1
|
Rios EI, Gonçalves D, Morano KA, Johnson JL. Quantitative proteomic analysis reveals unique Hsp90 cycle-dependent client interactions. Genetics 2024; 227:iyae057. [PMID: 38606935 PMCID: PMC11151932 DOI: 10.1093/genetics/iyae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024] Open
Abstract
Hsp90 is an abundant and essential molecular chaperone that mediates the folding and activation of client proteins in a nucleotide-dependent cycle. Hsp90 inhibition directly or indirectly impacts the function of 10-15% of all proteins due to degradation of client proteins or indirect downstream effects. Due to its role in chaperoning oncogenic proteins, Hsp90 is an important drug target. However, compounds that occupy the ATP-binding pocket and broadly inhibit function have not achieved widespread use due to negative effects. More selective inhibitors are needed; however, it is unclear how to achieve selective inhibition. We conducted a quantitative proteomic analysis of soluble proteins in yeast strains expressing wild-type Hsp90 or mutants that disrupt different steps in the client folding pathway. Out of 2,482 proteins in our sample set (approximately 38% of yeast proteins), we observed statistically significant changes in abundance of 350 (14%) of those proteins (log2 fold change ≥ 1.5). Of these, 257/350 (∼73%) with the strongest differences in abundance were previously connected to Hsp90 function. Principal component analysis of the entire dataset revealed that the effects of the mutants could be separated into 3 primary clusters. As evidence that Hsp90 mutants affect different pools of clients, simultaneous co-expression of 2 mutants in different clusters restored wild-type growth. Our data suggest that the ability of Hsp90 to sample a wide range of conformations allows the chaperone to mediate folding of a broad array of clients and that disruption of conformational flexibility results in client defects dependent on those states.
Collapse
Affiliation(s)
- Erick I Rios
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
2
|
Flynn JM, Joyce ME, Bolon DNA. Dominant negative mutations in yeast Hsp90 reveal triage decision mechanism targeting client proteins for degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573950. [PMID: 38260708 PMCID: PMC10802349 DOI: 10.1101/2024.01.02.573950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Most of the fundamental processes of cells are mediated by proteins. However, the biologically-relevant mechanism of most proteins are poorly understood. Dominant negative mutations have provided a valuable tool for investigating protein mechanisms but can be difficult to isolate because of their toxic effects. We used a mutational scanning approach to identify dominant negative mutations in yeast Hsp90. Hsp90 is a chaperone that forms dynamic complexes with many co-chaperones and client proteins. In vitro analyses have elucidated some key biochemical states and structures of Hsp90, co-chaperones, and clients; however, the biological mechanism of Hsp90 remains unclear. For example, high throughput studies have found that many E3 ubiquitin ligases bind to Hsp90, but it is unclear if these are primarily clients or acting to tag other clients for degradation. We introduced a library of all point mutations in the ATPase domain of Hsp90 into yeast and noticed that 176 were more than 10-fold depleted at the earliest point that we could analyze. There were two hot spot regions of the depleted mutations that were located at the hinges of a loop that closes over ATP. We quantified the dominant negative growth effects of mutations in the hinge regions using a library of mutations driven by an inducible promoter. We analyzed individual dominant negative mutations in detail and found that addition of the E33A mutation that prevents ATP hydrolysis by Hsp90 abrogated the dominant negative phenotype. Pull-down experiments did not reveal any stable binding partners, indicating that the dominant effects were mediated by dynamic complexes. DN Hsp90 decreased the expression level of two model Hsp90 clients, glucocorticoid receptor (GR) and v-src kinase. Using MG132, we found that GR was rapidly destabilized in a proteasome-dependent fashion. These findings provide evidence that the binding of E3 ligases to Hsp90 may serve a quality control function fundamental to eukaryotes.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Margot E. Joyce
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Daniel N. A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
3
|
Hellenkamp B, Thurn J, Stadlmeier M, Hugel T. Kinetics of Transient Protein Complexes Determined via Diffusion-Independent Microfluidic Mixing and Fluorescence Stoichiometry. J Phys Chem B 2018; 122:11554-11560. [PMID: 30351113 DOI: 10.1021/acs.jpcb.8b07437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Low-affinity protein complexes and their transient states are difficult to measure in single-molecule experiments because of their low population at low concentrations. A prominent solution to this problem is the use of microfluidic mixing devices, which rely on diffusion-based mixing. This is not ideal for multiprotein complexes, as the single-molecule fluorescence signal is dominated by the already dissociated species. Here, we designed a microfluidic device with mixing structures for fast and homogeneous mixing of components with varying diffusion coefficients and for fluorescence measurements at a defined single-molecule concentration. This enables direct measurement of dissociation rates at a broad range of timescales from a few milliseconds to several minutes. This further allows us to measure structural properties and stoichiometries of protein complexes with large equilibrium dissociation constants ( KD's) of 5 μM and above. We used the platform to measure structural properties and dissociation rates of heat shock protein 90 (Hsp90) dimers and found at least two dissociation rates which depend on the nucleotide state. Finally, we demonstrate the capability for measuring also equilibrium dissociation constants, resulting in the determination of both the kinetics and thermodynamics of the system under investigation.
