1
|
Leitl KD, Sperl LE, Hagn F. Preferred inhibition of pro-apoptotic Bak by BclxL via a two-step mechanism. Cell Rep 2024; 43:114526. [PMID: 39046879 DOI: 10.1016/j.celrep.2024.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Bak is a pore-forming Bcl2 protein that induces apoptosis at the outer mitochondrial membrane, which can either proceed via Bak oligomerization or be inhibited by anti-apoptotic Bcl2 proteins, such as BclxL. BclxL is very efficient in inhibiting Bak pore formation, but the mechanistic basis of this preferred interaction has remained enigmatic. Here, we identify Bakα1 as a second binding site for BclxL and show that it specifically interacts with the Bcl2-homology (BH)3 binding groove of BclxL. The affinity between BclxL and Bakα1 is weaker than with Bak-BH3, suggesting that Bakα1, being exposed early in the pore-forming trajectory, transiently captures BclxL, which subsequently transitions to the proximal BH3 site. Bak variants where the initial transient interaction with BclxL is modulated show a markedly altered response to BclxL inhibition. This work contributes to a better mechanistic understanding of the fine-tuned interactions between different players of the Bcl2 protein family.
Collapse
Affiliation(s)
- Kira D Leitl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Laura E Sperl
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ), Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany; Molecular Targets and Therapeutics Center (MTTC), Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany.
| |
Collapse
|
2
|
Zhou Y, Nakajima R, Shirasawa M, Fikriyanti M, Zhao L, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. BIOLOGY 2023; 12:1511. [PMID: 38132337 PMCID: PMC10740672 DOI: 10.3390/biology12121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The transcription factor E2F links the RB pathway to the p53 pathway upon loss of function of pRB, thereby playing a pivotal role in the suppression of tumorigenesis. E2F fulfills a major role in cell proliferation by controlling a variety of growth-associated genes. The activity of E2F is controlled by the tumor suppressor pRB, which binds to E2F and actively suppresses target gene expression, thereby restraining cell proliferation. Signaling pathways originating from growth stimulative and growth suppressive signals converge on pRB (the RB pathway) to regulate E2F activity. In most cancers, the function of pRB is compromised by oncogenic mutations, and E2F activity is enhanced, thereby facilitating cell proliferation to promote tumorigenesis. Upon such events, E2F activates the Arf tumor suppressor gene, leading to activation of the tumor suppressor p53 to protect cells from tumorigenesis. ARF inactivates MDM2, which facilitates degradation of p53 through proteasome by ubiquitination (the p53 pathway). P53 suppresses tumorigenesis by inducing cellular senescence or apoptosis. Hence, in almost all cancers, the p53 pathway is also disabled. Here we will introduce the canonical functions of the RB-E2F-p53 pathway first and then the non-classical functions of each component, which may be relevant to cancer biology.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama, Fukushima 963-8611, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan; (Y.Z.); (R.N.); (M.S.); (M.F.); (L.Z.)
| |
Collapse
|
3
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Liu T, Du J, Cheng X, Wei J. Integrative Analysis of the Role of TP53 in Human Pan-Cancer. Curr Issues Mol Biol 2023; 45:9606-9633. [PMID: 38132447 PMCID: PMC10742156 DOI: 10.3390/cimb45120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Tumor protein P53 (TP53) is an important tumor suppressor gene in humans. Under normal circumstances, TP53 can help repair mutated genes, or promote the death of cells with severe gene mutations (specifically, TP53 prevents cells from arrest in the G1/S phase when deoxyribonucleic acid (DNA) is damaged and promotes apoptosis if not repaired), and prevents normal cells from becoming malignant cells. TP53 mutations affect its tumor suppressor function, leading to the development of malignant tumors. In this study, using a public database, we explored the pan-cancer expression of TP53, its impact on patient survival and prognosis, the types of gene mutations, its correlation with immunity, and its regulation of other transcription factors and micro RNA (miRNA). The docking sites of therapeutic drugs and key amino acid sites of action provide a basis for future targeted therapies. TP53 has important biological functions in the human body. This study provides a theoretical basis for clinical TP53 gene therapy.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| | - Jin Du
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.); (J.D.)
