1
|
Jarman OD, Hirst J. Membrane-domain mutations in respiratory complex I impede catalysis but do not uncouple proton pumping from ubiquinone reduction. PNAS NEXUS 2022; 1:pgac276. [PMID: 36712358 PMCID: PMC9802314 DOI: 10.1093/pnasnexus/pgac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Respiratory complex I [NADH:ubiquinone (UQ) oxidoreductase] captures the free energy released from NADH oxidation and UQ reduction to pump four protons across an energy-transducing membrane and power ATP synthesis. Mechanisms for long-range energy coupling in complex I have been proposed from structural data but not yet evaluated by robust biophysical and biochemical analyses. Here, we use the powerful bacterial model system Paracoccus denitrificans to investigate 14 mutations of key residues in the membrane-domain Nqo13/ND4 subunit, defining the rates and reversibility of catalysis and the number of protons pumped per NADH oxidized. We reveal new insights into the roles of highly conserved charged residues in lateral energy transduction, confirm the purely structural role of the Nqo12/ND5 transverse helix, and evaluate a proposed hydrated channel for proton uptake. Importantly, even when catalysis is compromised the enzyme remains strictly coupled (four protons are pumped per NADH oxidized), providing no evidence for escape cycles that circumvent blocked proton-pumping steps.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
2
|
Cloning and Organelle Expression of Bamboo Mitochondrial Complex I Subunits Nad1, Nad2, Nad4, and Nad5 in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23074054. [PMID: 35409414 PMCID: PMC8999482 DOI: 10.3390/ijms23074054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the nad1, nad2, nad4, and nad5 genes, reside at the mitochondrial inner membrane and possibly function as proton (H+) and ion translocators. To understand the individual functional roles of the Nad1, Nad2, Nad4, and Nad5 subunits in bamboo, each cDNA of these four genes was cloned into the pYES2 vector and expressed in the mitochondria of the yeast Saccharomyces cerevisiae. The mitochondrial targeting peptide mt gene (encoding MT) and the egfp marker gene (encoding enhanced green fluorescent protein, EGFP) were fused at the 5'-terminal and 3'-terminal ends, respectively. The constructed plasmids were then transformed into yeast. RNA transcripts and fusion protein expression were observed in the yeast transformants. Mitochondrial localizations of the MT-Nad1-EGFP, MT-Nad2-EGFP, MT-Nad4-EGFP, and MT-Nad5-EGFP fusion proteins were confirmed by fluorescence microscopy. The ectopically expressed bamboo subunits Nad1, Nad2, Nad4, and Nad5 may function in ion translocation, which was confirmed by growth phenotype assays with the addition of different concentrations of K+, Na+, or H+.
Collapse
|
3
|
A modeling and simulation perspective on the mechanism and function of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:510-523. [DOI: 10.1016/j.bbabio.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
|
4
|
Di Luca A, Mühlbauer ME, Saura P, Kaila VRI. How inter-subunit contacts in the membrane domain of complex I affect proton transfer energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:734-741. [PMID: 29883589 DOI: 10.1016/j.bbabio.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/08/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
Abstract
The respiratory complex I is a redox-driven proton pump that employs the free energy released from quinone reduction to pump protons across its complete ca. 200 Å wide membrane domain. Despite recently resolved structures and molecular simulations, the exact mechanism for the proton transport process remains unclear. Here we combine large-scale molecular simulations with quantum chemical density functional theory (DFT) models to study how contacts between neighboring antiporter-like subunits in the membrane domain of complex I affect the proton transfer energetics. Our combined results suggest that opening of conserved Lys/Glu ion pairs within each antiporter-like subunit modulates the barrier for the lateral proton transfer reactions. Our work provides a mechanistic suggestion for key coupling effects in the long-range force propagation process of complex I.
Collapse
Affiliation(s)
- Andrea Di Luca
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Max E Mühlbauer
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Patricia Saura
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching, D-85747, Germany.
| |
Collapse
|
5
|
Abstract
Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.