Collapse
Affiliation(s)
- Björn Hellenkamp
- Columbia University , Engineering and Applied Science , New York , New York , United States
| | - Johann Thurn
- Institute of Physical Chemistry , University of Freiburg , Albertstr. 23a , 79104 Freiburg , Germany
| | - Martina Stadlmeier
- Bildungsakademie Inn-Salzach, InfraServ GmbH & Co. Gendorf KG, Alte-Haupttor-Straße 2 , 84508 Burgkirchen a.d. Alz , Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry , University of Freiburg , Albertstr. 23a , 79104 Freiburg , Germany
| |
Collapse
|
4
|
Mishra P, Flynn JM, Starr TN, Bolon DNA. Systematic Mutant Analyses Elucidate General and Client-Specific Aspects of Hsp90 Function. Cell Rep 2016; 15:588-598. [PMID: 27068472 DOI: 10.1016/j.celrep.2016.03.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/08/2015] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
To probe the mechanism of the Hsp90 chaperone that is required for the maturation of many signaling proteins in eukaryotes, we analyzed the effects of all individual amino acid changes in the ATPase domain on yeast growth rate. The sensitivity of a position to mutation was strongly influenced by proximity to the phosphates of ATP, indicating that ATPase-driven conformational changes impose stringent physical constraints on Hsp90. To investigate how these constraints may vary for different clients, we performed biochemical analyses on a panel of Hsp90 mutants spanning the full range of observed fitness effects. We observed distinct effects of nine Hsp90 mutations on activation of v-src and glucocorticoid receptor (GR), indicating that different chaperone mechanisms can be utilized for these clients. These results provide a detailed guide for understanding Hsp90 mechanism and highlight the potential for inhibitors of Hsp90 that target a subset of clients.
Collapse
Affiliation(s)
- Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tyler N Starr
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
5
|
Kathuria SV, Chan YH, Nobrega RP, Özen A, Matthews CR. Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability. Protein Sci 2015; 25:662-75. [PMID: 26660714 DOI: 10.1002/pro.2860] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/05/2023]
Abstract
Measurements of protection against exchange of main chain amide hydrogens (NH) with solvent hydrogens in globular proteins have provided remarkable insights into the structures of rare high-energy states that populate their folding free-energy surfaces. Lacking, however, has been a unifying theory that rationalizes these high-energy states in terms of the structures and sequences of their resident proteins. The Branched Aliphatic Side Chain (BASiC) hypothesis has been developed to explain the observed patterns of protection in a pair of TIM barrel proteins. This hypothesis supposes that the side chains of isoleucine, leucine, and valine (ILV) residues often form large hydrophobic clusters that very effectively impede the penetration of water to their underlying hydrogen bond networks and, thereby, enhance the protection against solvent exchange. The linkage between the secondary and tertiary structures enables these ILV clusters to serve as cores of stability in high-energy partially folded states. Statistically significant correlations between the locations of large ILV clusters in native conformations and strong protection against exchange for a variety of motifs reported in the literature support the generality of the BASiC hypothesis. The results also illustrate the necessity to elaborate this simple hypothesis to account for the roles of adjacent hydrocarbon moieties in defining stability cores of partially folded states along folding reaction coordinates.
