1
|
Suzuki A, Yamasaki T, Hasebe R, Horiuchi M. Enhancement of binding avidity by bivalent binding enables PrPSc-specific detection by anti-PrP monoclonal antibody 132. PLoS One 2019; 14:e0217944. [PMID: 31170247 PMCID: PMC6553756 DOI: 10.1371/journal.pone.0217944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/21/2019] [Indexed: 12/05/2022] Open
Abstract
Anti-prion protein (PrP) monoclonal antibody 132, which recognizes mouse PrP amino acids 119–127, enables us to reliably detect abnormal isoform prion protein (PrPSc) in cells or frozen tissue sections by immunofluorescence assay, although treatment with guanidinium salts is a prerequisite. Despite the benefit of this mAb, the mechanism of PrPSc-specific detection remains unclear. Therefore, to address this mechanism, we analyzed the reactivities of mono- and bivalent mAb 132 to recombinant mouse PrP (rMoPrP) by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). In ELISA, binding of the monovalent form was significantly weaker than that of the bivalent form, indicating that bivalent binding confers a higher binding stability to mAb 132. Compared with other anti-PrP mAbs tested, the reactivity of bivalent mAb 132 was easily affected by a decrease in antigen concentration. The binding kinetics of mAb 132 assessed by SPR were consistent with the results of ELISA. The dissociation constant of the monovalent form was approximately 260 times higher than that of the bivalent form, suggesting that monovalent binding is less stable than bivalent binding. Furthermore, the amount of mAb 132 that bound to rMoPrP decreased if the antigen density was too low to allow bivalent binding. If two cellular PrP (PrPC) are close enough to allow bivalent binding, mAb 132 binds to PrPC. These results indicate that weak monovalent binding to monomeric PrPC diminishes PrPC signals to background level, whereas after exposure of the epitope, mAb 132 binds stably to oligomeric PrPSc in a bivalent manner.
Collapse
Affiliation(s)
- Akio Suzuki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
- Global Station for Zoonosis Control. Global Institute for Collaborative Research and Education, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| |
Collapse
|
2
|
Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog 2017; 13:e1006491. [PMID: 28704563 PMCID: PMC5524416 DOI: 10.1371/journal.ppat.1006491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/24/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
Prions, characterized by self-propagating protease-resistant prion protein (PrP) conformations, are agents causing prion disease. Recent studies generated several such self-propagating protease-resistant recombinant PrP (rPrP-res) conformers. While some cause prion disease, others fail to induce any pathology. Here we showed that although distinctly different, the pathogenic and non-pathogenic rPrP-res conformers were similarly recognized by a group of conformational antibodies against prions and shared a similar guanidine hydrochloride denaturation profile, suggesting a similar overall architecture. Interestingly, two independently generated non-pathogenic rPrP-res were almost identical, indicating that the particular rPrP-res resulted from cofactor-guided PrP misfolding, rather than stochastic PrP aggregation. Consistent with the notion that cofactors influence rPrP-res conformation, the propagation of all rPrP-res formed with phosphatidylglycerol/RNA was cofactor-dependent, which is different from rPrP-res generated with a single cofactor, phosphatidylethanolamine. Unexpectedly, despite the dramatic difference in disease-causing capability, RT-QuIC assays detected large increases in seeding activity in both pathogenic and non-pathogenic rPrP-res inoculated mice, indicating that the non-pathogenic rPrP-res is not completely inert in vivo. Together, our study supported a role of cofactors in guiding PrP misfolding, indicated that relatively small structural features determine rPrP-res’ pathogenicity, and revealed that the in vivo seeding ability of rPrP-res does not necessarily result in pathogenicity. Many neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease and Prion disease, are caused by misfolded proteins that can self-propagate in vivo and in vitro. Misfolded self-replicating recombinant prion protein (PrP) conformers have been generated in vitro with defined cofactors, some of which are highly infectious and cause bona fide prion diseases, while others completely fail to induce any pathology. Here we compare these misfolded recombinant PrP conformers and show that the non-pathogenic misfolded recombinant PrP is not completely inert in vivo. We also found that the pathogenic and non-pathogenic recombinant PrP conformers share a similar overall architecture. Importantly, our study clearly shows that in vivo seeded spread of misfolded conformation does not necessarily lead to pathogenic change or cause disease. These findings not only are important for understanding the molecular basis for prion infectivity, but also may have important implications for the “prion-like” spread of misfolded proteins in other neurodegenerative diseases.