| |
Collapse
|
5
|
Wei H, Wang H, Wang G, Qu L, Jiang L, Dai S, Chen X, Zhang Y, Chen Z, Li Y, Guo M, Chen Y. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity. Nat Commun 2023; 14:4300. [PMID: 37463921 DOI: 10.1038/s41467-023-40087-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Mitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.3-2.7 Å. The structures show that two loops of p53-DBD penetrate directly into the BH3-binding pocket of BCL-2. Structure-based mutations at the interface impair the p53/BCL-2 interaction. Specifically, the binding sites for p53 and the pro-apoptotic protein Bax in the BCL-2 pocket are mostly identical. In addition, formation of the p53/BCL-2 complex is negatively correlated with the formation of BCL-2 complexes with pro-apoptotic BCL-2 family members. Defects in the p53/BCL-2 interaction attenuate p53-mediated cell apoptosis. Overall, our study provides a structural basis for the interaction between p53 and BCL-2, and suggests a molecular mechanism by which p53 regulates transcription-independent apoptosis by antagonizing the interaction of BCL-2 with pro-apoptotic BCL-2 family members.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Genxin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Choe JH, Kawase T, Xu A, Guzman A, Obradovic AZ, Low-Calle AM, Alaghebandan B, Raghavan A, Long K, Hwang PM, Schiffman JD, Zhu Y, Zhao R, Lee DF, Katz C, Prives C. Li-Fraumeni Syndrome-Associated Dimer-Forming Mutant p53 Promotes Transactivation-Independent Mitochondrial Cell Death. Cancer Discov 2023; 13:1250-1273. [PMID: 37067901 PMCID: PMC10287063 DOI: 10.1158/2159-8290.cd-22-0882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/11/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023]
Abstract
Cancer-relevant mutations in the oligomerization domain (OD) of the p53 tumor suppressor protein, unlike those in the DNA binding domain, have not been well elucidated. Here, we characterized the germline OD mutant p53(A347D), which occurs in cancer-prone Li-Fraumeni syndrome (LFS) patients. Unlike wild-type p53, mutant p53(A347D) cannot form tetramers and exists as a hyperstable dimeric protein. Further, p53(A347D) cannot bind or transactivate the majority of canonical p53 target genes. Isogenic cell lines harboring either p53(A347D) or no p53 yield comparable tumorigenic properties, yet p53(A347D) displays remarkable neomorphic activities. Cells bearing p53(A347D) possess a distinct transcriptional profile and undergo metabolic reprogramming. Further, p53(A347D) induces striking mitochondrial network aberration and associates with mitochondria to drive apoptotic cell death upon topoisomerase II inhibition in the absence of transcription. Thus, dimer-forming p53 demonstrates both loss-of-function (LOF) and gain-of-function (GOF) properties compared with the wild-type form of the protein. SIGNIFICANCE A mutant p53 (A347D), which can only form dimers, is associated with increased cancer susceptibility in LFS individuals. We found that this mutant wields a double-edged sword, driving tumorigenesis through LOF while gaining enhanced apoptogenic activity as a new GOF, thereby yielding a potential vulnerability to select therapeutic approaches. See related commentary by Stieg et al., p. 1046. See related article by Gencel-Augusto et al., p. 1230. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Joshua H. Choe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tatsuya Kawase
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Aleksandar Z. Obradovic
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bita Alaghebandan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ananya Raghavan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kaitlin Long
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Paul M. Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Joshua D. Schiffman
- Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Peel Therapeutics, Inc., Salt Lake City, UT 84112, USA
| | - Yan Zhu
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Guven-Maiorov E, Sakakibara N, Ponnamperuma RM, Dong K, Matar H, King KE, Weinberg WC. Delineating functional mechanisms of the p53/p63/p73 family of transcription factors through identification of protein-protein interactions using interface mimicry. Mol Carcinog 2022; 61:629-642. [PMID: 35560453 PMCID: PMC9949960 DOI: 10.1002/mc.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| | - Nozomi Sakakibara
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Roshini M. Ponnamperuma
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kun Dong
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,National Cancer Institute, Bethesda, MD, United States
| | - Hector Matar
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Kathryn E. King
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Wendy C. Weinberg
- Laboratory of Molecular Oncology, Office of Biotechnology Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States.,Postal and email addresses of corresponding authors FDA/CDER/OPQ/OBP, Building 52-72/2306, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States, ,
