1
|
Kojima K, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Convergent mechanism underlying the acquisition of vertebrate scotopic vision. J Biol Chem 2024; 300:107175. [PMID: 38499150 PMCID: PMC11007431 DOI: 10.1016/j.jbc.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
High sensitivity of scotopic vision (vision in dim light conditions) is achieved by the rods' low background noise, which is attributed to a much lower thermal activation rate (kth) of rhodopsin compared with cone pigments. Frogs and nocturnal geckos uniquely possess atypical rods containing noncanonical cone pigments that exhibit low kth, mimicking rhodopsin. Here, we investigated the convergent mechanism underlying the low kth of rhodopsins and noncanonical cone pigments. Our biochemical analysis revealed that the kth of canonical cone pigments depends on their absorption maximum (λmax). However, rhodopsin and noncanonical cone pigments showed a substantially lower kth than predicted from the λmax dependency. Given that the λmax is inversely proportional to the activation energy of the pigments in the Hinshelwood distribution-based model, our findings suggest that rhodopsin and noncanonical cone pigments have convergently acquired low frequency of spontaneous-activation attempts, including thermal fluctuations of the protein moiety, in the molecular evolutionary processes from canonical cone pigments, which contributes to highly sensitive scotopic vision.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan; Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yumiko Yamano
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan; Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
2
|
Kojima K, Matsutani Y, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Evolutionary adaptation of visual pigments in geckos for their photic environment. SCIENCE ADVANCES 2021; 7:eabj1316. [PMID: 34597144 PMCID: PMC10938493 DOI: 10.1126/sciadv.abj1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates generally have a single type of rod for scotopic vision and multiple types of cones for photopic vision. Noteworthily, nocturnal geckos transmuted ancestral photoreceptor cells into rods containing not rhodopsin but cone pigments, and, subsequently, diurnal geckos retransmuted these rods into cones containing cone pigments. High sensitivity of scotopic vision is underlain by the rod’s low background noise, which originated from a much lower spontaneous activation rate of rhodopsin than of cone pigments. Here, we revealed that nocturnal gecko cone pigments decreased their spontaneous activation rates to mimic rhodopsin, whereas diurnal gecko cone pigments recovered high rates similar to those of typical cone pigments. We also identified amino acid residues responsible for the alterations of the spontaneous activation rates. Therefore, we concluded that the switch between diurnality and nocturnality in geckos required not only morphological transmutation of photoreceptors but also adjustment of the spontaneous activation rates of visual pigments.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Evolutionary history of teleost intron-containing and intron-less rhodopsin genes. Sci Rep 2019; 9:10653. [PMID: 31337799 PMCID: PMC6650399 DOI: 10.1038/s41598-019-47028-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/09/2019] [Indexed: 11/08/2022] Open
Abstract
Recent progress in whole genome sequencing has revealed that animals have various kinds of opsin genes for photoreception. Among them, most opsin genes have introns in their coding regions. However, it has been known for a long time that teleost retinas express intron-less rhodopsin genes, which are presumed to have been formed by retroduplication from an ancestral intron-containing rhodopsin gene. In addition, teleosts have an intron-containing rhodopsin gene (exo-rhodopsin) exclusively for pineal photoreception. In this study, to unravel the evolutionary origin of the two teleost rhodopsin genes, we analyzed the rhodopsin genes of non-teleost fishes in the Actinopterygii. The phylogenetic analysis of full-length sequences of bichir, sturgeon and gar rhodopsins revealed that retroduplication of the rhodopsin gene occurred after branching of the bichir lineage. In addition, analysis of the tissue distribution and the molecular properties of bichir, sturgeon and gar rhodopsins showed that the abundant and exclusive expression of intron-containing rhodopsin in the pineal gland and the short lifetime of its meta II intermediate, which leads to optimization for pineal photoreception, were achieved after branching of the gar lineage. Based on these results, we propose a stepwise evolutionary model of teleost intron-containing and intron-less rhodopsin genes.