Collapse
|
3
|
Miyazawa K, Masujin K, Okada H, Ushiki-Kaku Y, Matsuura Y, Yokoyama T. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells. PLoS One 2017. [PMID: 28636656 PMCID: PMC5479544 DOI: 10.1371/journal.pone.0179317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Kentaro Masujin
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Yuichi Matsuura
- Prion Diseases Unit, Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Department of Planning and General Administration, National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Tanaka M, Fujiwara A, Suzuki A, Yamasaki T, Hasebe R, Masujin K, Horiuchi M. Comparison of abnormal isoform of prion protein in prion-infected cell lines and primary-cultured neurons by PrPSc-specific immunostaining. J Gen Virol 2016; 97:2030-2042. [PMID: 27267758 DOI: 10.1099/jgv.0.000514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We established abnormal isoform of prion protein (PrPSc)-specific double immunostaining using mAb 132, which recognizes aa 119-127 of the PrP molecule, and novel PrPSc-specific mAb 8D5, which recognizes the N-terminal region of the PrP molecule. Using the PrPSc-specific double immunostaining, we analysed PrPSc in immortalized neuronal cell lines and primary cerebral-neuronal cultures infected with prions. The PrPSc-specific double immunostaining showed the existence of PrPSc positive for both mAbs 132 and 8D5, as well as those positive only for either mAb 132 or mAb 8D5. This indicated that double immunostaining detects a greater number of PrPSc species than single immunostaining. Double immunostaining revealed cell-type-dependent differences in PrPSc staining patterns. In the 22 L prion strain-infected Neuro2a (N2a)-3 cells, a subclone of N2a neuroblastoma cell line, or GT1-7, a subclone of the GT1 hypothalamic neuronal cell line, granular PrPSc stains were observed at the perinuclear regions and cytoplasm, whereas unique string-like PrPSc stains were predominantly observed on the surface of the 22 L strain-infected primary cerebral neurons. Only 14 % of PrPSc in the 22 L strain-infected N2a-3 cells were positive for mAb 8D5, indicating that most of the PrPSc in N2a-3 lack the N-terminal portion. In contrast, nearly half PrPSc detected in the 22 L strain-infected primary cerebral neurons were positive for mAb 8D5, suggesting the abundance of full-length PrPSc that possesses the N-terminal portion of PrP. Further analysis of prion-infected primary neurons using PrPSc-specific immunostaining will reveal the neuron-specific mechanism for prion propagation.
Collapse
Affiliation(s)
- Misaki Tanaka
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Ai Fujiwara
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Kentaro Masujin
- National Agriculture Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.,Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
5
|
Saijo E, Hughson AG, Raymond GJ, Suzuki A, Horiuchi M, Caughey B. PrPSc-Specific Antibody Reveals C-Terminal Conformational Differences between Prion Strains. J Virol 2016; 90:4905-4913. [PMID: 26937029 PMCID: PMC4859706 DOI: 10.1128/jvi.00088-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Understanding the structure of PrP(Sc) and its strain variation has been one of the major challenges in prion disease biology. To study the strain-dependent conformations of PrP(Sc), we purified proteinase-resistant PrP(Sc) (PrP(RES)) from mouse brains with three different murine-adapted scrapie strains (Chandler, 22L, and Me7) and systematically tested the accessibility of epitopes of a wide range of anti-PrP and anti-PrP(Sc) specific antibodies by indirect enzyme-linked immunosorbent assay (ELISA). We found that epitopes of most anti-PrP antibodies were hidden in the folded structure of PrP(RES), even though these epitopes are revealed with guanidine denaturation. However, reactivities to a PrP(Sc)-specific conformational C-terminal antibody showed significant differences among the three different prion strains. Our results provide evidence for strain-dependent conformational variation near the C termini of molecules within PrP(Sc) multimers. IMPORTANCE It has long been apparent that prion strains can have different conformations near the N terminus of the PrP(Sc) protease-resistant core. Here, we show that a C-terminal conformational PrP(Sc)-specific antibody reacts differently to three murine-adapted scrapie strains. These results suggest, in turn, that conformational differences in the C terminus of PrP(Sc) also contribute to the phenotypic distinction between prion strains.