Collapse
Affiliation(s)
- Sagar V Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts, 01605
| | - Yvonne H Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts, 01605
| | - R Paul Nobrega
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts, 01605
| | - Ayşegül Özen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts, 01605
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts, 01605
| |
Collapse
|
6
|
Flynn JM, Mishra P, Bolon DNA. Mechanistic Asymmetry in Hsp90 Dimers. J Mol Biol 2015; 427:2904-11. [PMID: 25843003 DOI: 10.1016/j.jmb.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Hsp90 is a molecular chaperone that facilitates the maturation of signaling proteins including many kinases and steroid hormone receptors. Through these client proteins, Hsp90 is a key mediator of many physiological processes and has emerged as a promising drug target in cancer. Additionally, Hsp90 can mask or potentiate the impact of mutations in clients with remarkable influence on evolutionary adaptations. The influential roles of Hsp90 in biology and disease have stimulated extensive research into the molecular mechanism of this chaperone. These studies have shown that Hsp90 is a homodimeric protein that requires ATP hydrolysis and a host of accessory proteins termed co-chaperones to facilitate the maturation of clients to their active states. Flexible hinge regions between its three structured domains enable Hsp90 to sample dramatically distinct conformations that are influenced by nucleotide, client, and co-chaperone binding. While it is clear that Hsp90 can exist in symmetrical conformations, recent studies have indicated that this homodimeric chaperone can also assume a variety of asymmetric conformations and complexes that are important for client maturation. The visualization of Hsp90-client complexes at high resolution together with tools to independently manipulate each subunit in the Hsp90 dimer are providing new insights into the asymmetric function of each subunit during client maturation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Mishra P, Bolon DNA. Designed Hsp90 heterodimers reveal an asymmetric ATPase-driven mechanism in vivo. Mol Cell 2014; 53:344-50. [PMID: 24462207 DOI: 10.1016/j.molcel.2013.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/19/2013] [Accepted: 12/24/2013] [Indexed: 02/02/2023]
Abstract
Hsp90 is a homodimeric ATPase that is essential in eukaryotes for the maturation of client proteins frequently involved in signal transduction, including many kinases and nuclear steroid hormone receptors. Competitive inhibitors of ATP binding to Hsp90 prevent client maturation and show promise as anticancer agents in clinical trials. However, the role of ATP binding and hydrolysis in each subunit of the Hsp90 dimer has been difficult to investigate because of an inability to assemble and study dimers of defined composition. We used protein engineering to generate functional Hsp90 subunits that preferentially assemble as heterodimers. We analyzed dimers wherein one subunit harbors a disruptive mutation and observed that ATP binding by both subunits is essential for function in yeast, whereas ATP hydrolysis is only required in one subunit. These findings demonstrate important functional contributions from both symmetric and asymmetric Hsp90 dimers and provide valuable reagents for future investigations of Hsp90 mechanism.
Collapse
Affiliation(s)
- Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Solubility-promoting function of Hsp90 contributes to client maturation and robust cell growth. EUKARYOTIC CELL 2012; 11:1033-41. [PMID: 22660624 DOI: 10.1128/ec.00099-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hsp90 chaperone is required for the maturation of signal transduction clients, including many kinases and nuclear steroid hormone receptors. The binding and hydrolysis of ATP by Hsp90 drive conformational rearrangements in three structure domains. Two intrinsically disordered regions of Hsp90 located between these domains and at the C terminus have traditionally been considered to impart flexibility. We discovered that the charged nature of these acid-rich disordered regions imparts a solubility-promoting function to Hsp90 that is important for its cellular activity in yeast. Both the solubility-promoting function and ATPase activity must occur in the same Hsp90 molecule in order to support robust growth, suggesting that the solubility-promoting function is required during the ATP-driven client maturation process. Expression of model clients together with Hsp90 variants indicated interdependent solubilities mediated by the aggregation propensities of both the client and Hsp90. We propose a model whereby the charge-rich disordered regions of Hsp90 serve a solubility-promoting function important for complexes with aggregation-prone clients. These findings demonstrate a novel biological function of the intrinsically disordered regions in Hsp90 and provide a compelling rationale for why their charged properties are conserved throughout eukaryotic evolution.
Collapse
|
9
|
Lin CL, Huang YT, Richter JD. Transient CPEB dimerization and translational control. RNA (NEW YORK, N.Y.) 2012; 18:1050-1061. [PMID: 22456264 PMCID: PMC3334692 DOI: 10.1261/rna.031682.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/16/2012] [Indexed: 05/29/2023]
Abstract
During oocyte development, the cytoplasmic polyadenylation element-binding protein (CPEB) nucleates a set of factors on mRNA that controls cytoplasmic polyadenylation and translation. The regulation of polyadenylation is mediated in part through serial phosphorylations of CPEB, which control both the dynamic integrity of the cytoplasmic polyadenylation apparatus and CPEB stability, events necessary for meiotic progression. Because the precise stoichiometry between CPEB and CPE-containing RNA is responsible for the temporal order of mRNA polyadenylation during meiosis, we hypothesized that, if CPEB production exceeded the amount required to bind mRNA, the excess would be sequestered in an inactive form. One attractive possibility for the sequestration is protein dimerization. We demonstrate that not only does CPEB form a dimer, but dimerization requires its RNA-binding domains. Dimer formation prevents CPEB from being UV cross-linked to RNA, which establishes a second pool of CPEB that is inert for polyadenylation and translational control. During oocyte maturation, the dimers are degraded much more rapidly than the CPEB monomers, due to their greater affinity for polo-like kinase 1 (plx1) and the ubiquitin E3 ligase β-TrCP. Because dimeric CPEB also binds cytoplasmic polyadenylation factors with greater affinity than monomeric CPEB, it may act as a hub or reservoir for the polyadenylation machinery. We propose that the balance between CPEB and its target mRNAs is maintained by CPEB dimerization, which inactivates spare proteins and prevents them from inducing polyadenylation of RNAs with low affinity binding sites. In addition, the dimers might serve as molecular hubs that release polyadenylation factors for translational activation upon CPEB dimer destruction.
