1
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
2
|
Buntin K, Mrak P, Pivk Lukančič P, Wollbrett S, Drčar T, Krastel P, Thibaut C, Salcius M, Gao X, Wang S, Weber E, Koplan E, Regenass H. Generation of Bioactivity-Tailored FK506/FK520 Analogs by CRISPR Editing in Streptomyces tsukubaensis. Chemistry 2024; 30:e202302350. [PMID: 37855054 DOI: 10.1002/chem.202302350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
For a potential application of FK506 in the treatment of acute kidney failure only the FKBP12 binding capability of the compound is required, while the immunosuppressive activity via calcineurin binding is considered as a likely risk to the patients. The methoxy groups at C13 and C15 are thought to have significant influence on the immunosuppressive activity of the molecule. Consequently, FK506 analogs with different functionalities at C13 and C15 were generated by targeted CRISPR editing of the AT domains in module 7 and 8 of the biosynthetic assembly line in Streptomyces tsukubaensis. In addition, the corresponding FK520 (C21 ethyl derivative of FK506) analogs could be obtained by media adjustments. The compounds were tested for their bioactivity in regards to FKBP12 binding, BMP potentiation and calcineurin sparing. 15-desmethoxy FK506 was superior to the other tested analogs as it did not inhibit calcineurin but retained high potency towards FKBP12 binding and BMP potentiation.
Collapse
Affiliation(s)
- Kathrin Buntin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Peter Mrak
- Manufacturing Scienes & Technologies, Sandoz Technical Operations, Lek Pharmaceuticals d.d., Kolodvorska 27, 1234, Mengeš, Slovenia
| | - Petra Pivk Lukančič
- Manufacturing Scienes & Technologies, Sandoz Technical Operations, Lek Pharmaceuticals d.d., Kolodvorska 27, 1234, Mengeš, Slovenia
| | - Séverine Wollbrett
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Tjasa Drčar
- Manufacturing Scienes & Technologies, Sandoz Technical Operations, Lek Pharmaceuticals d.d., Kolodvorska 27, 1234, Mengeš, Slovenia
| | - Philipp Krastel
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Christian Thibaut
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Michael Salcius
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Inc. 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xiaolin Gao
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Inc. 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shaowen Wang
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Inc. 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Eric Weber
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eva Koplan
- Manufacturing Scienes & Technologies, Sandoz Technical Operations, Lek Pharmaceuticals d.d., Kolodvorska 27, 1234, Mengeš, Slovenia
| | - Hugo Regenass
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|
3
|
Chen HT, Zhang XY, Wu QB, Zhao QW, Chen XA, Li YQ. Production improvement of FK506 in Streptomyces tsukubaensis by metabolic engineering strategy. J Appl Microbiol 2023; 134:lxad142. [PMID: 37429605 DOI: 10.1093/jambio/lxad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/12/2023]
Abstract
AIMS Study of the effect of isoleucine on the biosynthesis of FK506 and modification of its producing strain to improve the production of FK506. METHODS AND RESULTS Metabolomics analysis was conducted to explore key changes in the metabolic processes of Streptomyces tsukubaensis Δ68 in medium with and without isoleucine. In-depth analysis revealed that the shikimate pathway, methylmalonyl-CoA, and pyruvate might be the rate-limiting factors in FK506 biosynthesis. Overexpression of involved gene PCCB1 in S. tsukubaensis Δ68, a high-yielding strain Δ68-PCCB1 was generated. Additionally, the amino acids supplement was further optimized to improve FK506 biosynthesis. Finally, FK506 production was increased to 929.6 mg L-1, which was 56.6% higher than that in the starter strain, when supplemented isoleucine and valine at 9 and 4 g L-1, respectively. CONCLUSIONS Methylmalonyl-CoA might be the key rate-limiting factors in FK506 biosynthesis and overexpression of the gene PCCB1 and further addition of isoleucine and valine could increase the yield of FK506 by 56.6%.
Collapse
Affiliation(s)
- Hai-Tao Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xiao-Ying Zhang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Bin Wu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
4
|
Schulz S, Sletta H, Fløgstad Degnes K, Krysenko S, Williams A, Olsen SM, Vernstad K, Mitulski A, Wohlleben W. Optimization of FK-506 production in Streptomyces tsukubaensis by modulation of Crp-mediated regulation. Appl Microbiol Biotechnol 2023; 107:2871-2886. [PMID: 36949330 PMCID: PMC10033298 DOI: 10.1007/s00253-023-12473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
FK-506 is a potent immunosuppressive macrocyclic polyketide with growing pharmaceutical interest, produced by Streptomyces tsukubaensis. However, due to low levels synthesized by the wild-type strain, biotechnological production of FK-506 is rather limited. Optimization strategies to enhance the productivity of S. tsukubaensis by means of genetic engineering have been established. In this work primarily global regulatory aspects with respect to the FK-506 biosynthesis have been investigated with the focus on the global Crp (cAMP receptor protein) regulator. In expression analyses and protein-DNA interaction studies, the role of Crp during FK-506 biosynthesis was elucidated. Overexpression of Crp resulted in two-fold enhancement of FK-506 production in S. tsukubaensis under laboratory conditions. Further optimizations using fermentors proved that the strategy described in this study can be transferred to industrial scale, presenting a new approach for biotechnological FK-506 production. KEY POINTS: • The role of the global Crp (cAMP receptor protein) regulator for FK-506 biosynthesis in S. tsukubaensis was demonstrated • Crp overexpression in S. tsukubaensis was applied as an optimization strategy to enhance FK-506 and FK-520 production resulting in two-fold yield increase.
Collapse
Affiliation(s)
- Susann Schulz
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Novartis AG, Stein, Switzerland
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, Trondheim, Norway.
| | - Kristin Fløgstad Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, Trondheim, Norway
| | - Sergii Krysenko
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Valent BioSciences, 1910 Innovation Wy Suite 100, Libertyville, IL, 60048, USA
| | - Alicia Williams
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Silje Malene Olsen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, Trondheim, Norway
| | - Kai Vernstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Sem Sælands veg 2a, Trondheim, Norway
| | - Agnieszka Mitulski
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
Schulz S, Schall C, Stehle T, Breitmeyer C, Krysenko S, Mitulski A, Wohlleben W. Optimization of the precursor supply for an enhanced FK506 production in Streptomyces tsukubaensis. Front Bioeng Biotechnol 2022; 10:1067467. [DOI: 10.3389/fbioe.2022.1067467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Tacrolimus (FK506) is a macrolide widely used as immunosuppressant to prevent transplant rejection. Synthetic production of FK506 is not efficient and costly, whereas the biosynthesis of FK506 is complex and the level produced by the wild type strain, Streptomyces tsukubaensis, is very low. We therefore engineered FK506 biosynthesis and the supply of the precursor L-lysine to generate strains with improved FK506 yield. To increase FK506 production, first the intracellular supply of the essential precursor lysine was improved in the native host S. tsukubaensis NRRL 18488 by engineering the lysine biosynthetic pathway. Therefore, a feedback deregulated aspartate kinase AskSt* of S. tsukubaensis was generated by site directed mutagenesis. Whereas overexpression of AskSt* resulted only in a 17% increase in FK506 yield, heterologous overexpression of a feedback deregulated AskCg* from Corynebacterium glutamicum was proven to be more efficient. Combined overexpression of AskCg* and DapASt, showed a strong enhancement of the intracellular lysine pool following increase in the yield by approximately 73% compared to the wild type. Lysine is coverted into the FK506 building block pipecolate by the lysine cyclodeaminase FkbL. Construction of a ∆fkbL mutant led to a complete abolishment of the FK506 production, confirming the indispensability of this enzyme for FK506 production. Chemical complementation of the ∆fkbL mutant by feeding pipecolic acid and genetic complementation with fkbL as well as with other lysine cyclodeaminase genes (pipAf, pipASt, originating from Actinoplanes friuliensis and Streptomyces pristinaespiralis, respectively) completely restored FK506 production. Subsequently, FK506 production was enchanced by heterologous overexpression of PipAf and PipASp in S. tsukubaensis. This resulted in a yield increase by 65% compared to the WT in the presence of PipAf from A. friuliensis. For further rational yield improvement, the crystal structure of PipAf from A. friuliensis was determined at 1.3 Å resolution with the cofactor NADH bound and at 1.4 Å with its substrate lysine. Based on the structure the Ile91 residue was replaced by Val91 in PipAf, which resulted in an overall increase of FK506 production by approx. 100% compared to the WT.