| |
Collapse
|
8
|
Haliloglu T, Hacisuleyman A, Erman B. Prediction of Allosteric Communication Pathways in Proteins. Bioinformatics 2022; 38:3590-3599. [PMID: 35674396 DOI: 10.1093/bioinformatics/btac380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/12/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Allostery in proteins is an essential phenomenon in biological processes. In this paper, we present a computational model to predict paths of maximum information transfer between active and allosteric sites. In this information theoretic study, we use mutual information as the measure of information transfer, where transition probability of information from one residue to its contacting neighbors is proportional to the magnitude of mutual information between the two residues. Starting from a given residue and using a Hidden Markov Model, we successively determine the neighboring residues that eventually lead to a path of optimum information transfer. The Gaussian approximation of mutual information between residue pairs is adopted. The limits of validity of this approximation are discussed in terms of a nonlinear theory of mutual information and its reduction to the Gaussian form. RESULTS Predictions of the model are tested on six widely studied cases, CheY Bacterial Chemotaxis, B-cell Lymphoma extra-large Bcl-xL, Human proline isomerase cyclophilin A (CypA), Dihydrofolate reductase DHFR, HRas GTPase, and Caspase-1. The communication transmission rendering the propagation of local fluctuations from the active sites throughout the structure in multiple paths correlate well with the known experimental data. Distinct paths originating from the active site may likely represent a multi functionality such as involving more than one allosteric site and/or preexistence of some other functional states. Our model is computationally fast and simple, and can give allosteric communication pathways, which are crucial for the understanding and control of protein functionality. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Turkan Haliloglu
- Polymer Research Center and Chemical Engineering Department, Bogazici University, 34342, Turkey
| | - Aysima Hacisuleyman
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), 1015, Switzerland
| | - Burak Erman
- Chemical and Biological Engineering, Koc University, 34450, Turkey
| |
Collapse
|
9
|
Castillo-Rodríguez RA, Palencia G, Anaya-Rubio I, Pérez JCG, Jiménez-Farfán D, Escamilla-Ramírez Á, Zavala-Vega S, Cruz-Salgado A, Cervantes-Rebolledo C, Gracia-Mora I, Ruiz-Azuara L, Trejo-Solis C. Anti-proliferative, pro-apoptotic and anti-invasive effect of the copper coordination compound Cas III-La through the induction of reactive oxygen species and regulation of Wnt/β-catenin pathway in glioma. J Cancer 2021; 12:5693-5711. [PMID: 34475984 PMCID: PMC8408120 DOI: 10.7150/jca.59769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/11/2021] [Indexed: 01/12/2023] Open
Abstract
Gliomas are the most aggressive neoplasms that affect the central nervous system, being glioblastoma multiforme (GBM) the most malignant. The resistance of GBM to therapies is attributed to its high rate of cell proliferation, angiogenesis, invasion, and resistance to apoptosis; thus, finding alternative therapeutic approaches is vital. In this work, the anti-proliferative, pro-apoptotic, and anti-invasive effect of the copper coordination compound Casiopeina III-La (Cas III-La) on human U373 MG cells was determined in vitro and in vivo. Our results indicate that Cas III-La exerts an anti-proliferative effect, promoting apoptotic cell death and inactivating the invasive process by generating reactive oxygen species (ROS), inactivating GSK3β, activating JNK and ERK, and promoting the nuclear accumulation of β-catenin. The inhibition of ROS generation by N-acetyl-l-cysteine not only recovered cell migration and viability, but also reduced β-catenin accumulation and JNK and ERK activation. Additionally, Cas III-La significantly reduced tumor volume, cell proliferation and mitotic indices, and increased the apoptotic index in mice xenotransplanted with U373 glioma cells. Thus, Cas III-La is a promising agent to treat GBM.
Collapse
Affiliation(s)
| | - Guadalupe Palencia
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Isabel Anaya-Rubio
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Ángel Escamilla-Ramírez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México.,Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, México
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| | | | - Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Investigación Científica 70, Ciudad de México 04510, México
| | - Lena Ruiz-Azuara
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Tlalpan, México
| |
Collapse
|
10
|
Sperl LE, Hagn F. NMR Structural and Biophysical Analysis of the Disease-Linked Inner Mitochondrial Membrane Protein MPV17. J Mol Biol 2021; 433:167098. [PMID: 34116124 DOI: 10.1016/j.jmb.2021.167098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8-12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.