Collapse
Affiliation(s)
- Chien-Ling Lin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yen-Tsung Huang
- Department of Epidemiology and
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Joel D. Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
10
|
Pullen L, Bolon DN. Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo. J Biol Chem 2011; 286:11091-8. [PMID: 21278257 DOI: 10.1074/jbc.m111.223131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hsp90 populates distinct open and closed conformations mediated by transient N-terminal dimerization. To investigate the mechanistic role of these large conformational changes, we designed Hsp90 with an N-terminal coiled-coil to clamp the termini together and enforce N-domain proximity. Biophysical analyses demonstrate that the coiled-coil effectively maintains N-domain proximity in the absence of ATP, a condition that favors the open state of Hsp90. Enforcing N-domain proximity results in increased ATPase activity, indicating that N-terminal dimerization is a rate-limiting step that is sped-up with the coiled-coil due to increased effective N-domain concentration. The relative difference in ATPase activity between coil-Hsp90 and wt was reduced in the presence of both an ATPase activating (Aha1) and an inhibiting (Sba1) co-chaperone. As both of these co-chaperones bind preferentially to N-terminally dimerized Hsp90, the buffering effect of these co-chaperones demonstrates the biochemical relevance of Hsp90 conformational properties in addition to N-terminal dimerization. Enforcing N-domain proximity is compatible with viability in yeast, underlining the mechanistic relevance of Hsp90 conformational changes that are less dramatic than the transition between fully open and closed.
Collapse
Affiliation(s)
- Lester Pullen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
11
|
Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci U S A 2010; 107:16101-6. [PMID: 20736353 DOI: 10.1073/pnas.1000916107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is an important and abundant protein in eukaryotic cells, essential for the activation of a large set of signal transduction and regulatory proteins. During the functional cycle, the Hsp90 dimer performs large conformational rearrangements. The transient N-terminal dimerization of Hsp90 has been extensively investigated, under the assumption that the C-terminal interface is stably dimerized. Using a fluorescence-based single molecule assay and Hsp90 dimers caged in lipid vesicles, we were able to separately observe and kinetically analyze N- and C-terminal dimerizations. Surprisingly, the C-terminal dimer opens and closes with fast kinetics. The occupancy of the unexpected C-terminal open conformation can be modulated by nucleotides bound to the N-terminal domain and by N-terminal deletion mutations, clearly showing a communication between the two terminal domains. Moreover our findings suggest that the C- and N-terminal dimerizations are anticorrelated. This changes our view on the conformational cycle of Hsp90 and shows the interaction of two dimerization domains.
Collapse
|
12
|
Wayne N, Bolon DN. Charge-rich regions modulate the anti-aggregation activity of Hsp90. J Mol Biol 2010; 401:931-9. [PMID: 20615417 DOI: 10.1016/j.jmb.2010.06.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 01/16/2023]
Abstract
Protein aggregation can have dramatic effects on cellular function and plays a causative role in many human diseases. In all cells, molecular chaperones bind to aggregation-prone proteins and hinder aggregation. The ability of a protein to resist aggregation and remain soluble in aqueous solution is linked to the physical properties of the protein. Numerous physical studies demonstrate that charged atoms favor solubility. We note that many molecular chaperones possess a substantial negative charge that may allow them to impart solubility on aggregation-prone proteins. Hsp90 is one such negatively charged molecular chaperone. The charge on Hsp90 is largely concentrated in two highly acidic regions. To investigate the relationship between chaperone charge and protein solubility, we deleted these charge-rich regions and analyzed the resulting Hsp90 constructs for anti-aggregation activity. We found that deletion of both charge-rich regions dramatically impaired Hsp90 anti-aggregation activity. The anti-aggregation role of the deleted charge-rich regions could be due to net charge or sequence-specific features. To distinguish these possibilities, we attached an acid-rich region with a distinct amino acid sequence to our double-deleted Hsp90 construct. This charge rescue construct displayed effective anti-aggregation activity indicating that the net charge of Hsp90 contributes to its anti-aggregation activity.
Collapse
Affiliation(s)
- Natalie Wayne
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, LRB922, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|