Collapse
|
6
|
Zhang X, Wu Q, Zhang X, Lv Z, Mo X, Li Y, Chen XA. Elevation of FK506 production by regulatory pathway engineering and medium optimization in Streptomyces tsukubaensis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
8
|
Slemc L, Pikl Š, Petković H, Avbelj M. Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline. Methods Mol Biol 2021; 2296:303-330. [PMID: 33977456 DOI: 10.1007/978-1-0716-1358-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Streptomyces rimosus is used for production of the broad-spectrum antibiotic oxytetracycline (OTC). S. rimosus belongs to Actinomyces species, a large group of microorganisms that produce diverse set of natural metabolites of high importance in many aspects of our life. In this chapter, we describe specific molecular biology methods and a classical homologous recombination approach for targeted in-frame deletion of a target gene or entire operon in S. rimosus genome. The presented protocols will guide you through the design of experiment and construction of homology arms and their cloning into appropriate vectors, which are suitable for gene-engineering work with S. rimosus. Furthermore, two different protocols for S. rimosus transformation are described including detailed procedure for targeted gene replacement via double crossover recombination event. Gene deletion is confirmed by colony PCR, and colonies are further characterized by cultivation and metabolite analysis. As the final step, we present in trans complementation of the deleted gene, to confirm functionality of the engineering approach achieved by gene disruption. A number of methodological steps and protocols are optimized for S. rimosus strains including the use of the selected reporter genes. Protocols described in this chapter can be applied for studying function of any individual gene product in diverse OTC-producing Streptomyces rimosus strains.
Collapse
Affiliation(s)
- Lucija Slemc
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Pikl
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hrvoje Petković
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Avbelj
- Chair of Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
10
|
Shen JJ, Chen F, Wang XX, Liu XF, Chen XA, Mao XM, Li YQ. Substrate Specificity of Acyltransferase Domains for Efficient Transfer of Acyl Groups. Front Microbiol 2018; 9:1840. [PMID: 30131798 PMCID: PMC6090053 DOI: 10.3389/fmicb.2018.01840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Acyltransferase domains (ATs) of polyketide synthases (PKSs) are critical for loading of acyl groups on acyl carrier protein domains (A) via self- and trans-acylation reactions, to produce structurally diverse polyketides. However, the interaction specificity between ATs and unusual acyl units is rarely documented. In Streptomycestsukubaensis YN06, we found that AT4FkbB [an AT in the fourth module of tacrolimus (FK506) PKS] transferred both allylmalonyl (allmal) and emthylmalonyl (ethmal) units to ACPs, which was supposed responsible for the production of both FK506 and its analog FK520, respectively. Mutations of five residues in AT4FkbB (Q119A, L185I-V186D-V187T, and F203L) caused decreased efficiency of allmal transfer, but a higher ratio of ethmal transfer, supposedly due to less nucleophilic attacks between Ser599 in the active site of AT4FkbB and the carbonyl carbon in the allmal unit, as observed from molecular dynamics simulations. Furthermore, reverse mutations of these five residues in ethmal-specific ATs to the corresponding residues of AT4FkbB increased its binding affinity to allmal-CoA. Among these residues, Val187 of AT4FkbB mainly contributed to allmal recognition, and V187K mutant produced less FK520 than wild type. Our findings thus suggested that five critical residues within AT4FkbB were important for AT functionality in polyketide extension and potentially for targeting biosynthesis by generating desirable products and eliminating undesirable analogs.
Collapse
Affiliation(s)
- Jie-Jie Shen
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu Chen
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiao-Xuan Wang
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Fang Liu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Ordóñez-Robles M, Santos-Beneit F, Martín JF. Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics (Basel) 2018; 7:antibiotics7020039. [PMID: 29724001 PMCID: PMC6022917 DOI: 10.3390/antibiotics7020039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Streptomyces tsukubaensis stands out among actinomycetes by its ability to produce the immunosuppressant tacrolimus. Discovered about 30 years ago, this macrolide is widely used as immunosuppressant in current clinics. Other potential applications for the treatment of cancer and as neuroprotective agent have been proposed in the last years. In this review we introduce the discovery of S. tsukubaensis and tacrolimus, its biosynthetic pathway and gene cluster (fkb) regulation. We have focused this work on the omic studies performed in this species in order to understand tacrolimus production. Transcriptomics, proteomics and metabolomics have improved our knowledge about the fkb transcriptional regulation and have given important clues about nutritional regulation of tacrolimus production that can be applied to improve production yields. Finally, we address some points of S. tsukubaensis biology that deserve more attention.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo 33006, Spain.
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
| |
Collapse
|
12
|
Combining metabolomics and network analysis to improve tacrolimus production in Streptomyces tsukubaensis using different exogenous feedings. ACTA ACUST UNITED AC 2017; 44:1527-1540. [DOI: 10.1007/s10295-017-1974-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Abstract
Tacrolimus is widely used as an immunosuppressant in the treatment of various autoimmune diseases. However, the low fermentation yield of tacrolimus has thus far restricted its industrial applications. To solve this problem, the time-series response mechanisms of the intracellular metabolism that were highly correlated with tacrolimus biosynthesis were investigated using different exogenous feeding strategies in S. tsukubaensis. The metabolomic datasets, which contained 93 metabolites, were subjected to weighted correlation network analysis (WGCNA), and eight distinct metabolic modules and seven hub metabolites were identified to be specifically associated with tacrolimus biosynthesis. The analysis of metabolites within each metabolic module suggested that the pentose phosphate pathway (PPP), shikimate and aspartate pathway might be the main limiting factors in the rapid synthesis phase of tacrolimus accumulation. Subsequently, all possible key-limiting steps in the above metabolic pathways were further screened using a genome-scale metabolic network model (GSMM) of S. tsukubaensis. Based on the prediction results, two newly identified targets (aroC and dapA) were overexpressed experimentally, and both of the engineered strains showed higher tacrolimus production. Moreover, the best strain, HT-aroC/dapA, that was engineered to simultaneously enhanced chorismate and lysine biosynthesis was able to produce 128.19 mg/L tacrolimus, 1.64-fold higher than control (78.26 mg/L). These findings represent a valuable addition to our understanding of tacrolimus accumulation in S. tsukubaensis, and pave the way to further production improvements.