Collapse
|
4
|
Han M, Song Y, Qian J, Ming D. Sequence-based prediction of physicochemical interactions at protein functional sites using a function-and-interaction-annotated domain profile database. BMC Bioinformatics 2018; 19:204. [PMID: 29859055 PMCID: PMC5984826 DOI: 10.1186/s12859-018-2206-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/15/2018] [Indexed: 01/16/2023] Open
Abstract
Background Identifying protein functional sites (PFSs) and, particularly, the physicochemical interactions at these sites is critical to understanding protein functions and the biochemical reactions involved. Several knowledge-based methods have been developed for the prediction of PFSs; however, accurate methods for predicting the physicochemical interactions associated with PFSs are still lacking. Results In this paper, we present a sequence-based method for the prediction of physicochemical interactions at PFSs. The method is based on a functional site and physicochemical interaction-annotated domain profile database, called fiDPD, which was built using protein domains found in the Protein Data Bank. This method was applied to 13 target proteins from the very recent Critical Assessment of Structure Prediction (CASP10/11), and our calculations gave a Matthews correlation coefficient (MCC) value of 0.66 for PFS prediction and an 80% recall in the prediction of the associated physicochemical interactions. Conclusions Our results show that, in addition to the PFSs, the physical interactions at these sites are also conserved in the evolution of proteins. This work provides a valuable sequence-based tool for rational drug design and side-effect assessment. The method is freely available and can be accessed at http://202.119.249.49.
Collapse
Affiliation(s)
- Min Han
- Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yifan Song
- Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jiaqiang Qian
- Department of Physiology and Biophysics, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Biotech Building Room B1-404, 30 South Puzhu Road, Jiangsu, 211816, Nanjing, People's Republic of China.
| |
Collapse
|
5
|
Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation. Proc Natl Acad Sci U S A 2017; 114:5437-5442. [PMID: 28484015 DOI: 10.1073/pnas.1620010114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most vertebrate retinas contain a single type of rod for scotopic vision and multiple types of cones for photopic and color vision. The retinas of certain amphibian species uniquely contain two types of rods: red rods, which express rhodopsin, and green rods, which express a blue-sensitive cone pigment (M1/SWS2 group). Spontaneous activation of rhodopsin induced by thermal isomerization of the retinal chromophore has been suggested to contribute to the rod's background noise, which limits the visual threshold for scotopic vision. Therefore, rhodopsin must exhibit low thermal isomerization rate compared with cone visual pigments to adapt to scotopic condition. In this study, we determined whether amphibian blue-sensitive cone pigments in green rods exhibit low thermal isomerization rates to act as rhodopsin-like pigments for scotopic vision. Anura blue-sensitive cone pigments exhibit low thermal isomerization rates similar to rhodopsin, whereas Urodela pigments exhibit high rates like other vertebrate cone pigments present in cones. Furthermore, by mutational analysis, we identified a key amino acid residue, Thr47, that is responsible for the low thermal isomerization rates of Anura blue-sensitive cone pigments. These results strongly suggest that, through this mutation, anurans acquired special blue-sensitive cone pigments in their green rods, which could form the molecular basis for scotopic color vision with normal red rods containing green-sensitive rhodopsin.
Collapse
|
6
|
Origin of the low thermal isomerization rate of rhodopsin chromophore. Sci Rep 2015; 5:11081. [PMID: 26061742 PMCID: PMC4462023 DOI: 10.1038/srep11081] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Low dark noise is a prerequisite for rod cells, which mediate our dim-light vision. The low dark noise is achieved by the extremely stable character of the rod visual pigment, rhodopsin, which evolved from less stable cone visual pigments. We have developed a biochemical method to quickly evaluate the thermal activation rate of visual pigments. Using an isomerization locked chromophore, we confirmed that thermal isomerization of the chromophore is the sole cause of thermal activation. Interestingly, we revealed an unexpected correlation between the thermal stability of the dark state and that of the active intermediate MetaII. Furthermore, we assessed key residues in rhodopsin and cone visual pigments by mutation analysis and identified two critical residues (E122 and I189) in the retinal binding pocket which account for the extremely low thermal activation rate of rhodopsin.