Collapse
|
6
|
Tursun A, Zhu S, Vik SB. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1840-1848. [PMID: 27632419 DOI: 10.1016/j.bbabio.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
Respiratory Complex I appears to have 4 sites for proton translocation, which are coupled to the oxidation of NADH and reduction of coenzyme Q. The proton pathways are thought to be made of offset half-channels that connect to the membrane surfaces, and are connected by a horizontal path through the center of the membrane. In this study of the enzyme from Escherichia coli, subunit N, containing one of the sites, was targeted. Pairs of cysteine residues were introduced into neighboring α-helices along the proposed proton pathways. In an effort to constrain conformational changes that might occur during proton translocation, we attempted to form disulfide bonds or methanethiosulfonate bridges between two engineered cysteine residues. Cysteine modification was inferred by the inability of PEG-maleimide to shift the electrophoretic mobility of subunit N, which will occur upon reaction with free sulfhydryl groups. After the cross-linking treatment, NADH oxidase and NADH-driven proton translocation were measured. Ten different pairs of cysteine residues showed evidence of cross-linking. The most significant loss of enzyme activity was seen for residues near the essential Lys 395. This residue is positioned between the proposed proton half-channel to the periplasm and the horizontal connection through subunit N, and is also near the essential Glu 144 of subunit M. The results suggest important conformational changes in this region for the delivery of protons to the periplasm, or for coupling the actions of subunit N to subunit M.
Collapse
Affiliation(s)
- Ablat Tursun
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
7
|
Sperling E, Górecki K, Drakenberg T, Hägerhäll C. Functional Differentiation of Antiporter-Like Polypeptides in Complex I; a Site-Directed Mutagenesis Study of Residues Conserved in MrpA and NuoL but Not in MrpD, NuoM, and NuoN. PLoS One 2016; 11:e0158972. [PMID: 27391676 PMCID: PMC4938563 DOI: 10.1371/journal.pone.0158972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/26/2016] [Indexed: 01/29/2023] Open
Abstract
It has long been known that the three largest subunits in the membrane domain (NuoL, NuoM and NuoN) of complex I are homologous to each other, as well as to two subunits (MrpA and MrpD) from a Na+/H+ antiporter, Mrp. MrpA and NuoL are more similar to each other and the same is true for MrpD and NuoN. This suggests a functional differentiation which was proven experimentally in a deletion strain model system, where NuoL could restore the loss of MrpA, but not that of MrpD and vice versa. The simplest explanation for these observations was that the MrpA and MrpD proteins are not antiporters, but rather single subunit ion channels that together form an antiporter. In this work our focus was on a set of amino acid residues in helix VIII, which are only conserved in NuoL and MrpA (but not in any of the other antiporter-like subunits.) and to compare their effect on the function of these two proteins. By combining complementation studies in B. subtilis and 23Na-NMR, response of mutants to high sodium levels were tested. All of the mutants were able to cope with high salt levels; however, all but one mutation (M258I/M225I) showed differences in the efficiency of cell growth and sodium efflux. Our findings showed that, although very similar in sequence, NuoL and MrpA seem to differ on the functional level. Nonetheless the studied mutations gave rise to interesting phenotypes which are of interest in complex I research.
Collapse
Affiliation(s)
- Eva Sperling
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
- * E-mail:
| | - Kamil Górecki
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Torbjörn Drakenberg
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Cecilia Hägerhäll
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Zhu S, Canales A, Bedair M, Vik SB. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L. J Bioenerg Biomembr 2016; 48:325-33. [PMID: 26931547 DOI: 10.1007/s10863-016-9655-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 12/16/2022]
Abstract
Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.
Collapse
Affiliation(s)
- Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alejandra Canales
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Mai Bedair
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.,University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, 75275-0376, USA.
| |
Collapse
|
9
|
Zhu S, Vik SB. Constraining the Lateral Helix of Respiratory Complex I by Cross-linking Does Not Impair Enzyme Activity or Proton Translocation. J Biol Chem 2015; 290:20761-20773. [PMID: 26134569 DOI: 10.1074/jbc.m115.660381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441-445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu(2+) ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50-90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10-20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus.
Collapse
Affiliation(s)
- Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376.
| |
Collapse
|
10
|
Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New Perspectives on Proton Pumping in Cellular Respiration. Chem Rev 2015; 115:2196-221. [DOI: 10.1021/cr500448t] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten Wikström
- Institute
of Biotechnology, University of Helsinki, Biocenter 3 (Viikinkaari 1), PB
65, Helsinki 00014, Finland
| | - Vivek Sharma
- Department
of Physics, Tampere University of Technology, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Ville R. I. Kaila
- Department
Chemie, Technische Universität München, Lichtenbergstraße 4, D-85748 Garching, Germany
| | - Jonathan P. Hosler
- Department
of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
11
|
Sinha PK, Castro-Guerrero N, Patki G, Sato M, Torres-Bacete J, Sinha S, Miyoshi H, Matsuno-Yagi A, Yagi T. Conserved amino acid residues of the NuoD segment important for structure and function of Escherichia coli NDH-1 (complex I). Biochemistry 2015; 54:753-64. [PMID: 25545070 PMCID: PMC4310626 DOI: 10.1021/bi501403t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The NuoD segment (homologue of mitochondrial
49 kDa subunit) of
the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1)
from Escherichia coli is in the hydrophilic domain
and bears many highly conserved amino acid residues. The three-dimensional
structural model of NDH-1 suggests that the NuoD segment, together
with the neighboring subunits, constitutes a putative quinone binding
cavity. We used the homologous DNA recombination technique to clarify
the role of selected key amino acid residues of the NuoD segment.