Collapse
|
13
|
Bauer JS, Fillinger S, Förstner K, Herbig A, Jones AC, Flinspach K, Sharma C, Gross H, Nieselt K, Apel AK. dRNA-seq transcriptional profiling of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis NRRL18488 and general analysis of the transcriptome. RNA Biol 2017; 14:1617-1626. [PMID: 28665778 DOI: 10.1080/15476286.2017.1341020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
FK506 (tacrolimus) is a valuable immunosuppressant produced by several Streptomyces strains. In the genome of the wild type producer Streptomyces tsukubaensis NRRL18488, FK506 biosynthesis is encoded by a gene cluster that spans 83.5 (kb). A whole transcriptome differential shotgun sequencing (dRNA-seq) of S. tsukubaensis was performed to analyze transcription at 2 different time points; before and during active FK506 production. In total, 8,914 transcription start sites were identified in either condition, which enabled precise determination of the 5'-UTR length of the corresponding transcripts as well as the identification of 2 consensus sequence motifs in the promoter regions. The transcription start sites of all gene operons within the FK506 cluster were identified, including 3 examples of leaderless RNA transcripts. These data provide detailed insight into the transcription of the FK506 biosynthetic gene cluster to support future regulatory studies, genetic manipulation, and industrial production.
Collapse
Affiliation(s)
- Judith S Bauer
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| | - Sven Fillinger
- c Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen , Germany
| | - Konrad Förstner
- e Research Center for Infectious Diseases , University of Würzburg , Würzburg , Germany , Core Unit Systems Medicine , Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Alexander Herbig
- d Max Planck Institute for the Science of Human History , Jena , Germany
| | - Adam C Jones
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany
| | - Katrin Flinspach
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany
| | - Cynthia Sharma
- e Research Center for Infectious Diseases , University of Würzburg , Würzburg , Germany , Core Unit Systems Medicine , Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Harald Gross
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| | - Kay Nieselt
- c Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen , Germany
| | - Alexander K Apel
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| |
Collapse
|
14
|
A genome-scale dynamic flux balance analysis model of Streptomyces tsukubaensis NRRL18488 to predict the targets for increasing FK506 production. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.03.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Draft Genome Sequence of the Tacrolimus-Producing Bacterium Streptomyces tsukubaensis F601. GENOME ANNOUNCEMENTS 2017; 5:5/20/e00385-17. [PMID: 28522727 PMCID: PMC5477335 DOI: 10.1128/genomea.00385-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Streptomyces tsukubaensis strain F601 was found to be a producer of the immunosuppressive drug tacrolimus. The draft genome sequence of this strain was approximately 8.52 Mbp. Genes involved in the biosynthesis of tacrolimus were identified in the genome. This draft genome sequence will provide insights into the genetic basis of tacrolimus biosynthesis and regulation.
Collapse
|
16
|
Wang J, Liu H, Huang D, Jin L, Wang C, Wen J. Comparative proteomic and metabolomic analysis of Streptomyces tsukubaensis reveals the metabolic mechanism of FK506 overproduction by feeding soybean oil. Appl Microbiol Biotechnol 2017; 101:2447-2465. [DOI: 10.1007/s00253-017-8136-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
|
17
|
FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis L19. J Ind Microbiol Biotechnol 2016; 43:1693-1703. [PMID: 27757551 DOI: 10.1007/s10295-016-1849-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S. tsukubaensis L19 were characterized in vivo and in vitro. FkbN activates the transcription of six transcription units in FK506 biosynthetic gene cluster, and Tcs7 activates the transcription of fkbN. In addition, the DNA-binding specificity of FkbN was determined. Finally, a high FK506-producing strain was constructed by overexpression of both fkbN and tcs7 in S. tsukubaensis L19, which improved FK506 production by 89 % compared to the parental strain.
Collapse
|
18
|
Franke J, Hertweck C. Biomimetic Thioesters as Probes for Enzymatic Assembly Lines: Synthesis, Applications, and Challenges. Cell Chem Biol 2016; 23:1179-1192. [PMID: 27693058 DOI: 10.1016/j.chembiol.2016.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/31/2016] [Indexed: 10/20/2022]
Abstract
Thioesters play essential roles in many biosynthetic pathways to fatty acids, esters, polyketides, and non-ribosomal peptides. Coenzyme A (CoA) and related phosphopantetheine thioesters are typically employed as activated acyl units for diverse C-C, C-O, and C-N coupling reactions. To study and control these enzymatic assembly lines in vitro and in vivo structurally simplified analogs such as N-acetylcysteamine (NAC) thioesters have been developed. This review gives an overview on experimental strategies enabled by synthetic NAC thioesters, such as the elucidation of complex biosynthetic pathways and enzyme mechanisms as well as precursor-directed biosynthesis and mutasynthesis. The review also summarizes synthetic protocols and protection group strategies to access these versatile synthetic tools, which are reactive and often unstable compounds. In addition, alternative phosphopantetheine thioester mimics are presented that can be used as protein tags or suicide inhibitors for protein crosslinking and off-loading probes to elucidate polyketide intermediates.
Collapse
Affiliation(s)
- Jakob Franke
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany; Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
19
|
Improvement of FK506 production by synthetic biology approaches. Biotechnol Lett 2016; 38:2015-2021. [DOI: 10.1007/s10529-016-2202-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
|
20
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. Appl Microbiol Biotechnol 2016; 100:8091-103. [PMID: 27357227 DOI: 10.1007/s00253-016-7696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
Tacrolimus (FK506) is a 23-membered macrolide immunosuppressant used in current clinics. Understanding how the tacrolimus biosynthetic gene cluster is regulated is important to increase its industrial production. Here, we analysed the effect of the disruption of fkbN (encoding a LAL-type positive transcriptional regulator) on the whole transcriptome of the tacrolimus producer Streptomyces tsukubaensis using microarray technology. Transcription of fkbN in the wild type strain increases from 70 h of cultivation reaching a maximum at 89 h, prior to the onset of tacrolimus biosynthesis. Disruption of fkbN in S. tsukubaensis does not affect growth but prevents tacrolimus biosynthesis. Inactivation of fkbN reduces the transcription of most of the fkb cluster genes, including some all (for allylmalonyl-CoA biosynthesis) genes but does not affect expression of allMNPOS or fkbR (encoding a LysR-type regulator). Disruption of fkbN does not suppress transcription of the cistron tcs6-fkbQ-fkbN; thus, FkbN self-regulates only weakly its own expression. Interestingly, inactivation of FkbN downregulates the transcription of a 4'-phosphopantetheinyl transferase coding gene, which product is involved in tacrolimus biosynthesis, and upregulates the transcription of a gene cluster containing a cpkA orthologous gene, which encodes a PKS involved in coelimycin P1 biosynthesis in Streptomyces coelicolor. We propose an information theory-based model for FkbN binding sequences. The consensus FkbN binding sequence consists of 14 nucleotides with dyad symmetry containing two conserved inverted repeats of 7 nt each. This FkbN target sequence is present in the promoters of FkbN-regulated genes.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León, 24006, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León, 24006, Spain
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain.