Collapse
Affiliation(s)
- Eri Saijo
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
6
|
Miyazawa K, Okada H, Iwamaru Y, Masujin K, Yokoyama T. Susceptibility of GT1-7 cells to mouse-passaged field scrapie isolates with a long incubation. Prion 2015; 8:306-13. [PMID: 25482605 PMCID: PMC4601507 DOI: 10.4161/pri.32232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A typical feature of scrapie in sheep and goats is the accumulation of disease-associated prion protein. Scrapie consists of many strains with different biological properties. Nine natural sheep scrapie cases were transmitted to wild-type mice and mouse-passaged isolates were classified into 2 types based on incubation time: short and long. These 2 types displayed a distinct difference in their pathology. We attempted to transmit these mouse-passaged isolates to 2 murine cell lines (GT1–7 and L929) to compare their properties. All of the isolates were transmitted to L929 cells. However, only mouse-passaged field isolates with a long incubation time were transmitted to GT1–7 cells. This specific susceptibility of GT1–7 cells was also confirmed with a primary-passaged isolate that was not completely adapted to the new host species. Characterization of the mechanisms of the specific susceptibility of GT1–7 cells to isolates with a long incubation time may lead to a greater understanding of the differences among prion strains.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- a Influenza and Prion Disease Research Center ; National Institute of Animal Health; NARO ; Tsukuba , Ibaraki , Japan
| | | | | | | | | |
Collapse
|
7
|
Okada H, Masujin K, Miyazawa K, Yokoyama T. Acquired transmissibility of sheep-passaged L-type bovine spongiform encephalopathy prion to wild-type mice. Vet Res 2015; 46:81. [PMID: 26169916 PMCID: PMC4499898 DOI: 10.1186/s13567-015-0211-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrPSc) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrPSc of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrPSc glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice.
Collapse
Affiliation(s)
- Hiroyuki Okada
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Takashi Yokoyama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Ushiki-Kaku Y, Iwamaru Y, Masujin K, Imamura M, Itohara S, Ogawa-Goto K, Hattori S, Yokoyama T. Different antigenicities of the N-terminal region of cellular and scrapie prion proteins. Microbiol Immunol 2014; 57:792-6. [PMID: 24117858 DOI: 10.1111/1348-0421.12105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
Abstract
Limited information is available about conformational differences between the abnormal isoform of prion protein (PrP(Sc) ) and cellular prion protein (PrP(C) ) under native conditions. To clarify conformational differences between these two isoforms, PrP-deficient mice were immunized with brain homogenates of normal and scrapie-infected animals. All mice generated anti-PrP antibodies. Peptide array analysis of these serum samples revealed a distinctive epitope of PrP(Sc) consisting of QGSPGGN (PrP41-47) at the N-terminus. This study demonstrated a conformational dissimilarity at the N-terminus between PrP(Sc) and PrP(C) , a finding that may provide novel information about conformational features of PrP(Sc) .