Collapse
Affiliation(s)
- Laura E Sperl
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
11
|
Wei H, Qu L, Dai S, Li Y, Wang H, Feng Y, Chen X, Jiang L, Guo M, Li J, Chen Z, Chen L, Zhang Y, Chen Y. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat Commun 2021; 12:2280. [PMID: 33863900 PMCID: PMC8052441 DOI: 10.1038/s41467-021-22655-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/24/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor suppressor p53 is mutated in approximately half of all human cancers. p53 can induce apoptosis through mitochondrial membrane permeabilization by interacting with and antagonizing the anti-apoptotic proteins BCL-xL and BCL-2. However, the mechanisms by which p53 induces mitochondrial apoptosis remain elusive. Here, we report a 2.5 Å crystal structure of human p53/BCL-xL complex. In this structure, two p53 molecules interact as a homodimer, and bind one BCL-xL molecule to form a ternary complex with a 2:1 stoichiometry. Mutations at the p53 dimer interface or p53/BCL-xL interface disrupt p53/BCL-xL interaction and p53-mediated apoptosis. Overall, our current findings of the bona fide structure of p53/BCL-xL complex reveal the molecular basis of the interaction between p53 and BCL-xL, and provide insight into p53-mediated mitochondrial apoptosis.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yilu Feng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Sora V, Sanchez D, Papaleo E. Bcl-xL Dynamics under the Lens of Protein Structure Networks. J Phys Chem B 2021; 125:4308-4320. [PMID: 33848145 DOI: 10.1021/acs.jpcb.0c11562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Understanding the finely orchestrated interactions leading to or preventing programmed cell death (apoptosis) is of utmost importance in cancer research because the failure of these systems could eventually lead to the onset of the disease. In this regard, the maintenance of a delicate balance between the promoters and inhibitors of mitochondrial apoptosis is crucial, as demonstrated by the interplay among the Bcl-2 family members. In particular, B-cell lymphoma extra-large (Bcl-xL) is a target of interest due to the forefront role of its dysfunctions in cancer development. Bcl-xL prevents apoptosis by binding both the pro-apoptotic BH3-only proteins, like PUMA, and the noncanonical partners, such as p53, at different sites. An allosteric communication between the BH3-only protein binding pocket and the p53 binding site, mediating the release of p53 from Bcl-xL upon PUMA binding, has been postulated and supported by nuclear magnetic resonance and other biophysical data. The molecular details of this mechanism, especially at the residue level, remain unclear. In this work, we investigated the distal communication between these two sites in Bcl-xL in its free state and when bound to PUMA. We also evaluated how missense mutations of Bcl-xL found in cancer samples might impair this communication and therefore the allosteric mechanism. We employed all-atom explicit solvent microsecond molecular dynamics simulations, analyzed through a Protein Structure Network approach and integrated with calculations of changes in free energies upon cancer-related mutations identified by genomics studies. We found a subset of candidate residues responsible for both maintaining protein stability and for conveying structural information between the two binding sites and hypothesized possible communication routes between specific residues at both sites.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Dionisio Sanchez
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
13
|
Improved Electrophoretic Separation to Assist the Monitoring of Bcl-xL Post-Translational Modifications. Int J Mol Sci 2019; 20:ijms20225571. [PMID: 31717257 PMCID: PMC6888115 DOI: 10.3390/ijms20225571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
Bcl-xL is an oncogene of which the survival functions are finely tuned by post-translational modifications (PTM). Within the Bcl-2 family of proteins, Bcl-xL shows unique eligibility to deamidation, a time-related spontaneous reaction. Deamidation is still a largely overlooked PTM due to a lack of easy techniques to monitor Asn→Asp/IsoAsp conversions or Glu→Gln conversions. Being able to detect PTMs is essential to achieve a comprehensive description of all the regulatory mechanisms and functions a protein can carry out. Here, we report a gel composition improving the electrophoretic separation of deamidated forms of Bcl-xL generated either by mutagenesis or by alkaline treatment. Importantly, this new gel formulation proved efficient to provide the long-sought evidence that even doubly-deamidated Bcl-xL remains eligible for regulation by phosphorylation.