| |
Collapse
|
21
|
Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network. Sci Rep 2016; 6:24255. [PMID: 27052100 PMCID: PMC4823652 DOI: 10.1038/srep24255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/23/2016] [Indexed: 11/08/2022] Open
Abstract
Phosphopantetheinyl transferases (PPTases) play essential roles in both primary metabolisms and secondary metabolisms via post-translational modification of acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). In this study, an industrial FK506 producing strain Streptomyces tsukubaensis L19, together with Streptomyces avermitilis, was identified to contain the highest number (five) of discrete PPTases known among any species thus far examined. Characterization of the five PPTases in S. tsukubaensis L19 unveiled that stw ACP, an ACP in a type II PKS, was phosphopantetheinylated by three PPTases FKPPT1, FKPPT3, and FKACPS; sts FAS ACP, the ACP in fatty acid synthase (FAS), was phosphopantetheinylated by three PPTases FKPPT2, FKPPT3, and FKACPS; TcsA-ACP, an ACP involved in FK506 biosynthesis, was phosphopantetheinylated by two PPTases FKPPT3 and FKACPS; FkbP-PCP, an PCP involved in FK506 biosynthesis, was phosphopantetheinylated by all of these five PPTases FKPPT1-4 and FKACPS. Our results here indicate that the functions of these PPTases complement each other for ACPs/PCPs substrates, suggesting a complicate phosphopantetheinylation network in S. tsukubaensis L19. Engineering of these PPTases in S. tsukubaensis L19 resulted in a mutant strain that can improve FK506 production.
Collapse
|
22
|
Sun Y, Feng Z, Tomura T, Suzuki A, Miyano S, Tsuge T, Mori H, Suh JW, Iizuka T, Fudou R, Ojika M. Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway. Sci Rep 2016; 6:22091. [PMID: 26915413 PMCID: PMC4768178 DOI: 10.1038/srep22091] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/05/2016] [Indexed: 11/10/2022] Open
Abstract
Despite their fastidious nature, marine myxobacteria have considerable genetic potential to produce novel secondary metabolites. The marine myxobacterium Haliangium ochraceum SMP-2 produces the antifungal polyketide haliangicin (1), but its productivity is unsatisfactory. The biosynthetic gene cluster hli (47.8 kbp) associated with 1 was identified and heterologously expressed in Myxococcus xanthus to permit the production of 1 with high efficiency (tenfold greater amount and threefold faster in growth speed compared with the original producer), as well as the generation of bioactive unnatural analogues of 1 through gene manipulation. A unique acyl-CoA dehydrogenase was found to catalyse an unusual γ,δ-dehydrogenation of the diketide starter unit, leading to the formation of the terminal alkene moiety of 1. Biological evaluation of the analogues obtained through this study revealed that their bioactivities (anti-oomycete and cytotoxic activities) can be modified by manipulating the vinyl epoxide at the terminus opposite the β-methoxyacrylate pharmacophore.
Collapse
Affiliation(s)
- Yuwei Sun
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Zhiyang Feng
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomohiko Tomura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akira Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Seishi Miyano
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takashi Tsuge
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggido 449-728, Korea
| | - Takashi Iizuka
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Ryosuke Fudou
- R&D Planning Department, Ajinomoto Co., Inc., Chuo-ku, Tokyo 104-8315, Japan
| | - Makoto Ojika
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
23
|
Blažič M, Kosec G, Baebler Š, Gruden K, Petković H. Roles of the crotonyl-CoA carboxylase/reductase homologues in acetate assimilation and biosynthesis of immunosuppressant FK506 in Streptomyces tsukubaensis. Microb Cell Fact 2015; 14:164. [PMID: 26466669 PMCID: PMC4606968 DOI: 10.1186/s12934-015-0352-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In microorganisms lacking a functional glyoxylate cycle, acetate can be assimilated by alternative pathways of carbon metabolism such as the ethylmalonyl-CoA (EMC) pathway. Among the enzymes converting CoA-esters of the EMC pathway, there is a unique carboxylase that reductively carboxylates crotonyl-CoA, crotonyl-CoA carboxylase/reductase (Ccr). In addition to the EMC pathway, gene homologues of ccr can be found in secondary metabolite gene clusters that are involved in the provision of structurally diverse extender units used in the biosynthesis of polyketide natural products. The roles of multiple ccr homologues in the same genome and their potential interactions in primary and secondary metabolic pathways are poorly understood. RESULTS In the genome of S. tsukubaensis we have identified two ccr homologues; ccr1 is located in the putative ethylmalonyl-CoA (emc) operon and allR is located on the left fringe of the FK506 cluster. AllR provides an unusual extender unit allylmalonyl-CoA (ALL) for the biosynthesis of FK506 and potentially also ethylmalonyl-CoA for the related compound FK520. We have demonstrated that in S. tsukubaensis the ccr1 gene does not have a significant role in the biosynthesis of FK506 or FK520 when cultivated on carbohydrate-based media. However, when overexpressed under the control of a strong constitutive promoter, ccr1 can take part in the biosynthesis of ethylmalonyl-CoA and thereby FK520, but not FK506. In contrast, if ccr1 is inactivated, allR is not able to sustain a functional ethylmalonyl-CoA pathway (EMC) and cannot support growth on acetate as the sole carbon source, even when constitutively expressed in the chimeric emc operon. This is somewhat surprising considering that the same chimeric emc operon results in production of FK506 as well as FK520, consistent with the previously proposed relaxed specificity of AllR for C4 and C5 substrates. CONCLUSIONS Different regulation of the expression of both ccr genes, ccr1 and allR, and their corresponding pathways EMC and ALL, respectively, in combination with the different enzymatic properties of the Ccr1 and AllR enzymes, determine an almost exclusive role of ccr1 in the EMC pathway in S. tsukubaensis, and an exclusive role of allR in the biosynthesis of FK506/FK520, thus separating the functional roles of these two genes between the primary and secondary metabolic pathways.
Collapse
Affiliation(s)
- Marko Blažič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| | - Gregor Kosec
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
- Acies Bio, d.o.o., Tehnološki park 21, 1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Impact of a novel precursor on FK506 production and key gene transcription in Streptomyces tsukubaensis No. 9993. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2215-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Ban YH, Park SR, Yoon YJ. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J Ind Microbiol Biotechnol 2015; 43:389-400. [PMID: 26342319 DOI: 10.1007/s10295-015-1677-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
FK506, a 23-membered macrolide produced by several Streptomyces species, is an immunosuppressant widely used to prevent the rejection of transplanted organs. In addition, FK506 and its analogs possess numerous promising therapeutic potentials including antifungal, neuroprotective, and neuroregenerative activities. Herein, we introduce the biological activities and mechanisms of action of FK506 and discuss recent progress made in understanding its biosynthetic pathway, improving production, and in the mutasynthesis of diverse analogs. Perspectives highlighting further strain improvement and structural diversification aimed at generating more analogs with improved pharmaceutical properties will be emphasized.