Among them, residues Tyr273 and His224 were considered candidates
for having important interactions with the quinone headgroup. Mutant
Y273F retained partial activity but lost sensitivity to capsaicin-40.
Mutant H224R scarcely affected the activity, suggesting that this
residue may not be essential. His224 is located in a loop near the
N-terminus of the NuoD segment (Gly217–Phe227) which is considered
to form part of the quinone binding cavity. In contrast to the His224
mutation, mutants G217V, P218A, and G225V almost completely lost the
activity. One region of this loop is positioned close to a cytosolic
loop of the NuoA subunit in the membrane domain, and together they
seem to be important in keeping the quinone binding cavity intact.
The structural role of the longest helix in the NuoD segment located
behind the quinone binding cavity was also investigated. Possible
roles of other highly conserved residues of the NuoD segment are discussed.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Deparment of Molecular and Experimental Medicine, and ‡Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, MEM256, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sato M, Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T. Essential regions in the membrane domain of bacterial complex I (NDH-1): the machinery for proton translocation. J Bioenerg Biomembr 2014; 46:279-87. [PMID: 24973951 DOI: 10.1007/s10863-014-9558-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.
Collapse
Affiliation(s)
- Motoaki Sato
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, CA, 92037, USA,
| | | | | | | | | |
Collapse
|
13
|
Sato M, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T. Energy transducing roles of antiporter-like subunits in Escherichia coli NDH-1 with main focus on subunit NuoN (ND2). J Biol Chem 2013; 288:24705-16. [PMID: 23864658 DOI: 10.1074/jbc.m113.482968] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) contains a peripheral and a membrane domain. Three antiporter-like subunits in the membrane domain, NuoL, NuoM, and NuoN (ND5, ND4 and ND2, respectively), are structurally similar. We analyzed the role of NuoN in Escherichia coli NDH-1. The lysine residue at position 395 in NuoN (NLys(395)) is conserved in NuoL (LLys(399)) but is replaced by glutamic acid (MGlu(407)) in NuoM. Our mutation study on NLys(395) suggests that this residue participates in the proton translocation. Furthermore, we found that MGlu(407) is also essential and most likely interacts with conserved LArg(175). Glutamic acids, NGlu(133), MGlu(144), and LGlu(144), are corresponding residues. Unlike mutants of MGlu(144) and LGlu(144), mutation of NGlu(133) scarcely affected the energy-transducing activities. However, a double mutant of NGlu(133) and nearby KGlu(72) showed significant inhibition of these activities. This suggests that NGlu(133) bears a functional role similar to LGlu(144) and MGlu(144) but its mutation can be partially compensated by the nearby carboxyl residue. Conserved prolines located at loops of discontinuous transmembrane helices of NuoL, NuoM, and NuoN were shown to play a similar role in the energy-transducing activity. It seems likely that NuoL, NuoM, and NuoN pump protons by a similar mechanism. Our data also revealed that NLys(158) is one of the key interaction points with helix HL in NuoL. A truncation study indicated that the C-terminal amphipathic segments of NTM14 interacts with the Mβ sheet located on the opposite side of helix HL. Taken together, the mechanism of H(+) translocation in NDH-1 is discussed.
Collapse
Affiliation(s)
- Motoaki Sato
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
14
|
Torres-Bacete J, Sinha PK, Sato M, Patki G, Kao MC, Matsuno-Yagi A, Yagi T. Roles of subunit NuoK (ND4L) in the energy-transducing mechanism of Escherichia coli NDH-1 (NADH:quinone oxidoreductase). J Biol Chem 2012; 287:42763-72. [PMID: 23105119 DOI: 10.1074/jbc.m112.422824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial H(+)-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1-3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue ((K)Glu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue ((K)Glu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted (K)Glu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of (K)Glu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK ((K)Arg-25, (K)Arg-26, and (K)Asn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.