Collapse
|
14
|
Timofeev O, Klimovich B, Schneikert J, Wanzel M, Pavlakis E, Noll J, Mutlu S, Elmshäuser S, Nist A, Mernberger M, Lamp B, Wenig U, Brobeil A, Gattenlöhner S, Köhler K, Stiewe T. Residual apoptotic activity of a tumorigenic p53 mutant improves cancer therapy responses. EMBO J 2019; 38:e102096. [PMID: 31483066 PMCID: PMC6792016 DOI: 10.15252/embj.2019102096] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Engineered p53 mutant mice are valuable tools for delineating p53 functions in tumor suppression and cancer therapy. Here, we have introduced the R178E mutation into the Trp53 gene of mice to specifically ablate the cooperative nature of p53 DNA binding. Trp53R178E mice show no detectable target gene regulation and, at first sight, are largely indistinguishable from Trp53−/− mice. Surprisingly, stabilization of p53R178E in Mdm2−/− mice nevertheless triggers extensive apoptosis, indicative of residual wild‐type activities. Although this apoptotic activity suffices to trigger lethality of Trp53R178E;Mdm2−/− embryos, it proves insufficient for suppression of spontaneous and oncogene‐driven tumorigenesis. Trp53R178E mice develop tumors indistinguishably from Trp53−/− mice and tumors retain and even stabilize the p53R178E protein, further attesting to the lack of significant tumor suppressor activity. However, Trp53R178E tumors exhibit remarkably better chemotherapy responses than Trp53−/− ones, resulting in enhanced eradication of p53‐mutated tumor cells. Together, this provides genetic proof‐of‐principle evidence that a p53 mutant can be highly tumorigenic and yet retain apoptotic activity which provides a survival benefit in the context of cancer therapy.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Boris Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Jean Schneikert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | | | - Julia Noll
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Samet Mutlu
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Boris Lamp
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Ulrich Wenig
- Institute of Pathology, Justus Liebig University, Giessen, Germany
| | | | | | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.,German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Genomics Core Facility, Philipps University, Marburg, Germany
| |
Collapse
|
15
|
Zhang C, Liao P, Liang R, Zheng X, Jian J. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152845. [PMID: 31029907 DOI: 10.1016/j.phymed.2019.152845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE This study was designed to investigate whether EGCG prevents cardiac I/R mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis. METHODS The H9c2 cardiomyocytes hypoxia/reoxygenation (H/R) model in vitro and myocardial ischemia /reperfusion (I/R) model in vivo were made, with or without EGCG treatment. The levels of I/R-induced creatine kinase-MB (CK-MB) and the release of lactate dehydrogenase (LDH), as well as the adenosine triphosphate (ATP) and cardiac functional impairment were examined. Stablely transfecting miR-30a mimic or inhibitor in H9c2 cardiomyocytes was built. The expression of miR-30a, p53 and related proteins in cells was measured by western blotting and qRT-PCR. Cell viability and apoptosis were examined using CCK-8 assay and flow cytometry. The content of reactive oxygen species (ROS), mitochondrial permeability transition pores (MPTP) opening and mitochondrial transmembrane potential (ΔΨm) in cells was measured by fluorescent probes. The levels of miR-30a and p53, some related proteins expression and apoptosis in the cardiac muscle tissues were determined by quantitative real-time PCR (qRT-PCR), H&E staining, western blotting and TUNEL assays. RESULTS We found that EGCG preconditioning significantly decreased the levels of CK-MB and LDH, increased the activity of ATP, reduced the apoptotic rate and partially preserved heart function. Furthermore, EGCG decreased ROS levels, MPTP opening and depolarization of ΔΨm, and improved the activity of post-I/R cardiomyocyte. The beneficial effect of EGCG was associated with restored levels of miR-30a expression in the I/R injury that correspond to p53 mRNA downregulation. The regulatory effect of EGCG was greatly enhanced by miR-30a mimic and suppressed by miR-30a inhibitor. More importantly, EGCG pretreatment inhibited the expression of mitochondrial apoptotic related proteins downstream of the miR-30a/p53 pathway. CONCLUSION This study demonstrated that EGCG pretreatment may attenuate mitochondrial impairment and myocardial apoptosis by regulation of miR-30a/p53 axis.
Collapse
Affiliation(s)
- Chan Zhang
- Xiangya Hospital of Centre-south University, Changsha, Hunan 410000, China
| | - Ping Liao
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ronggan Liang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiaojia Zheng
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jie Jian
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541004, China.