Collapse
Affiliation(s)
- Yeon Hee Ban
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Sung Ryeol Park
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yeo Joon Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
26
|
Jiang H, Wang YY, Guo YY, Shen JJ, Zhang XS, Luo HD, Ren NN, Jiang XH, Li YQ. An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS J 2015; 282:2527-39. [PMID: 25865045 DOI: 10.1111/febs.13296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Acyltransferase (AT) domains of polyketide synthases (PKSs) usually use coenzyme A (CoA) as an acyl donor to transfer common acyl units to acyl carrier protein (ACP) domains, initiating incorporation of acyl units into polyketides. Two clinical immunosuppressive agents, FK506 and FK520, are biosynthesized by the same PKSs in several Streptomyces strains. In this study, characterization of AT4FkbB (the AT domain of the fourth module of FK506 PKS) in transacylation reactions showed that AT4FkbB recognizes both an ACP domain (ACPT csA) and CoA as acyl donors for transfer of a unique allylmalonyl (AM) unit to an acyl acceptor ACP domain (ACP4FkbB), resulting in FK506 production. In addition, AT4FkbB uses CoA as an acyl donor to transfer an unusual ethylmalonyl (EM) unit to ACP4FkbB, resulting in FK520 production, and transfers AM units to non-native ACP acceptors. Characterization of AT4FkbB in self-acylation reactions suggests that AT4FkbB controls acyl unit specificity in transacylation reactions but not in self-acylation reactions. Generally, AT domains of PKSs only recognize one acyl donor; however, we report here that AT4FkbB recognizes two acyl donors for the transfer of different acyl units. DATABASE Nucleotide sequence data have been submitted to the GenBank database under accession numbers KJ000382 and KJ000383.
Collapse
Affiliation(s)
- Hui Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yue-Yue Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie-Jie Shen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Dou Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni-Ni Ren
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Hang Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yong-Quan Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Heterologous expression of galbonolide biosynthetic genes in Streptomyces coelicolor. Antonie Van Leeuwenhoek 2015; 107:1359-66. [PMID: 25735435 DOI: 10.1007/s10482-015-0415-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
The galbonolide antibiotics are non-glycosylated heptaketide 14-membered macrolides. These antibiotics exhibit broad-spectrum fungicidal activities, including against the human pathogen Cryptococcus neoformans. Previously, galbonolides B and E were isolated from the marine actinomycete Streptomyces sp. LZ35. By bioinformatics analysis, the putative galbonolide biosynthetic gene cluster, gbn, was identified in the genome of strain LZ35. In order to verify that the core genes (gbnA-E) are sufficient for synthesizing the basic structure of galbonolide as previously proposed, we performed the heterologous expression of gbnA-E in a "clean background" host Streptomyces coelicolor ZM12, in which all the native polyketide synthase genes have been deleted. As expected, the production of galbonolide B (1) was detected in the transformant. To the best of our knowledge, this is the first report that demonstrates the essential role of gbnA-E in the biosynthesis of galbonolides by heterologous expression. This heterologous expression system would be helpful to generate novel galbonolide derivatives by co-overexpression of unusual biosynthesis extender units.
Collapse
|
28
|
Liu C, Zhu J, Li Y, Zhang J, Lu C, Wang H, Shen Y. In Vitro Reconstitution of a PKS Pathway for the Biosynthesis of Galbonolides inStreptomycessp. LZ35. Chembiochem 2015; 16:998-1007. [DOI: 10.1002/cbic.201500017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 01/13/2023]
|
29
|
Zhou T, Komaki H, Ichikawa N, Hosoyama A, Sato S, Igarashi Y. Biosynthesis of akaeolide and lorneic acids and annotation of type I polyketide synthase gene clusters in the genome of Streptomyces sp. NPS554. Mar Drugs 2015; 13:581-96. [PMID: 25603349 PMCID: PMC4306953 DOI: 10.3390/md13010581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/09/2015] [Indexed: 11/25/2022] Open
Abstract
The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS) domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.
Collapse
Affiliation(s)
- Tao Zhou
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Hisayuki Komaki
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan.
| | - Natsuko Ichikawa
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-4-19 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan.
| | - Akira Hosoyama
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-4-19 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan.
| | - Seizo Sato
- Central Research Laboratory, Nippon Suisan Kaisha, Ltd., Tokyo Innovation Center, 1-32-3 Nanakuni, Hachioji, Tokyo 192-0991, Japan.
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
30
|
Gajzlerska W, Kurkowiak J, Turło J. Use of three-carbon chain compounds as biosynthesis precursors to enhance tacrolimus production in Streptomyces tsukubaensis. N Biotechnol 2015; 32:32-9. [DOI: 10.1016/j.nbt.2014.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 07/06/2014] [Accepted: 07/17/2014] [Indexed: 01/11/2023]
|
31
|
Ding L, Franke J, Hertweck C. Divergolide congeners illuminate alternative reaction channels for ansamycin diversification. Org Biomol Chem 2015; 13:1618-23. [DOI: 10.1039/c4ob02244k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Isolation and structure elucidation of six new divergolides reveal unusual ansamycin diversification reactions including formation of the unusual isobutenyl side chain from a branched polyketide synthase extender unit, azepinone ring closure, macrolide ring contraction and formation of a seco variant by a neighboring group-assisted decarboxylation.
Collapse
Affiliation(s)
- Ling Ding
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Department of Biomolecular Chemistry
- 07745 Jena
- Germany
| | - Jakob Franke
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Department of Biomolecular Chemistry
- 07745 Jena
- Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology
- HKI
- Department of Biomolecular Chemistry
- 07745 Jena
- Germany
| |
Collapse
|
32
|
Lee SK, Yang SH, Kang CM, Mo S, Suh JW. Overexpression of the putative extracytoplasmic function sigma (σ) factor FujE enhances FK506 production in Streptomyces sp. strain KCCM 11116P. Can J Microbiol 2014; 60:363-9. [PMID: 24869633 DOI: 10.1139/cjm-2014-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the putative extracytoplasmic function sigma (σ) factor FujE, which has not been characterized as a member of the FK506 biosynthetic gene cluster, on FK506 production was identified by gene deletion, overexpression, and transcription analysis experiments in Streptomyces sp. strain KCCM 11116P. Inactivation of fujE had no effect on FK506 production, growth, or morphological differentiation. Overexpression of fujE with integrative vectors increased FK506 production by 2.87-fold (24.5 ± 1.4 mg·L(-1)) compared with the wild type (8.5 ± 0.5 mg·L(-1)). Semiquantitative reverse transcription-polymerase chain reaction analysis indicated that the overexpression of fujE stimulates the transcription of the FK506 biosynthetic genes. These results demonstrated that fujE is a new member of the FK506 biosynthetic gene cluster.
Collapse
Affiliation(s)
- Sung-Kwon Lee
- a Division of Bioscience and Bioinformatics, Myongji University, Youngin, Gyeonggi-Do, Korea
| | | | | | | | | |
Collapse
|
33
|
Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl Microbiol Biotechnol 2013; 98:497-507. [PMID: 24272367 DOI: 10.1007/s00253-013-5362-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023]
Abstract
The current off-patent state of tacrolimus (FK506) has opened the hunting season for new generic pharmaceutical formulations of this immunosuppressant. This fact has boosted the scientific and industrial research on tacrolimus for the last 5 years in order to improve its production. The fast discovery of tacrolimus producer strains has generated a huge number of producers, which presents the biosynthetic cluster of FK506 as a high promiscuous genetic region. For the first time, the current state-of-the-art on the tacrolimus biosynthesis, production improvements and drug purification is reviewed. On one hand, all the genes involved in the tacrolimus biosynthesis, in addition to the traditional PKS/NRPS, as well as their regulation are analysed. On the other hand, tacrolimus direct and indirect precursors are reviewed as a straight manner to improve the final yield, which is a current trend in the field. Twenty years of industrial and scientific improvements on tacrolimus production are summarised, whereas future trends are also drafted.