Collapse
Affiliation(s)
- Jesus Torres-Bacete
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sinha PK, Nakamaru-Ogiso E, Torres-Bacete J, Sato M, Castro-Guerrero N, Ohnishi T, Matsuno-Yagi A, Yagi T. Electron transfer in subunit NuoI (TYKY) of Escherichia coli NADH:quinone oxidoreductase (NDH-1). J Biol Chem 2012; 287:17363-17373. [PMID: 22474289 DOI: 10.1074/jbc.m111.329649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial proton-translocating NADH:quinone oxidoreductase (NDH-1) consists of a peripheral and a membrane domain. The peripheral domain catalyzes the electron transfer from NADH to quinone through a chain of seven iron-sulfur (Fe/S) clusters. Subunit NuoI in the peripheral domain contains two [4Fe-4S] clusters (N6a and N6b) and plays a role in bridging the electron transfer from cluster N5 to the terminal cluster N2. We constructed mutants for eight individual Cys-coordinating Fe/S clusters. With the exception of C63S, all mutants had damaged architecture of NDH-1, suggesting that Cys-coordinating Fe/S clusters help maintain the NDH-1 structure. Studies of three mutants (C63S-coordinating N6a, P110A located near N6a, and P71A in the vicinity of N6b) were carried out using EPR measurement. These three mutations did not affect the EPR signals from [2Fe-2S] clusters and retained electron transfer activities. Signals at g(z) = 2.09 disappeared in C63S and P110A but not in P71A. Considering our data together with the available information, g(z,x) = 2.09, 1.88 signals are assigned to cluster N6a. It is of interest that, in terms of g(z,x) values, cluster N6a is similar to cluster N4. In addition, we investigated the residues (Ile-94 and Ile-100) that are predicted to serve as electron wires between N6a and N6b and between N6b and N2, respectively. Replacement of Ile-100 and Ile-94 with Ala/Gly did not affect the electron transfer activity significantly. It is concluded that conserved Ile-100 and Ile-94 are not essential for the electron transfer.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jesus Torres-Bacete
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Motoaki Sato
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Norma Castro-Guerrero
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Tomoko Ohnishi
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Akemi Matsuno-Yagi
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037
| | - Takao Yagi
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
16
|
The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease. Biochem Soc Trans 2011; 39:799-806. [PMID: 21599651 DOI: 10.1042/bst0390799] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is crucial to respiration in many aerobic organisms. The hydrophilic domain of complex I, containing nine or more redox cofactors, and comprising seven conserved core subunits, protrudes into the mitochondrial matrix or bacterial cytoplasm. The α-helical membrane-bound hydrophobic domain contains a further seven core subunits that are mitochondrial-encoded in eukaryotes and named the ND subunits (ND1-ND6 and ND4L). Complex I couples the oxidation of NADH in the hydrophilic domain to ubiquinone reduction and proton translocation in the hydrophobic domain. Although the mechanisms of NADH oxidation and intramolecular electron transfer are increasingly well understood, the mechanisms of ubiquinone reduction and proton translocation remain only poorly defined. Recently, an α-helical model of the hydrophobic domain of bacterial complex I [Efremov, Baradaran and Sazanov (2010) Nature 465, 441-447] revealed how the 63 transmembrane helices of the seven core subunits are arranged, and thus laid a foundation for the interpretation of functional data and the formulation of mechanistic proposals. In the present paper, we aim to correlate information from sequence analyses, site-directed mutagenesis studies and mutations that have been linked to human diseases, with information from the recent structural model. Thus we aim to identify and discuss residues in the ND subunits of mammalian complex I which are important in catalysis and for maintaining the enzyme's structural and functional integrity.
Collapse
|
17
|
Abstract
Mitochondria are the structures that produce the bulk part of the cellular energy currency ATP, which drives numerous energy requiring processes in the cell. This process involves a series of large enzyme complexes—the respiratory chain—that couples the transfer of electrons to the creation of a concentration gradient of protons across the inner mitochondrial membrane, which drives ATP synthesis. Complex I (or NADH-quinone oxidoreductase) is the largest and by far the most complicated of the respiratory chain enzyme complexes. The molecular mechanism whereby it couples electron transfer to proton extrusion has remained mysterious until very recently. Low-resolution X-ray structures of complex I have, surprisingly, suggested that electron transfer in the hydrophilic arm, protruding into the mitochondrial matrix, causes movement of a coupling rod that influences three putative proton pumps within the hydrophobic arm embedded in the inner mitochondrial membrane. In this Primer, we will briefly introduce the recent progress made in this area and highlight the road ahead that likely will unravel the detailed molecular mechanisms of complex I function.
