed wild type as well mutant human POR proteins in bacteria and purified the recombinant proteins, which were then used in an in vitro reconstitution system in combination with CYP19A1 and lipids for enzymatic analysis. We found that several mutations as well as polymorphisms in human POR can cause reduction of CYP19A1 activity. This would affect metabolism of estrogens in people with variations of POR allele. The POR mutants Y181D and R616X were found to have no activity in supporting CYP19A1 reactions. The POR mutations Y607C and delF646 showed a loss of 60-90% activity and two polymorphic forms of POR, R316W and G413S showed similar to WT activity. One POR variant, Q153R had almost double the activity of WT. Loss of CYP19A1 activity may contribute to disordered steroidogenesis in female patients with POR mutations as well as in mothers with POR variants carrying a male child.
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
45
|
Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:104-116. [DOI: 10.1016/j.bbamem.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 01/31/2023]
|
46
|
Kovrigina EA, Pattengale B, Xia C, Galiakhmetov AR, Huang J, Kim JJP, Kovrigin EL. Conformational States of Cytochrome P450 Oxidoreductase Evaluated by Förster Resonance Energy Transfer Using Ultrafast Transient Absorption Spectroscopy. Biochemistry 2016; 55:5973-5976. [PMID: 27741572 DOI: 10.1021/acs.biochem.6b00623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NADPH-cytochrome P450 oxidoreductase (CYPOR) was shown to undergo large conformational rearrangements in its functional cycle. Using a new Förster resonance energy transfer (FRET) approach based on femtosecond transient absorption spectroscopy (TA), we determined the donor-acceptor distance distribution in the reduced and oxidized states of CYPOR. The unmatched time resolution of TA allowed the quantitative assessment of the donor-acceptor FRET, indicating that CYPOR assumes a closed conformation in both reduced and oxidized states in the absence of the redox partner. The described ultrafast TA measurements of FRET with readily available red-infrared fluorescent labels open new opportunities for structural studies in chromophore-rich proteins and their complexes.
Collapse
Affiliation(s)
- Elizaveta A Kovrigina
- Biochemistry Department, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States.,Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Brian Pattengale
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Chuanwu Xia
- Biochemistry Department, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Azamat R Galiakhmetov
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Jung-Ja P Kim
- Biochemistry Department, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Evgenii L Kovrigin
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
47
|
A well-balanced preexisting equilibrium governs electron flux efficiency of a multidomain diflavin reductase. Biophys J 2016; 108:1527-1536. [PMID: 25809265 DOI: 10.1016/j.bpj.2015.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/24/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023] Open
Abstract
Diflavin reductases are bidomain electron transfer proteins in which structural reorientation is necessary to account for the various intramolecular and intermolecular electron transfer steps. Using small-angle x-ray scattering and nuclear magnetic resonance data, we describe the conformational free-energy landscape of the NADPH-cytochrome P450 reductase (CPR), a typical bidomain redox enzyme composed of two covalently-bound flavin domains, under various experimental conditions. The CPR enzyme exists in a salt- and pH-dependent rapid equilibrium between a previously described rigid, locked state and a newly characterized, highly flexible, unlocked state. We further establish that maximal electron flux through CPR is conditioned by adjustable stability of the locked-state domain interface under resting conditions. This is rationalized by a kinetic scheme coupling rapid conformational sampling and slow chemical reaction rates. Regulated domain interface stability associated with fast stochastic domain contacts during the catalytic cycle thus provides, to our knowledge, a new paradigm for improving our understanding of multidomain enzyme function.
Collapse
|
48
|
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences (W.L.M.), University of California, San Francisco, California 94143-0556; and Institute of Molecular Biology Academia Sinica (B.-c.C.), Taipei, 115 Taiwan
| | - Bon-Chu Chung
- Center for Reproductive Sciences (W.L.M.), University of California, San Francisco, California 94143-0556; and Institute of Molecular Biology Academia Sinica (B.-c.C.), Taipei, 115 Taiwan
| |
Collapse
|
49
|
Estrada DF, Laurence JS, Scott EE. Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 2015; 291:3990-4003. [PMID: 26719338 DOI: 10.1074/jbc.m115.677294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
To accomplish key physiological processes ranging from drug metabolism to steroidogenesis, human microsomal cytochrome P450 enzymes require the sequential input of two electrons delivered by the FMN domain of NADPH-cytochrome P450 reductase. Although some human microsomal P450 enzymes can instead accept the second electron from cytochrome b5, for human steroidogenic CYP17A1, the cytochrome P450 reductase FMN domain delivers both electrons, and b5 is an allosteric modulator. The structural basis of these key but poorly understood protein interactions was probed by solution NMR using the catalytically competent soluble domains of each protein. Formation of the CYP17A1·FMN domain complex induced differential line broadening of the NMR signal for each protein. Alterations in the exchange dynamics generally occurred for residues near the surface of the flavin mononucleotide, including 87-90 (loop 1), and for key CYP17A1 active site residues. These interactions were modulated by the identity of the substrate in the buried CYP17A1 active site and by b5. The FMN domain outcompetes b5 for binding to CYP17A1 in the three-component system. These results and comparison with previous NMR studies of the CYP17A1·b5 complex suggest a model of CYP17A1 enzyme regulation.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Jennifer S Laurence
- the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
50
|
Hedison TM, Hay S, Scrutton NS. Real-time analysis of conformational control in electron transfer reactions of human cytochrome P450 reductase with cytochrome c. FEBS J 2015; 282:4357-75. [PMID: 26307151 PMCID: PMC4973710 DOI: 10.1111/febs.13501] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/21/2015] [Accepted: 08/21/2015] [Indexed: 11/27/2022]
Abstract
Protein domain dynamics and electron transfer chemistry are often associated, but real‐time analysis of domain motion in enzyme‐catalysed reactions and the elucidation of mechanistic schemes that relate these motions to the reaction chemistry are major challenges for biological catalysis research. Previously we suggested that reduction of human cytochrome P450 reductase with the reducing coenzyme NADPH is accompanied by major structural re‐orientation of the FMN‐ and FAD‐binding domains through an inferred dynamic cycle of ‘open’ and ‘closed’ conformations of the enzyme (PLoS Biol, 2011, e1001222). However, these studies were restricted to stopped‐flow/FRET analysis of the reductive half‐reaction, and were compromised by fluorescence quenching of the acceptor by the flavin cofactors. Here we have improved the design of the FRET system, by using dye pairs with near‐IR fluorescence, and extended studies on human cytochrome P450 reductase to the oxidative half‐reaction using a double‐mixing stopped‐flow assay, thereby analysing in real‐time conformational dynamics throughout the complete catalytic cycle. We correlate redox changes accompanying the reaction chemistry with protein dynamic changes observed by FRET, and show that redox chemistry drives a major re‐orientation of the protein domains in both the reductive and oxidative half‐reactions. Our studies using the tractable (soluble) surrogate electron acceptor cytochrome c provide a framework for analysing mechanisms of electron transfer in the endoplasmic reticulum between cytochrome P450 reductase and cognate P450 enzymes. More generally, our work emphasizes the importance of protein dynamics in intra‐ and inter‐protein electron transfer, and establishes methodology for real‐time analysis of structural changes throughout the catalytic cycle of complex redox proteins.
Collapse
Affiliation(s)
- Tobias M Hedison
- Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Faculty of Life Sciences, University of Manchester, UK
| |
Collapse
|