Collapse
|
7
|
Ramon E, Cordomí A, Aguilà M, Srinivasan S, Dong X, Moore AT, Webster AR, Cheetham ME, Garriga P. Differential light-induced responses in sectorial inherited retinal degeneration. J Biol Chem 2014; 289:35918-28. [PMID: 25359768 DOI: 10.1074/jbc.m114.609958] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations.
Collapse
Affiliation(s)
- Eva Ramon
- From the Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Arnau Cordomí
- the Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Aguilà
- the University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom, and
| | - Sundaramoorthy Srinivasan
- From the Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Xiaoyun Dong
- From the Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain
| | - Anthony T Moore
- the University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom, and the Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Andrew R Webster
- the University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom, and the Moorfields Eye Hospital, London EC1V 2PD, United Kingdom
| | - Michael E Cheetham
- the University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom, and
| | - Pere Garriga
- From the Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Spain,
| |
Collapse
|
8
|
Srinivasan S, Ramon E, Cordomí A, Garriga P. Binding specificity of retinal analogs to photoactivated visual pigments suggest mechanism for fine-tuning GPCR-ligand interactions. ACTA ACUST UNITED AC 2014; 21:369-78. [PMID: 24560606 DOI: 10.1016/j.chembiol.2014.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/21/2013] [Accepted: 01/13/2014] [Indexed: 11/16/2022]
Abstract
11-cis-retinal acts as an inverse agonist stabilizing the inactive conformation of visual pigments, and upon photoactivation, it isomerizes to all-trans-retinal, initiating signal transduction. We have analyzed opsin regeneration with retinal analogs for rhodopsin and red cone opsin. We find differential binding of the analogs to the receptors after photobleaching and a dependence of the binding kinetics on the oligomerization state of the protein. The results outline the sensitivity of retinal entry to the binding pocket of visual receptors to the specific conformation adopted by the receptor and by the molecular architecture defined by specific amino acids in the binding pocket and the retinal entry site, as well as the topology of the retinal analog. Overall, our findings highlight the specificity of the ligand-opsin interactions, a feature that can be shared by other G-protein-coupled receptors.
Collapse
Affiliation(s)
- Sundaramoorthy Srinivasan
- Chemical Engineering Department, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Eva Ramon
- Chemical Engineering Department, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pere Garriga
- Chemical Engineering Department, Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Universitat Politècnica de Catalunya, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain.
| |
Collapse
|
9
|
Kuemmel CM, Sandberg MN, Birge RR, Knox BE. A Conserved Aromatic Residue Regulating Photosensitivity in Short-Wavelength Sensitive Cone Visual Pigments. Biochemistry 2013; 52:5084-91. [DOI: 10.1021/bi400490g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Colleen M. Kuemmel
- Departments of Neuroscience
and Physiology, Biochemistry and Molecular Biology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York
13210, United States
| | - Megan N. Sandberg
- Departments
of Chemistry and
Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
06269, United States
| | - Robert R. Birge
- Departments
of Chemistry and
Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
06269, United States
| | - Barry E. Knox
- Departments of Neuroscience
and Physiology, Biochemistry and Molecular Biology, and Ophthalmology, SUNY Upstate Medical University, Syracuse, New York
13210, United States
| |
Collapse
|
10
|
Sánchez-Martín MJ, Ramon E, Torrent-Burgués J, Garriga P. Improved Conformational Stability of the Visual G Protein-Coupled Receptor Rhodopsin by Specific Interaction with Docosahexaenoic Acid Phospholipid. Chembiochem 2013; 14:639-44. [DOI: 10.1002/cbic.201200687] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Indexed: 11/10/2022]
|
11
|
Goncalves J, Eilers M, South K, Opefi CA, Laissue P, Reeves PJ, Smith SO. Magic angle spinning nuclear magnetic resonance spectroscopy of G protein-coupled receptors. Methods Enzymol 2013; 522:365-89. [PMID: 23374193 DOI: 10.1016/b978-0-12-407865-9.00017-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and mediate a diversity of cellular processes. These receptors have a common seven-transmembrane helix structure, yet have evolved to respond to literally thousands of different ligands. In this chapter, we describe the use of magic angle spinning solid-state NMR spectroscopy for characterizing the structure and dynamics of GPCRs. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional receptors containing (13)C- and (15)N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for magic angle spinning solid-state NMR measurements of chemical shifts and dipolar couplings, which reveal detailed information on GPCR structure and dynamics.