| |
Collapse
|
16
|
Grinevicius VMAS, Andrade KS, Mota NSRS, Bretanha LC, Felipe KB, Ferreira SRS, Pedrosa RC. CDK2 and Bcl-xL inhibitory mechanisms by docking simulations and anti-tumor activity from piperine enriched supercritical extract. Food Chem Toxicol 2019; 132:110644. [PMID: 31252023 DOI: 10.1016/j.fct.2019.110644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Supercritical fluid technologies offer an innovative method for food industry and drug discovery from natural sources. The aim of the study is to investigate the anti-tumor activity of piperine rich extract by supercritical fluid (SFE) from black pepper (Piper nigrum). In silico docking simulations predicted anti-tumor molecular mechanism and protein-piperine hydrophobic interactions, showing hydrogen bonds between piperine and residue Ser5 inside the ATP binding site in CDK2. Moreover, piperine interacts with peptide substrate residue Lys8 inside its binding site in Cyclin A molecule. Other predicted interaction showed piperine inside the hydrophobic groove of Bcl-xL. Confirming the docking simulation, in vitro assays with SFE (40 °C/30 MPa) showed cytotoxicity to MCF-7 cells (IC50 = 27.8 ± 6.8 μg/ml) correlated to increased apoptosis. Balb/c mice-bearing Ehrlich Ascites Carcinoma (EAC) group that received the SFE (100 mg/kg/day) showed tumor growth inhibition (60%) and increased mice survival (50%), probably related to cell cycle arrest (G2/M) and increased apoptosis. In vivo treatments with SFE increased the expression of pro-apoptotic proteins (p53 and Bax), inhibited cell cycle proteins (CDK2, Cyclin A) and anti-apoptotic protein (Bcl-xL). Thus, confirming in silico predicted inhibitory interactions. These results clearly showed promising performance of the piperine-rich fraction recovered from black pepper, drawing attention to its use as complementary therapy for cancer.
Collapse
Affiliation(s)
- Valdelúcia M A S Grinevicius
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Kátia S Andrade
- Laboratório de Termodinâmica e Extração Supercrítica, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Nádia S R S Mota
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lizandra C Bretanha
- Laboratório de Eletroforese Capilar, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karina B Felipe
- Laboratório de Fisiologia e Sinalização Celular, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Sandra R S Ferreira
- Laboratório de Termodinâmica e Extração Supercrítica, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rozangela C Pedrosa
- Laboratório de Bioquímica Experimental, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Yamada K, Yoshida K. Mechanical insights into the regulation of programmed cell death by p53 via mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:839-848. [DOI: 10.1016/j.bbamcr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
|
18
|
Reif MM, Fischer M, Fredriksson K, Hagn F, Zacharias M. The N-Terminal Segment of the Voltage-Dependent Anion Channel: A Possible Membrane-Bound Intermediate in Pore Unbinding. J Mol Biol 2019; 431:223-243. [DOI: 10.1016/j.jmb.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
|
19
|
Raltchev K, Pipercevic J, Hagn F. Production and Structural Analysis of Membrane-Anchored Proteins in Phospholipid Nanodiscs. Chemistry 2018; 24:5493-5499. [DOI: 10.1002/chem.201800812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Kolio Raltchev
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstrasse 1 85764 Neuherberg Germany
| | - Joka Pipercevic
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstrasse 1 85764 Neuherberg Germany
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstrasse 1 85764 Neuherberg Germany
| |
Collapse
|
20
|
Regulation of apoptosis by an intrinsically disordered region of Bcl-xL. Nat Chem Biol 2018; 14:458-465. [PMID: 29507390 PMCID: PMC5899648 DOI: 10.1038/s41589-018-0011-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 01/05/2018] [Indexed: 11/24/2022]
Abstract
Intrinsically disordered regions (IDRs) of proteins often regulate function upon posttranslational modifications (PTMs) through interactions with folded domains. An IDR linking two α-helices (α1–α2) of the anti-apoptotic protein, Bcl-xL, experiences several PTMs, which reduce anti-apoptotic activity. Here, we report that PTMs within the α1–α2 IDR promote its interaction with the folded core of Bcl-xL that inhibits the pro-apoptotic activity of two types of regulatory targets, BH3-only proteins and p53. This autoregulation utilizes an allosteric pathway where, in one direction, the IDR induces a direct displacement of p53 from Bcl-xL coupled to allosteric displacement of simultaneously bound BH3-only partners. This pathway operates in the opposite direction when the BH3-only protein PUMA binds to the BH3 binding groove of Bcl-xL, directly displacing other bound BH3-only proteins, and allosterically remodeling the distal site, displacing p53. Our findings show how an IDR enhances functional versatility through PTM-dependent, allosteric regulation of a folded protein domain.