Collapse
|
18
|
Torres-Bacete J, Sinha PK, Matsuno-Yagi A, Yagi T. Structural contribution of C-terminal segments of NuoL (ND5) and NuoM (ND4) subunits of complex I from Escherichia coli. J Biol Chem 2011; 286:34007-14. [PMID: 21835926 DOI: 10.1074/jbc.m111.260968] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is a multisubunit enzymatic complex. It has a characteristic L-shaped form with two domains, a hydrophilic peripheral domain and a hydrophobic membrane domain. The membrane domain contains three antiporter-like subunits (NuoL, NuoM, and NuoN, Escherichia coli naming) that are considered to be involved in the proton translocation. Deletion of either NuoL or NuoM resulted in an incomplete assembly of NDH-1 and a total loss of the NADH-quinone oxidoreductase activity. We have truncated the C terminus segments of NuoM and NuoL by introducing STOP codons at different locations using site-directed mutagenesis of chromosomal DNA. Our results suggest an important structural role for the C-terminal segments of both subunits. The data further advocate that the elimination of the last transmembrane helix (TM14) of NuoM and the TM16 (at least C-terminal seven residues) or together with the HL helix and the TM15 of the NuoL subunit lead to reduced stability of the membrane arm and therefore of the whole NDH-1 complex. A region of NuoL critical for stability of NDH-1 architecture has been discussed.
Collapse
Affiliation(s)
- Jesus Torres-Bacete
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
19
|
Efremov RG, Sazanov LA. Respiratory complex I: 'steam engine' of the cell? Curr Opin Struct Biol 2011; 21:532-40. [PMID: 21831629 DOI: 10.1016/j.sbi.2011.07.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/01/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Abstract
Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
20
|
Vik SB. The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis. FEBS Lett 2011; 585:1180-4. [PMID: 21420404 DOI: 10.1016/j.febslet.2011.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 02/03/2023]
Abstract
An assignment of the transmembrane helices of subunits L, M, and N of the Escherichia coli Complex I has been made from the helices as determined in a recent crystal structure [Efromov et al., Nature (2010) 465, 441-446]. The amino acid sequences of the three subunits were evaluated for hydrophobicity, and hydrophobic moments, to identify the helices that are likely to be in contact with membrane lipids. Using 29 closely related species, a similar analysis of average conservation, and conservation moments was performed. In each subunit, transmembrane helices 9 and 12 are predicted to form the discontinuous helices, which are likely to play a key role in function.
Collapse
Affiliation(s)
- Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
21
|
Michel J, DeLeon-Rangel J, Zhu S, Van Ree K, Vik SB. Mutagenesis of the L, M, and N subunits of Complex I from Escherichia coli indicates a common role in function. PLoS One 2011; 6:e17420. [PMID: 21387012 PMCID: PMC3046159 DOI: 10.1371/journal.pone.0017420] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/24/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The membrane arm of Complex I (NADH:ubiquinone oxidoreductase) contains three large, and closely related subunits, which are called L, M, and N in E. coli. These subunits are homologous to components of multi-subunit Na(+)/H(+) antiporters, and so are implicated in proton translocation. METHODOLOGY/PRINCIPAL FINDINGS Nineteen site-specific mutations were constructed at two corresponding positions in each of the three subunits. Two positions were selected in each subunit: L_K169, M_K173, N_K158 and L_Q236, M_H241, N_H224. Membrane vesicles were prepared from all of the resulting mutant strains, and were assayed for deamino-NADH oxidase activity, proton translocation, ferricyanide reductase activity, and sensitivity to capsaicin. Corresponding mutations in the three subunits were found to have very similar effects on all activities measured. In addition, the effect of adding exogenous decylubiquinone on these activities was tested. 50 µM decylubiquinone stimulated both deamino-NADH oxidase activity and proton translocation by wild type membrane vesicles, but was inhibitory towards the same activities by membrane vesicles bearing the lysine substitution at the L236/M241/N224 positions. CONCLUSIONS/SIGNIFICANCE The results show a close correlation with reduced activity among the corresponding mutations, and provide evidence that the L, M, and N subunits have a common role in Complex I.