Collapse
|
34
|
Lechner A, Wilson MC, Ban YH, Hwang JY, Yoon YJ, Moore BS. Designed biosynthesis of 36-methyl-FK506 by polyketide precursor pathway engineering. ACS Synth Biol 2013; 2:379-83. [PMID: 23654255 DOI: 10.1021/sb3001062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polyketide synthase (PKS) biosynthetic code has recently expanded to include a newly recognized group of extender unit substrates derived from α,β-unsaturated acyl-CoA molecules that deliver diverse side chain chemistry to polyketide backbones. Herein we report the identification of a three-gene operon responsible for the biosynthesis of the PKS building block isobutyrylmalonyl-CoA associated with the macrolide ansalactam A from the marine bacterium Streptomyces sp. CNH189. Using a synthetic biology approach, we engineered the production of unnatural 36-methyl-FK506 in Streptomyces sp. KCTC 11604BP by incorporating the branched extender unit into FK506 biosynthesis in place of its natural C-21 allyl side chain, which has been shown to be critical for FK506's potent immunosuppressant and neurite outgrowth activities.
Collapse
Affiliation(s)
| | | | - Yeon Hee Ban
- Department of Chemistry and Nano
Science, Ewha Womans University, Seoul
120-750, Republic of Korea
| | - Jae-yeon Hwang
- Department of Chemistry and Nano
Science, Ewha Womans University, Seoul
120-750, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nano
Science, Ewha Womans University, Seoul
120-750, Republic of Korea
| | | |
Collapse
|
35
|
Jones AC, Gust B, Kulik A, Heide L, Buttner MJ, Bibb MJ. Phage p1-derived artificial chromosomes facilitate heterologous expression of the FK506 gene cluster. PLoS One 2013; 8:e69319. [PMID: 23874942 PMCID: PMC3708917 DOI: 10.1371/journal.pone.0069319] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/12/2013] [Indexed: 01/19/2023] Open
Abstract
We describe a procedure for the conjugative transfer of phage P1-derived Artificial Chromosome (PAC) library clones containing large natural product gene clusters (≥70 kilobases) to Streptomyces coelicolor strains that have been engineered for improved heterologous production of natural products. This approach is demonstrated using the gene cluster for FK506 (tacrolimus), a clinically important immunosuppressant of high commercial value. The entire 83.5 kb FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 present in one 130 kb PAC clone was introduced into four different S. coelicolor derivatives and all produced FK506 and smaller amounts of the related compound FK520. FK506 yields were increased by approximately five-fold (from 1.2 mg L-1 to 5.5 mg L-1) in S. coelicolor M1146 containing the FK506 PAC upon over-expression of the FK506 LuxR regulatory gene fkbN. The PAC-based gene cluster conjugation methodology described here provides a tractable means to evaluate and manipulate FK506 biosynthesis and is readily applicable to other large gene clusters encoding natural products of interest to medicine, agriculture and biotechnology.
Collapse
Affiliation(s)
- Adam C. Jones
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Bertolt Gust
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Lutz Heide
- Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (M. Buttner); (M. Bibb)
| | - Mervyn J. Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (M. Buttner); (M. Bibb)
| |
Collapse
|
36
|
Enhancement of FK506 production by engineering secondary pathways of Streptomyces tsukubaensis and exogenous feeding strategies. J Ind Microbiol Biotechnol 2013; 40:1023-37. [PMID: 23779221 DOI: 10.1007/s10295-013-1301-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 01/13/2023]
Abstract
FK506 is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces tsukubaensis. However, the low titer at which it is produced is a bottleneck to its application and use in industrial processes. We have overexpressed five potential targets associated with FK506 production (fkbO, fkbL, fkbP, fkbM, fkbD) which were identified in our previous study, with the aim to improve FK506 production. The results of the analysis showed that the constructed strains with an additional copy of each gene increased FK506 production by approximately 10-40 % compared with the wild-type strain D852. The results of the gene expression analysis indicated that each gene was upregulated. Combinatorial overexpression of the five genes resulted in a 146 % increase in the FK506 titer to 353.2 mg/L, in comparison with the titer produced by D852. To further improve the production of FK506 by the engineered strain HT-FKBOPLMD, we supplemented the medium with various nutrients, including soybean oil, lactate, succinate, shikimate, chorismate, lysine, pipecolate, isoleucine and valine. Optimization of feeding concentrations and times resulted in HT-FKBOPLMD being able to produce approximately 70 % more FK506, thereby reaching the maximal titer of 457.5 mg/L, with lower amounts of by-products (FK520 and 37,38-dihydro-FK506). These results demonstrate that the combination of the metabolically engineered secondary pathways and the exogenous feeding strategies developed here was able to be successfully applied to improve the production of industrially and clinically important compounds.
Collapse
|
37
|
Huang D, Li S, Xia M, Wen J, Jia X. Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement. Microb Cell Fact 2013; 12:52. [PMID: 23705993 PMCID: PMC3680238 DOI: 10.1186/1475-2859-12-52] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/21/2013] [Indexed: 01/31/2023] Open
Abstract
Background FK506 is an important immunosuppressant, which can be produced by Streptomyces tsukubaensis. However, the production capacity of the strain is very low. Hereby, a computational guided engineering approach was proposed in order to improve the intracellular precursor and cofactor availability of FK506 in S. tsukubaensis. Results First, a genome-scale metabolic model of S. tsukubaensis was constructed based on its annotated genome and biochemical information. Subsequently, several potential genetic targets (knockout or overexpression) that guaranteed an improved yield of FK506 were identified by the recently developed methodology. To validate the model predictions, each target gene was manipulated in the parent strain D852, respectively. All the engineered strains showed a higher FK506 production, compared with D852. Furthermore, the combined effect of the genetic modifications was evaluated. Results showed that the strain HT-ΔGDH-DAZ with gdhA-deletion and dahp-, accA2-, zwf2-overexpression enhanced FK506 concentration up to 398.9 mg/L, compared with 143.5 mg/L of the parent strain D852. Finally, fed-batch fermentations of HT-ΔGDH-DAZ were carried out, which led to the FK506 production of 435.9 mg/L, 1.47-fold higher than the parent strain D852 (158.7 mg/L). Conclusions Results confirmed that the promising targets led to an increase in FK506 titer. The present work is the first attempt to engineer the primary precursor pathways to improve FK506 production in S. tsukubaensis with genome-scale metabolic network guided metabolic engineering. The relationship between model prediction and experimental results demonstrates the rationality and validity of this approach for target identification. This strategy can also be applied to the improvement of other important secondary metabolites.