Collapse
Affiliation(s)
- Joseph Goncalves
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Matsuyama T, Yamashita T, Imamoto Y, Shichida Y. Photochemical properties of mammalian melanopsin. Biochemistry 2012; 51:5454-62. [PMID: 22670683 DOI: 10.1021/bi3004999] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Melanopsin is the photoreceptor molecule of intrinsically photosensitive retinal ganglion cells, which serve as the input for various nonvisual behavior and physiological functions fundamental to organisms. The retina, therefore, possess a melanopsin-based nonvisual system in addition to the visual system based on the classical visual photoreceptor molecules. To elucidate the molecular properties of melanopsin, we have exogenously expressed mouse melanopsin in cultured cells. We were able to obtain large amounts of purified mouse melanopsin and conducted a comprehensive spectroscopic study of its photochemical properties. Melanopsin has an absorption maximum at 467 nm, and it converts to a meta intermediate having an absorption maximum at 476 nm. The melanopsin photoreaction is similar to that of squid rhodopsin, exhibiting bistability that results in a photosteady mixture of a resting state (melanopsin containing 11-cis-retinal) and an excited state (metamelanopsin containing all-trans-retinal) upon sustained irradiation. The absorption coefficient of melanopsin is 33000 ± 1000 M(-1) cm(-1), and its quantum yield of isomerization is 0.52; these values are also typical of invertebrate bistable pigments. Thus, the nonvisual system in the retina relies on a type of photoreceptor molecule different from that of the visual system. Additionally, we found a new state of melanopsin, containing 7-cis-retinal (extramelanopsin), which forms readily upon long-wavelength irradiation (yellow to red light) and photoconverts to metamelanopsin with short-wavelength (blue light) irradiation. Although it is unclear whether extramelanopsin would have any physiological role, it could potentially allow wavelength-dependent regulation of melanopsin functions.
Collapse
Affiliation(s)
- Take Matsuyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
13
|
Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proc Natl Acad Sci U S A 2012; 109:5247-52. [PMID: 22431612 DOI: 10.1073/pnas.1117268109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the retinal binding pocket of rhodopsin, a Schiff base links the retinal ligand covalently to the Lys296 side chain. Light transforms the inverse agonist 11-cis-retinal into the agonist all-trans-retinal, leading to the active Meta II state. Crystal structures of Meta II and the active conformation of the opsin apoprotein revealed two openings of the 7-transmembrane (TM) bundle towards the hydrophobic core of the membrane, one between TM1/TM7 and one between TM5/TM6, respectively. Computational analysis revealed a putative ligand channel connecting the openings and traversing the binding pocket. Identified constrictions within the channel motivated this study of 35 rhodopsin mutants in which single amino acids lining the channel were replaced. 11-cis-retinal uptake and all-trans-retinal release were measured using UV/visible and fluorescence spectroscopy. Most mutations slow or accelerate both uptake and release, often with opposite effects. Mutations closer to the Lys296 active site show larger effects. The nucleophile hydroxylamine accelerates retinal release 80 times but the action profile of the mutants remains very similar. The data show that the mutations do not probe local channel permeability but rather affect global protein dynamics, with the focal point in the ligand pocket. We propose a model for retinal/receptor interaction in which the active receptor conformation sets the open state of the channel for 11-cis-retinal and all-trans-retinal, with positioning of the ligand at the active site as the kinetic bottleneck. Although other G protein-coupled receptors lack the covalent link to the protein, the access of ligands to their binding pocket may follow similar schemes.