Collapse
Affiliation(s)
- Jose Michel
- Department of Biological Sciences, Southern Methodist University, Dallas,
Texas, United States of America
| | - Jessica DeLeon-Rangel
- Department of Biological Sciences, Southern Methodist University, Dallas,
Texas, United States of America
| | - Shaotong Zhu
- Department of Biological Sciences, Southern Methodist University, Dallas,
Texas, United States of America
| | - Kalie Van Ree
- Department of Biological Sciences, Southern Methodist University, Dallas,
Texas, United States of America
| | - Steven B. Vik
- Department of Biological Sciences, Southern Methodist University, Dallas,
Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Moparthi VK, Kumar B, Mathiesen C, Hägerhäll C. Homologous protein subunits from Escherichia coli NADH:quinone oxidoreductase can functionally replace MrpA and MrpD in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:427-36. [PMID: 21236240 DOI: 10.1016/j.bbabio.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
The complex I subunits NuoL, NuoM and NuoN are homologous to two proteins, MrpA and MrpD, from one particular class of Na+/H+ antiporters. In many bacteria MrpA and MrpD are encoded by an operon comprising 6-7 conserved genes. In complex I these protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Deletion of either mrpA or mrpD from the Bacillus subtilis chromosome resulted in a Na+ and pH sensitive growth phenotype. The deletion strains could be complemented in trans by their respective Mrp protein, but expression of MrpA in the B. subtilis ΔmrpD strain and vice versa did not improve growth at pH 7.4. This corroborates that the two proteins have unique specific functions. Under the same conditions NuoL could rescue B. subtilis ΔmrpA, but improved the growth of B. subtilis ΔmrpD only slightly. NuoN could restore the wild type properties of B. subtilis ΔmrpD, but had no effect on the ΔmrpA strain. Expression of NuoM did not result in any growth improvement under these conditions. This reveals that the complex I subunits NuoL, NuoM and NuoN also demonstrate functional specializations. The simplest explanation that accounts for all previous and current observations is that the five homologous proteins are single ion transporters. Presumably, MrpA transports Na+ whereas MrpD transports H+ in opposite directions, resulting in antiporter activity. This hypothesis has implications for the complex I functional mechanism, suggesting that one Na+ channel, NuoL, and two H+ channels, NuoM and NuoN, are present.
Collapse
Affiliation(s)
- Vamsi K Moparthi
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
23
|
Amarneh B, Vik SB. Transmembrane topology of subunit N of complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli. J Bioenerg Biomembr 2010; 42:511-6. [PMID: 21120593 DOI: 10.1007/s10863-010-9318-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
Abstract
The transmembrane topology of subunit N from E. coli Complex I has been investigated. Chemical labeling of mono-substituted cysteine mutants was carried out in inverted membrane vesicles, and in whole cells, using 3-N-maleimidyl-propionyl biocytin (MPB). The results support a model of 14 transmembrane spans with both termini in the periplasm, and are consistent with the models of subunits L, M and N from the crystal structure of the membrane arm of the E. coli Complex I (Efremov et al. (2010) Nature 465, 441-445). In particular, the results do not support an unusual cytoplasmic localization of two likely transmembrane regions, as proposed in previous studies (Mathiesen and Hägerhäll (2002) Biochim Biophys Acta 1556, 121-132; Torres-Bacete, et al. (2009) J Biol Chem 284, 33062-33069).
Collapse
Affiliation(s)
- Bilal Amarneh
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | |
Collapse
|
24
|
Gustavsson T, Trane M, Moparthi VK, Miklovyte E, Moparthi L, Górecki K, Leiding T, Arsköld SP, Hägerhäll C. A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli--expression and characterization of cytochrome-tagged Complex I subunits. Protein Sci 2010; 19:1445-60. [PMID: 20509166 DOI: 10.1002/pro.424] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overproduction of membrane proteins can be a cumbersome task, particularly if high yields are desirable. NADH:quinone oxidoreductase (Complex I) contains several very large membrane-spanning protein subunits that hitherto have been impossible to express individually in any appreciable amounts in Escherichia coli. The polypeptides contain no prosthetic groups and are poorly antigenic, making optimization of protein production a challenging task. In this work, the C-terminal ends of the Complex I subunits NuoH, NuoL, NuoM, and NuoN from E. coli Complex I and the bona fide antiporters MrpA and MrpD were genetically fused to the cytochrome c domain of Bacillus subtilis cytochrome c(550). Compared with other available fusion-protein tagging systems, the cytochrome c has several advantages. The heme is covalently bound, renders the proteins visible by optical spectroscopy, and can be used to monitor, quantify, and determine the orientation of the polypeptides in a plethora of experiments. For the antiporter-like subunits NuoL, NuoM, and NuoN and the real antiporters MrpA and MrpD, unprecedented amounts of holo-cytochrome fusion proteins could be obtained in E. coli. The NuoHcyt polypeptide was also efficiently produced, but heme insertion was less effective in this construct. The cytochrome c(550) domain in all the fusion proteins exhibited normal spectra and redox properties, with an E(m) of about +170 mV. The MrpA and MrpD antiporters remained functional after being fused to the cytochrome c-tag. Finally, a his-tag could be added to the cytochrome domain, without any perturbations to the cytochrome properties, allowing efficient purification of the overexpressed fusion proteins.