Collapse
Affiliation(s)
- Di Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | | | | | | | | |
Collapse
|
38
|
Xia M, Huang D, Li S, Wen J, Jia X, Chen Y. Enhanced FK506 production inStreptomyces tsukubaensisby rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 2013; 110:2717-30. [DOI: 10.1002/bit.24941] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/17/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Menglei Xia
- Department of Biological Engineering, School of Chemical Engineering and Technology; Tianjin University; Tianjin; 300072; People's Republic of China
| | - Di Huang
- Department of Biological Engineering, School of Chemical Engineering and Technology; Tianjin University; Tianjin; 300072; People's Republic of China
| | - Shanshan Li
- Department of Biological Engineering, School of Chemical Engineering and Technology; Tianjin University; Tianjin; 300072; People's Republic of China
| | | | | | - Yunlin Chen
- School of Science; Beijing Jiaotong University; Beijing; People's Republic of China
| |
Collapse
|
39
|
FK506 maturation involves a cytochrome p450 protein-catalyzed four-electron C-9 oxidation in parallel with a C-31 O-methylation. J Bacteriol 2013; 195:1931-9. [PMID: 23435975 DOI: 10.1128/jb.00033-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FK506, structurally similar to FK520 and rapamycin, is an α-keto amide bonding-containing, macrolide natural product that exhibits potent immunosuppressive activity and moderate antifungal activity. FK506 biosynthesis requires a hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) system to construct the skeleton of the macrolide. The mechanism for tailoring this macrolide to furnish FK506 remains poorly understood. In this study, we report a maturation paradigm common for FK506, FK520, and rapamycin, by characterizing two conserved regiospecific, post-PKS-NRPS modifications in an FK506-producing Streptomyces tsukubaensis strain. A cytochrome P450 protein, FkbD, catalyzes a less common, four-electron oxidation at C-9 to give a rarely found α-keto amide group, whereas a methyltransferase, FkbM, is responsible for O-methylation at C-31 to afford a methoxy group. Both FkbD and FkbM are highly tolerant in their substrate choice; therefore, the order of FkbD- and FkbM-catalyzed reactions is interchangeable in the FK506 biosynthetic pathway. Inactivation of fkbD produced a new intermediate, 9-deoxo-FK506, which displayed antifungal activity lower than that of FK506. Taking previously reported bioassay results regarding the intermediates 9-deoxo-31-O-demethyl-FK506 and 31-O-demethyl-FK506 into account, it is clear that the modifications catalyzed by FkbD and FkbM are of importance to reach the full biological activity of FK506 by forming a key structure motif that is necessary for interaction of the molecule with the receptor and, subsequently, the downstream intracellular responses.
Collapse
|
40
|
Kim DH, Ryu JH, Lee KS, Lee BM, Lee MO, Lim SK, Maeng PJ. Mutational biosynthesis of tacrolimus analogues by fkbO deletion mutant of Streptomyces sp. KCTC 11604BP. Appl Microbiol Biotechnol 2013; 97:5881-92. [PMID: 23392766 DOI: 10.1007/s00253-013-4716-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 11/24/2022]
Abstract
Tacrolimus (FK506) is an important macrocyclic polyketide showing antifungal and immunosuppressive activities, as well as neuroregenerative properties. Tacrolimus biosynthetic machinery should incorporate the shikimate-derived 4,5-dihydroxycyclohex-1-enecarboxylic acid (DHCHC) as a biosynthetic starter unit into the biosynthetic line of tacrolimus. fkbO is a homologue of rapK encoding chorismatase related to the biosynthesis of starter unit DHCHC from chorismate in the rapamycin biosynthetic gene cluster. FkbO and RapK are good targets for mutational biosynthesis to produce novel analogues of tacrolimus, ascomycin, and rapamycin, which could be important drugs for clinical application in the treatment of cancer and immune and neurodegenerative diseases. To make novel tacrolimus analogues, we prepared an fkbO in-frame deletion mutant, Streptomyces sp. GT110507, from a tacrolimus high producer. We scrutinized the cyclic carboxylic acids that were possibly incorporated instead of DHCHC by precursor-directed mutasynthesis using Streptomyces sp. GT110507 to lead tacrolimus analogues. Among them, trans-4-hydroxycyclohexanecarboxylic acid and 3-hydroxybenzoic acid were successfully incorporated into the tacrolimus backbone, which led to the production of 31-desmethoxytacrolimus and TC-225, respectively. Especially, adding of trans-4-hydroxycyclohexanecarboxylic acid produced a high amount (55 mg/L) of 31-desmethoxytacrolimus. Interestingly, in the rapK mutant, it has been reported that the incorporation of cyclohexanecarboxylic acid (CHC) led to 39-desmethoxy rapamycin. However, in Streptomyces sp. GT110507, CHC is not successfully incorporated. This discrepancy should reflect the differences in the DHCHC biosynthesis mechanism and/or substrate specificity of starter unit loading machineries (FkbP and RapP) of tacrolimus and rapamycin.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Research and Development Center, GenoTech Co. Ltd., Daejeon 305-343, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Muramatsu H, Nagai K. Streptomyces tsukubensis sp. nov., a producer of the immunosuppressant tacrolimus. J Antibiot (Tokyo) 2013; 66:251-4. [DOI: 10.1038/ja.2012.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Moss SJ, Stanley-Smith AE, Schell U, Coates NJ, Foster TA, Gaisser S, Gregory MA, Martin CJ, Nur-e-Alam M, Piraee M, Radzom M, Suthar D, Thexton DG, Warneck TD, Zhang MQ, Wilkinson B. Novel FK506 and FK520 analogues via mutasynthesis: mutasynthon scope and product characteristics. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20266b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel FK506 and FK520 analogues were generated via biosynthetic engineering in order to generate analogue compounds with equal potency but improved pharmacological profiles compared to FK506.
Collapse
|
43
|
Goranovič D, Blažič M, Magdevska V, Horvat J, Kuščer E, Polak T, Santos-Aberturas J, Martínez-Castro M, Barreiro C, Mrak P, Kopitar G, Kosec G, Fujs S, Martín JF, Petković H. FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiol 2012; 12:238. [PMID: 23083511 PMCID: PMC3551636 DOI: 10.1186/1471-2180-12-238] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506.
Collapse
Affiliation(s)
- Dušan Goranovič
- Acies Bio d,o,o, Tehnološki Park 21, SI-1000, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer ‘Streptomyces tsukubaensis’. Appl Microbiol Biotechnol 2012; 97:2139-52. [DOI: 10.1007/s00253-012-4364-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 12/23/2022]
|
45
|
Annotation of the modular polyketide synthase and nonribosomal peptide synthetase gene clusters in the genome of Streptomyces tsukubaensis NRRL18488. Appl Environ Microbiol 2012; 78:8183-90. [PMID: 22983969 DOI: 10.1128/aem.01891-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The high G+C content and large genome size make the sequencing and assembly of Streptomyces genomes more difficult than for other bacteria. Many pharmaceutically important natural products are synthesized by modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The analysis of such gene clusters is difficult if the genome sequence is not of the highest quality, because clusters can be distributed over several contigs, and sequencing errors can introduce apparent frameshifts into the large PKS and NRPS proteins. An additional problem is that the modular nature of the clusters results in the presence of imperfect repeats, which may cause assembly errors. The genome sequence of Streptomyces tsukubaensis NRRL18488 was scanned for potential PKS and NRPS modular clusters. A phylogenetic approach was used to identify multiple contigs belonging to the same cluster. Four PKS clusters and six NRPS clusters were identified. Contigs containing cluster sequences were analyzed in detail by using the ClustScan program, which suggested the order and orientation of the contigs. The sequencing of the appropriate PCR products confirmed the ordering and allowed the correction of apparent frameshifts resulting from sequencing errors. The product chemistry of such correctly assembled clusters could also be predicted. The analysis of one PKS cluster showed that it should produce a bafilomycin-like compound, and reverse transcription (RT)-PCR was used to show that the cluster was transcribed.