Collapse
|
21
|
Vuillier C, Lohard S, Fétiveau A, Allègre J, Kayaci C, King LE, Braun F, Barillé-Nion S, Gautier F, Dubrez L, Gilmore AP, Juin PP, Maillet L. E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death. EMBO Rep 2018; 19:234-243. [PMID: 29233828 PMCID: PMC5797968 DOI: 10.15252/embr.201744046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.
Collapse
Affiliation(s)
| | - Steven Lohard
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
| | | | - Jennifer Allègre
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Cémile Kayaci
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Louise E King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | | | | | - Fabien Gautier
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | - Laurence Dubrez
- LNC, INSERM, UMR866, Université de Bourgogne Franche-Comté, Dijon, France
| | - Andrew P Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Philippe P Juin
- CRCINA, INSERM, U1232, Université de Nantes, Nantes, France
- ICO René Gauducheau, Saint Herblain, France
| | | |
Collapse
|
22
|
Kumar S, Inigo JR, Kumar R, Chaudhary AK, O'Malley J, Balachandar S, Wang J, Attwood K, Yadav N, Hochwald S, Wang X, Chandra D. Nimbolide reduces CD44 positive cell population and induces mitochondrial apoptosis in pancreatic cancer cells. Cancer Lett 2017; 413:82-93. [PMID: 29107110 DOI: 10.1016/j.canlet.2017.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive disease and current treatment regimens fail to effectively cure PDAC. Development of resistance to current therapy is one of the key reasons for this outcome. Nimbolide (NL), a triterpenoid obtained from Azadirachta indica, exhibits anticancer properties in various cancer including PDAC cells. However, the underlying mechanism of this anticancer agent in PDAC cells remains undefined. We show that NL exerts a higher level of apoptotic cell death compared to the first-line agent gemcitabine for PDAC, as well as other anticancer agents including sorafenib and curcumin. The anticancer efficacy of NL was further evidenced by a reduction in the CD44+ as well as cancer stem-like cell (CSC) population, as it causes decreased sphere formation. Mechanistically, the anticancer efficacy of NL associates with reduced mutant p53 as well as increased mitochondrial activity in the form of increased mitochondrial reactive oxygen species and mitochondrial mass. Together, this study highlights the therapeutic potential of NL in mutant p53 expressing pancreatic cancer.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Joseph R Inigo
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Jordan O'Malley
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Srimmitha Balachandar
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Steven Hochwald
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
23
|
Amiloride, An Old Diuretic Drug, Is a Potential Therapeutic Agent for Multiple Myeloma. Clin Cancer Res 2017; 23:6602-6615. [DOI: 10.1158/1078-0432.ccr-17-0678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
24
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
25
|
Solution structure and binding specificity of the p63 DNA binding domain. Sci Rep 2016; 6:26707. [PMID: 27225672 PMCID: PMC4880913 DOI: 10.1038/srep26707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 01/17/2023] Open
Abstract
p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.
Collapse
|
26
|
Godoi PHC, Wilkie-Grantham RP, Hishiki A, Sano R, Matsuzawa Y, Yanagi H, Munte CE, Chen Y, Yao Y, Marassi FM, Kalbitzer HR, Matsuzawa SI, Reed JC. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins. J Biol Chem 2016; 291:14072-14084. [PMID: 27129202 DOI: 10.1074/jbc.m116.715235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/06/2022] Open
Abstract
B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins.
Collapse
Affiliation(s)
- Paulo H C Godoi
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | | | - Asami Hishiki
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Renata Sano
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Yasuko Matsuzawa
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Hiroko Yanagi
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Claudia E Munte
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Ya Chen
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Yong Yao
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Francesca M Marassi
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Hans R Kalbitzer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Shu-Ichi Matsuzawa
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037,.
| | - John C Reed
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037,; Roche, Pharma Research and Early Development, Basel 4070, Switzerland.