Collapse
Affiliation(s)
- Tobias Gustavsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, 22100 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Castro-Guerrero N, Sinha PK, Torres-Bacete J, Matsuno-Yagi A, Yagi T. Pivotal roles of three conserved carboxyl residues of the NuoC (30k) segment in the structural integrity of proton-translocating NADH-quinone oxidoreductase from Escherichia coli. Biochemistry 2010; 49:10072-80. [PMID: 20979355 DOI: 10.1021/bi100885v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prokaryotic proton-translocating NADH-quinone oxidoreductase (NDH-1) is an L-shaped membrane-bound enzyme that contains 14 subunits (NuoA-NuoN or Nqo1-Nqo14). All subunits have their counterparts in the eukaryotic enzyme (complex I). NDH-1 consists of two domains: the peripheral arm (NuoB, -C, -D, -E, -F, -G, and -I) and the membrane arm (NuoA, -H, -J, -K, -L, -M, and -N). In Escherichia coli NDH-1, the hydrophilic subunits NuoC/Nqo5/30k and NuoD/Nqo4/49k are fused together in a single polypeptide as the NuoCD subunit. The NuoCD subunit is the only subunit that does not bear a cofactor in the peripheral arm. While some roles for inhibitor and quinone association have been reported for the NuoD segment, structural and functional roles of the NuoC segment remain mostly elusive. In this work, 14 highly conserved residues of the NuoC segment were mutated and 21 mutants were constructed using the chromosomal gene manipulation technique. From the enzymatic assays and immunochemical and blue-native gel analyses, it was found that residues Glu-138, Glu-140, and Asp-143 that are thought to be in the third α-helix are absolutely required for the energy-transducing NDH-1 activities and the assembly of the whole enzyme. Together with available information for the hydrophobic subunits, we propose that Glu-138, Glu-140, and Asp-143 of the NuoC segment may have a pivotal role in the structural stability of NDH-1.
Collapse
Affiliation(s)
- Norma Castro-Guerrero
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | |
Collapse
|
26
|
Gershoni M, Fuchs A, Shani N, Fridman Y, Corral-Debrinski M, Aharoni A, Frishman D, Mishmar D. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i. J Mol Biol 2010; 404:158-71. [PMID: 20868692 DOI: 10.1016/j.jmb.2010.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 09/05/2010] [Accepted: 09/13/2010] [Indexed: 10/19/2022]
Abstract
Despite years of research, the structure of the largest mammalian oxidative phosphorylation (OXPHOS) complex, NADH-ubiquinone oxidoreductase (complex I), and the interactions among its 45 subunits are not fully understood. Since complex I harbors subunits encoded by mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genomes, with the former evolving ∼10 times faster than the latter, tight cytonuclear coevolution is expected and observed. Recently, we identified three nDNA-encoded complex I subunits that underwent accelerated amino acid replacement, suggesting their adjustment to the elevated mtDNA rate of change. Hence, they constitute excellent candidates for binding mtDNA-encoded subunits. Here, we further disentangle the network of physical cytonuclear interactions within complex I by analyzing subunits coevolution. Firstly, relying on the bioinformatic analysis of 10 protein complexes possessing solved structures, we show that signals of coevolution identified physically interacting subunits with nearly 90% accuracy, thus lending support to our approach. When applying this approach to cytonuclear interaction within complex I, we predict that the 'rate-accelerated' nDNA-encoded subunits of complex I, NDUFC2 and NDUFA1, likely interact with the mtDNA-encoded subunits ND5/ND4 and ND5/ND4/ND1, respectively. Furthermore, we predicted interactions among mtDNA-encoded complex I subunits. Using the yeast two-hybrid system, we experimentally confirmed the predicted interactions of human NDUFC2 with ND4, the interactions of human NDUFA1 with ND1 and ND4, and the lack of interaction of NDUFC2 with ND3 and NDUFA1, thus providing a proof of concept for our approach. Our study shows, for the first time, evidence for direct interactions between nDNA-encoded and mtDNA-encoded subunits of human OXPHOS complex I and paves the path towards deciphering subunit interactions within complexes lacking three-dimensional structures. Our subunit-interactions-predicting method, ComplexCorr, is available at http://webclu.bio.wzw.tum.de/complexcorr.