Collapse
Affiliation(s)
- Yuko Ushiki-Kaku
- Nippi Research Institute of Biomatrix, Kuwabara 520-11, Toride, Ibaraki, 302-0017
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Seelig DM, Nalls AV, Flasik M, Frank V, Eaton S, Mathiason CK, Hoover EA. Lesion profiling and subcellular prion localization of cervid chronic wasting disease in domestic cats. Vet Pathol 2014; 52:107-19. [PMID: 24577721 DOI: 10.1177/0300985814524798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic wasting disease (CWD) is an efficiently transmitted, fatal, and progressive prion disease of cervids with an as yet to be fully clarified host range. While outbred domestic cats (Felis catus) have recently been shown to be susceptible to experimental CWD infection, the neuropathologic features of the infection are lacking. Such information is vital to provide diagnostic power in the event of natural interspecies transmission and insights into host and strain interactions in interspecies prion infection. Using light microscopy and immunohistochemistry, we detail the topographic pattern of neural spongiosis (the "lesion profile") and the distribution of misfolded prion protein in the primary and secondary passage of feline CWD (Fel(CWD)). We also evaluated cellular and subcellular associations between misfolded prion protein (PrP(D)) and central nervous system neurons and glial cell populations. From these studies, we (1) describe the novel neuropathologic profile of Fel(CWD), which is distinct from either cervid CWD or feline spongiform encephalopathy (FSE), and (2) provide evidence of serial passage-associated interspecies prion adaptation. In addition, we demonstrate through confocal analysis the successful co-localization of PrP(D) with neurons, astrocytes, microglia, lysosomes, and synaptophysin, which, in part, implicates each of these in the neuropathology of Fel(CWD). In conclusion, this work illustrates the simultaneous role of both host and strain in the development of a unique Fel(CWD) neuropathologic profile and that such a profile can be used to discriminate between Fel(CWD) and FSE.
Collapse
Affiliation(s)
- D M Seelig
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - A V Nalls
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - M Flasik
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - V Frank
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - S Eaton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - E A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Ushiki-Kaku Y, Shimizu Y, Tabeta N, Iwamaru Y, Ogawa-Goto K, Hattori S, Yokoyama T. Heterogeneity of abnormal prion protein (PrP(Sc)) in murine scrapie prions determined by PrP(Sc)-specific monoclonal antibodies. J Vet Med Sci 2013; 76:285-8. [PMID: 24132297 PMCID: PMC3982826 DOI: 10.1292/jvms.13-0409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In prion diseases, abnormal prion protein (PrP(Sc)) is considered as the main component of the infectious agent. Delineation of PrP(Sc) conformation is expected to be a critical factor in understanding properties of prions. However, practical methods to differentiate between conformers of PrP(Sc) are inadequate. Here, we used two PrP(Sc)-specific monoclonal antibodies (mAbs), 3B7 and 3H6, and found that mAb 3H6 detected a limited portion of PrP(Sc) in five mice-adapted prion strains. The quantity of mAb 3H6-precipitated PrP(Sc) was significantly lesser in 22L compared to other strains. This result provides a direct evidence of the conformational heterogeneity of PrP(Sc) within the prion strains. Conformation-specific probes, like these mAbs, have the potential to be powerful tools for investigating conformational variations in PrP(Sc).
Collapse
Affiliation(s)
- Yuko Ushiki-Kaku
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Yamamoto T, Ushiki-Kaku Y, Yokoyama T, Hattori S. Sensitivity and specificity of a commercial BSE kit for the detection of ovine scrapie. Anim Sci J 2013; 84:508-12. [PMID: 23607323 DOI: 10.1111/asj.12032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/14/2012] [Indexed: 11/28/2022]
Abstract
To examine the sensitivity of a commercially available bovine spongiform encephalopathy (BSE) kit (NippIBL) for the detection of ovine scrapie, 50 scrapie-positive ovine samples from the UK, and 54 scrapie-negative ovine samples from Japan were obtain and tested using this kit. The sensitivity and specificity of NippIBL for ovine samples were 96% and 100%, respectively. The detection limit of the abnormal isoform of prion protein (PrP(Sc) ) of NippIBL was examined using diluted scrapie-positive samples. The sensitivity of NippIBL to ovine scrapie was 3-10 times superior to that of another commercial BSE diagnosis kit. Thus, the NippIBL kit proved more effective for the detection of ovine scrapie.