Collapse
|
46
|
Turło J, Gajzlerska W, Klimaszewska M, Król M, Dawidowski M, Gutkowska B. Enhancement of tacrolimus productivity in Streptomyces tsukubaensis by the use of novel precursors for biosynthesis. Enzyme Microb Technol 2012; 51:388-95. [PMID: 23040396 DOI: 10.1016/j.enzmictec.2012.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
In this report the optimization of biosynthesis of tacrolimus, the immunosupressant widely used in transplantology and dermatology was described. The enhancement of the productivity of Streptomyces tsukubaensis strain was achieved by development of new precursors of tacrolimus biosynthesis, which should allow to reduce the costs of the process. The enrichment of the fermentation medium in pyridine-2-carboxylic acid (picolinic acid), piperidine-2-carboxylic acid (pipecolic acid), pyridine-3-carboxylic acid (nicotinic acid) or pyridine-3-carboxylic acid amide (nicotinamide) caused significant growth of the productivity of tacrolimus: 7-fold, 6-fold, 3-fold and 5-fold, respectively. The optimum concentration of the precursors in medium was 0.0025-0.005%. The investigation of the kinetics of tacrolimus biosynthesis together with the analysis of the impact of tested compounds on the culture growth and NAD (nicotinamide adenine dinucleotide) concentration in S. tsukubaensis cells enables to put forward a hypothesis concerning the mechanism of action of tested culture medium additives. The compounds active as tacrolimus precursors (pipecolic and picolinic acids) are more effective than these active mainly as the growth promoters (nicotinamide and nicotinic acid). Nicotinamide and nicotinic acid--vitamin B₃ components--promote S. tsukubaensis growth most probably due to the stimulation of NAD/NADP biosynthesis.
Collapse
Affiliation(s)
- Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, 1 Banacha St, 02-097 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
47
|
Improvement of FK506 production in Streptomyces tsukubaensis by genetic enhancement of the supply of unusual polyketide extender units via utilization of two distinct site-specific recombination systems. Appl Environ Microbiol 2012; 78:5093-103. [PMID: 22582065 DOI: 10.1128/aem.00450-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FK506 is a potent immunosuppressant that has a wide range of clinical applications. Its 23-member macrocyclic scaffold, mainly with a polyketide origin, features two methoxy groups at C-13 and C-15 and one allyl side chain at C-21, due to the region-specific incorporation of two unusual extender units derived from methoxymalonyl-acyl carrier protein (ACP) and allylmalonyl-coenzyme A (CoA), respectively. Whether their intracellular formations can be a bottleneck for FK506 production remains elusive. In this study, we report the improvement of FK506 yield in the producing strain Streptomyces tsukubaensis by the duplication of two sets of pathway-specific genes individually encoding the biosyntheses of these two extender units, thereby providing a promising approach to generate high-FK506-producing strains via genetic manipulation. Taking advantage of the fact that S. tsukubaensis is amenable to two actinophage (ΦC31 and VWB) integrase-mediated recombination systems, we genetically enhanced the biosyntheses of methoxymalonyl-ACP and allylmalonyl-CoA, as indicated by transcriptional analysis. Together with the optimization of glucose supplementation, the maximal FK506 titer eventually increased by approximately 150% in comparison with that of the original strain. The strategy of engineering the biosynthesis of unusual extender units described here may be applicable to improving the production of other polyketide or nonribosomal peptide natural products that contain pathway-specific building blocks.
Collapse
|
48
|
Roles of fkbN in positive regulation and tcs7 in negative regulation of FK506 biosynthesis in Streptomyces sp. strain KCTC 11604BP. Appl Environ Microbiol 2012; 78:2249-55. [PMID: 22267670 DOI: 10.1128/aem.06766-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FK506 is an important 23-member polyketide macrolide with immunosuppressant activity. Its entire biosynthetic gene cluster was previously cloned from Streptomyces sp. strain KCTC 11604BP, and sequence analysis identified three putative regulatory genes, tcs2, tcs7, and fkbN, which encode proteins with high similarity to the AsnC family transcriptional regulators, LysR-type transcriptional regulators, and LAL family transcriptional regulators, respectively. Overexpression and in-frame deletion of tcs2 did not affect the production of FK506 or co-occurring FK520 compared to results for the wild-type strain, suggesting that tcs2 is not involved in their biosynthesis. fkbN overexpression improved the levels of FK506 and FK520 production by approximately 2.0-fold, and a deletion of fkbN caused the complete loss of FK506 and FK520 production. Although the overexpression of tcs7 decreased the levels of FK506 and FK520 production slightly, a deletion of tcs7 caused 1.9-fold and 1.5-fold increases in FK506 and FK520 production, respectively. Finally, fkbN overexpression in the tcs7 deletion strain resulted in a 4.0-fold (21 mg liter(-1)) increase in FK506 production compared to that by the wild-type strain. This suggests that fkbN encodes a positive regulatory protein essential for FK506/FK520 biosynthesis and that the gene product of tcs7 negatively regulates their biosynthesis, demonstrating the potential of exploiting this information for strain improvement. Semiquantitative reverse transcription-PCR (RT-PCR) analyses of the transcription levels of the FK506 biosynthetic genes in the wild-type and mutant strains proved that most of the FK506 biosynthetic genes are regulated by fkbN in a positive manner and negatively by tcs7.
Collapse
|
49
|
Martín JF, Liras P. Cascades and networks of regulatory genes that control antibiotic biosynthesis. Subcell Biochem 2012; 64:115-138. [PMID: 23080248 DOI: 10.1007/978-94-007-5055-5_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Onset of the biosynthesis of bioactive secondary metabolites in batch cultures of actinomycetes occurs after the rapid growth phase, following a transition phase which involves complex metabolic changes. This transition is triggered by nutrient starvation or by other environmental stress signals. Expression of genes encoding bioactive secondary metabolites is governed by cascades of pathway specific regulators and networks of cross-talking global regulators. Pathway specific regulators such as Streptomyces antibiotic regulatory proteins, LAL-type and LysR-type regulators respond to autoregulatory proteins that act in concert with their cognate ligands (e.g. γ-butyrolactone receptor proteins and their cognate γ-butyrolactone ligands). Global regulators such as PhoR-PhoP and other two component systems and orphan response regulators, such as GlnR, control set of genes affecting primary and secondary metabolism. GlnR and, therefore, nitrogen metabolism genes are under phosphate control exerted by binding of PhoP to PHO boxes located in the promoter region of GlnR. A few pleiotropic regulatory genes, such as areB (ndgR), dmdR1 or dasR connect primary metabolism (amino acid biosynthesis, N-acetylglucosamine or iron levels) with antibiotic biosynthesis. Some atypical response regulators that require specific small ligands appear to be involved in feedback control of antibiotic production. All these mechanisms together modulate, in a coordinated manner, different aspects of Streptomyces metabolism as a real "protection net" that prevents drastic changes in metabolism that may be deleterious for cell survival.
Collapse
Affiliation(s)
- Juan F Martín
- Department of Molecular Biology, University of León, León, 24071, Spain,
| | | |
Collapse
|
50
|
|