Collapse
Affiliation(s)
- Moran Gershoni
- Department of Life Sciences and the Nation Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nakamaru-Ogiso E, Kao MC, Chen H, Sinha SC, Yagi T, Ohnishi T. The membrane subunit NuoL(ND5) is involved in the indirect proton pumping mechanism of Escherichia coli complex I. J Biol Chem 2010; 285:39070-8. [PMID: 20826797 DOI: 10.1074/jbc.m110.157826] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complex I pumps protons across the membrane by using downhill redox energy. Here, to investigate the proton pumping mechanism by complex I, we focused on the largest transmembrane subunit NuoL (Escherichia coli ND5 homolog). NuoL/ND5 is believed to have H(+) translocation site(s), because of a high sequence similarity to multi-subunit Na(+)/H(+) antiporters. We mutated thirteen highly conserved residues between NuoL/ND5 and MrpA of Na(+)/H(+) antiporters in the chromosomal nuoL gene. The dNADH oxidase activities in mutant membranes were mostly at the control level or modestly reduced, except mutants of Glu-144, Lys-229, and Lys-399. In contrast, the peripheral dNADH-K(3)Fe(CN)(6) reductase activities basically remained unchanged in all the NuoL mutants, suggesting that the peripheral arm of complex I was not affected by point mutations in NuoL. The proton pumping efficiency (the ratio of H(+)/e(-)), however, was decreased in most NuoL mutants by 30-50%, while the IC(50) values for asimicin (a potent complex I inhibitor) remained unchanged. This suggests that the H(+)/e(-) stoichiometry has changed from 4H(+)/2e(-) to 3H(+) or 2H(+)/2e(-) without affecting the direct coupling site. Furthermore, 50 μm of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), a specific inhibitor for Na(+)/H(+) antiporters, caused a 38 ± 5% decrease in the initial H(+) pump activity in the wild type, while no change was observed in D178N, D303A, and D400A mutants where the H(+) pumping efficiency had already been significantly decreased. The electron transfer activities were basically unaffected by EIPA in both control and mutants. Taken together, our data strongly indicate that the NuoL subunit is involved in the indirect coupling mechanism.
Collapse
Affiliation(s)
- Eiko Nakamaru-Ogiso
- Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Morino M, Natsui S, Ono T, Swartz TH, Krulwich TA, Ito M. Single site mutations in the hetero-oligomeric Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4 that affect Na+/H+ antiport activity, sodium exclusion, individual Mrp protein levels, or Mrp complex formation. J Biol Chem 2010; 285:30942-50. [PMID: 20624916 DOI: 10.1074/jbc.m110.118661] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mrp systems are widely distributed and structurally complex cation/proton antiporters. Antiport activity requires hetero-oligomeric complexes of all six or seven hydrophobic Mrp proteins (MrpA-MrpG). Here, a panel of site-directed mutants in conserved or proposed motif residues was made in the Mrp Na(+)(Li(+))/H(+) antiporter from an alkaliphilic Bacillus. The mutant operons were expressed in antiporter-deficient Escherichia coli KNabc and assessed for antiport properties, support of sodium resistance, membrane levels of each Mrp protein, and presence of monomeric and dimeric Mrp complexes. Antiport did not depend on a VFF motif or a conserved tyrosine pair, but a role for a conserved histidine in a potential quinone binding site of MrpA was supported. The importance of several acidic residues for antiport was confirmed, and the importance of additional residues was demonstrated (e.g. three lysine residues conserved across MrpA, MrpD, and membrane-bound respiratory Complex I subunits (NuoL/M/N)). The results extended indications that MrpE is required for normal membrane levels of other Mrp proteins and for complex formation. Moreover, mutations in several other Mrp proteins lead to greatly reduced membrane levels of MrpE. Thus, changes in either of the two Mrp modules, MrpA-MrpD and MrpE-MrpG, influence the other. Two mutants, MrpB-P37G and MrpC-Q70A, showed a normal phenotype but lacked the MrpA-MrpG monomeric complex while retaining the dimeric hetero-oligomeric complex. Finally, MrpG-P81A and MrpG-P81G mutants exhibited no antiport activity but supported sodium resistance and a low [Na(+)](in). Such mutants could be used to screen hypothesized but uncharacterized sodium efflux functions of Mrp apart from Na(+) (Li(+))/H(+) antiport.
Collapse
Affiliation(s)
- Masato Morino
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193 Japan
| | | | | | | | | | | |
Collapse
|
29
|
Efremov RG, Baradaran R, Sazanov LA. The architecture of respiratory complex I. Nature 2010; 465:441-5. [PMID: 20505720 DOI: 10.1038/nature09066] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 03/31/2010] [Indexed: 12/12/2022]
Abstract
Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the alpha-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 A resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-A long amphipathic alpha-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 A resolution. The L-shaped assembly consists of the alpha-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic alpha-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation.
Collapse
Affiliation(s)
- Rouslan G Efremov
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
30
|
Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters. PLoS One 2010; 5:e9985. [PMID: 20376309 PMCID: PMC2848612 DOI: 10.1371/journal.pone.0009985] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/11/2010] [Indexed: 11/19/2022] Open
Abstract
After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I), was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = ∼14) to man (N = 45), renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA)- and nuclear DNA (nDNA)-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7) share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10). Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.
Collapse
|