Collapse
|
12
|
Masujin K, Kaku-Ushiki Y, Miwa R, Okada H, Shimizu Y, Kasai K, Matsuura Y, Yokoyama T. The N-terminal sequence of prion protein consists an epitope specific to the abnormal isoform of prion protein (PrP(Sc)). PLoS One 2013; 8:e58013. [PMID: 23469131 PMCID: PMC3585212 DOI: 10.1371/journal.pone.0058013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The conformation of abnormal prion protein (PrPSc) differs from that of cellular prion protein (PrPC), but the precise characteristics of PrPSc remain to be elucidated. To clarify the properties of native PrPSc, we attempted to generate novel PrPSc-specific monoclonal antibodies (mAbs) by immunizing PrP-deficient mice with intact PrPSc purified from bovine spongiform encephalopathy (BSE)-affected mice. The generated mAbs 6A12 and 8D5 selectivity precipitated PrPSc from the brains of prion-affected mice, sheep, and cattle, but did not precipitate PrPC from the brains of healthy animals. In histopathological analysis, mAbs 6A12 and 8D5 strongly reacted with prion-affected mouse brains but not with unaffected mouse brains without antigen retrieval. Epitope analysis revealed that mAbs 8D5 and 6A12 recognized the PrP subregions between amino acids 31–39 and 41–47, respectively. This indicates that a PrPSc-specific epitope exists in the N-terminal region of PrPSc, and mAbs 6A12 and 8D5 are powerful tools with which to detect native and intact PrPSc. We found that the ratio of proteinase K (PK)-sensitive PrPSc to PK-resistant PrPSc was constant throughout the disease time course.
Collapse
Affiliation(s)
- Kentaro Masujin
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | - Ritsuko Miwa
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yoshihisa Shimizu
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Kazuo Kasai
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
13
|
Heterogeneity of the Abnormal Prion Protein (PrPSc) of the Chandler Scrapie Strain. Pathogens 2013; 2:92-104. [PMID: 25436883 PMCID: PMC4235706 DOI: 10.3390/pathogens2010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/09/2013] [Indexed: 01/16/2023] Open
Abstract
The pathological prion protein, PrPSc, displays various sizes of aggregates. In this study, we investigated the conformation, aggregation stability and proteinase K (PK)-sensitivity of small and large PrPSc aggregates of mouse-adapted prion strains. We showed that small PrPSc aggregates, previously thought to be PK-sensitive, are resistant to PK digestion. Furthermore, we showed that small PrPSc aggregates of the Chandler scrapie strain have greater resistance to PK digestion and aggregation-denaturation than large PrPSc aggregates of this strain. We conclude that this strain consists of heterogeneous PrPSc.
Collapse
|
14
|
Kubota T, Hamazoe Y, Hashiguchi S, Ishibashi D, Akasaka K, Nishida N, Katamine S, Sakaguchi S, Kuroki R, Nakashima T, Sugimura K. Direct evidence of generation and accumulation of β-sheet-rich prion protein in scrapie-infected neuroblastoma cells with human IgG1 antibody specific for β-form prion protein. J Biol Chem 2012; 287:14023-39. [PMID: 22356913 DOI: 10.1074/jbc.m111.318352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We prepared β-sheet-rich recombinant full-length prion protein (β-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935-1937). Using this β-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to β-form but not α-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of β-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of β-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing β-form may represent so-called PrP(Sc) with prion propagation activity. PRB7 is the first human antibody specific to β-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology.
Collapse
Affiliation(s)
- Toshiya Kubota
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Novel assay with fluorescence-labelled PrP peptides for differentiating L-type atypical and classical BSEs, and scrapie. FEBS Lett 2012; 586:325-9. [DOI: 10.1016/j.febslet.2012.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/18/2022]
|
16
|
Yokoyama T, Masujin K, Schmerr MJ, Shu Y, Okada H, Iwamaru Y, Imamura M, Matsuura Y, Murayama Y, Mohri S. Intraspecies prion transmission results in selection of sheep scrapie strains. PLoS One 2010; 5:e15450. [PMID: 21103326 PMCID: PMC2982847 DOI: 10.1371/journal.pone.0015450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/30/2010] [Indexed: 12/03/2022] Open
Abstract
Background Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined. Methodology/Principal Findings In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain. Conclusions/Significance Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|