Collapse
|
14
|
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci U S A 2011; 109:119-24. [PMID: 22198838 DOI: 10.1073/pnas.1114089108] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCR) are seven transmembrane helix proteins that couple binding of extracellular ligands to conformational changes and activation of intracellular G proteins, GPCR kinases, and arrestins. Constitutively active mutants are ubiquitously found among GPCRs and increase the inherent basal activity of the receptor, which often correlates with a pathological outcome. Here, we have used the M257Y(6.40) constitutively active mutant of the photoreceptor rhodopsin in combination with the specific binding of a C-terminal fragment from the G protein alpha subunit (GαCT) to trap a light activated state for crystallization. The structure of the M257Y/GαCT complex contains the agonist all-trans-retinal covalently bound to the native binding pocket and resembles the G protein binding metarhodopsin-II conformation obtained by the natural activation mechanism; i.e., illumination of the prebound chromophore 11-cis-retinal. The structure further suggests a molecular basis for the constitutive activity of 6.40 substitutions and the strong effect of the introduced tyrosine based on specific interactions with Y223(5.58) in helix 5, Y306(7.53) of the NPxxY motif and R135(3.50) of the E(D)RY motif, highly conserved residues of the G protein binding site.
Collapse
|
15
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
16
|
Toledo D, Ramon E, Aguilà M, Cordomí A, Pérez JJ, Mendes HF, Cheetham ME, Garriga P. Molecular mechanisms of disease for mutations at Gly-90 in rhodopsin. J Biol Chem 2011; 286:39993-40001. [PMID: 21940625 DOI: 10.1074/jbc.m110.201517] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different mutations at Gly-90 in the second transmembrane helix of the photoreceptor protein rhodopsin have been proposed to lead to different phenotypes. G90D has been classically associated with congenital night blindness, whereas the newly reported G90V substitution was linked to a retinitis pigmentosa phenotype. Here, we used Val/Asp replacements of the native Gly at position 90 to unravel the structure/function divergences caused by these mutations and the potential molecular mechanisms of inherited retinal disease. The G90V and G90D mutants have a similar conformation around the Schiff base linkage region in the dark state and same regeneration kinetics with 11-cis-retinal, but G90V has dramatically reduced thermal stability when compared with the G90D mutant rhodopsin. The G90V mutant also shows, like G90D, an altered photobleaching pattern and capacity to activate Gt in the opsin state. Furthermore, the regeneration of the G90V mutant with 9-cis-retinal was improved, achieving the same A(280)/A(500) as wild type isorhodopsin. Hydroxylamine resistance was also recovered, indicating a compact structure around the Schiff base linkage, and the thermal stability was substantially improved when compared with the 11-cis-regenerated mutant. These results support the role of thermal instability and/or abnormal photoproduct formation in eliciting a retinitis pigmentosa phenotype. The improved stability and more compact structure of the G90V mutant when it was regenerated with 9-cis-retinal brings about the possibility that this isomer or other modified retinoid analogues might be used in potential treatment strategies for mutants showing the same structural features.
Collapse
Affiliation(s)
- Darwin Toledo
- Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol 2011; 21:541-51. [PMID: 21723721 DOI: 10.1016/j.sbi.2011.06.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/31/2011] [Accepted: 06/10/2011] [Indexed: 11/23/2022]
Abstract
Recent years have seen tremendous breakthroughs in structure determination of G-protein-coupled receptors (GPCRs). In 2011, two agonist-bound active-state structures of rhodopsin have been published. Together with structures of several rhodopsin activation intermediates and a wealth of biochemical and spectroscopic information, they provide a unique structural framework on which to understand GPCR activation. Here we use this framework to compare the recent crystal structures of the agonist-bound active states of the β(2) adrenergic receptor (β(2)AR) and the A(2A) adenosine receptor (A(2A)AR). While activation of these three GPCRs results in rearrangements of TM5 and TM6, the extent of this conformational change varies considerably. Displacements of the cytoplasmic side of TM6 ranges between 3 and 8Å depending on whether selective stabilizers of the active conformation are used (i.e. a G-protein peptide in the case of rhodopsin or a conformationally selective nanobody in the case of the β(2)AR) or not (A(2A)AR). The agonist-induced conformational changes in the ligand-binding pocket are largely receptor specific due to the different chemical nature of the agonists. However, several similarities can be observed, including a relocation of conserved residues W6.48 and F6.44 towards L5.51 and P5.50, and of I/L3.40 away from P5.50. This transmission switch links agonist binding to the movement of TM5 and TM6 through the rearrangement of the TM3-TM5-TM6 interface, and possibly constitutes a common theme of GPCR activation.
Collapse
|