| |
Collapse
|
27
|
García CP, Videla Richardson GA, Dimopoulos NA, Fernandez Espinosa DD, Miriuka SG, Sevlever GE, Romorini L, Scassa ME. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS One 2016; 11:e0152607. [PMID: 27030982 PMCID: PMC4816327 DOI: 10.1371/journal.pone.0152607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) are hypersensitive to genotoxic stress and display lower survival ability relative to their differentiated progeny. Herein, we attempted to investigate the source of this difference by comparing the DNA damage responses triggered by the topoisomerase I inhibitor camptothecin, in hESCs, human induced pluripotent stem cells (hiPSCs) and hESCs-derived neuroprogenitors (NP). We observed that upon camptothecin exposure pluripotent stem cells underwent apoptosis more swiftly and at a higher rate than differentiated cells. However, the cellular response encompassing ataxia-telangiectasia mutated kinase activation and p53 phosphorylation both on serine 15 as well as on serine 46 resulted very similar among the aforementioned cell types. Importantly, we observed that hESCs and hiPSCs express lower levels of the anti-apoptotic protein Bcl-2 than NP. To assess whether Bcl-2 abundance could account for this differential response we treated cells with ABT-263, WEHI-539 and ABT-199, small molecules that preferentially target the BH3-binding pocket of Bcl-xL and/or Bcl-2 and reduce their ability to sequester pro-apoptotic factors. We found that in the absence of stress stimuli, NP exhibited a higher sensitivity to ABT- 263 and WEHI-539 than hESCs and hiPSCs. Conversely, all tested cell types appeared to be highly resistant to the Bcl-2 specific inhibitor, ABT-199. However, in all cases we determined that ABT-263 or WEHI-539 treatment exacerbated camptothecin-induced apoptosis. Importantly, similar responses were observed after siRNA-mediated down-regulation of Bcl-xL or Bcl-2. Taken together, our results suggest that Bcl-xL contrary to Bcl-2 contributes to ensure cell survival and also functions as a primary suppressor of DNA double-strand brake induced apoptosis both in pluripotent and derived NP cells. The emerging knowledge of the relative dependence of pluripotent and progenitor cells on Bcl-2 and Bcl-xL activities may help to predict cellular responses and potentially manipulate these cells for therapeutic purposes in the near future.
Collapse
Affiliation(s)
- Carolina Paola García
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - Guillermo Agustín Videla Richardson
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - Nicolás Alexis Dimopoulos
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - Damián Darío Fernandez Espinosa
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - Santiago Gabriel Miriuka
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - Gustavo Emilio Sevlever
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - Leonardo Romorini
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| | - María Elida Scassa
- Laboratorios de Investigación Aplicada a Neurociencias, LIAN-CONICET, Fundación FLENI, Ruta 9, Km 53, (B1625XAF) Escobar, Buenos Aires, Argentina
| |
Collapse
|
28
|
Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, Martinou JC, Letaï A, Braun F, Juin PP. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis 2016; 7:e2083. [PMID: 26844698 PMCID: PMC4849148 DOI: 10.1038/cddis.2015.400] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
Proapoptotic molecules directly targeting the BCL-2 family network are promising anticancer therapeutics, but an understanding of the cellular stress signals that render them effective is still elusive. We show here that the tumor suppressor p53, at least in part by transcription independent mechanisms, contributes to cell death induction and full activation of BAX by BH3 mimetic inhibitors of BCL-xL. In addition to mildly facilitating the ability of compounds to derepress BAX from BCL-xL, p53 also provides a death signal downstream of anti-apoptotic proteins inhibition. This death signal cooperates with BH3-induced activation of BAX and it is independent from PUMA, as enhanced p53 can substitute for PUMA to promote BAX activation in response to BH3 mimetics. The acute sensitivity of mitochondrial priming to p53 revealed here is likely to be critical for the clinical use of BH3 mimetics.
Collapse
Affiliation(s)
- J Le Pen
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - L Maillet
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - K Sarosiek
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Vuillier
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - F Gautier
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre de Lutte contre le Cancer René Gauducheau, Saint Herblain, France
| | - S Montessuit
- Department of Cell Biology, University of Geneva, Geneva,Switzerland
| | - J C Martinou
- Department of Cell Biology, University of Geneva, Geneva,Switzerland
| | - A Letaï
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - F Braun
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - P P Juin
- UMR 892 INSERM/6299 CNRS/Université de Nantes, Team 8 'Cell Survival And Tumor Escape In Breast Cancer', Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre de Lutte contre le Cancer René Gauducheau, Saint Herblain, France
| |
Collapse
|
29
|
Chen L, Foreman DP, Sant'Angelo DB, Krangel MS. Yin Yang 1 Promotes Thymocyte Survival by Downregulating p53. THE JOURNAL OF IMMUNOLOGY 2016; 196:2572-82. [PMID: 26843327 DOI: 10.4049/jimmunol.1501916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Yin Yang 1 (YY1) is a zinc finger protein that functions as a transcriptional activator or repressor and participates in multiple biological processes, including development and tumorigenesis. To investigate the role of YY1 in developing T cells, we used mouse models that depleted YY1 at two distinct stages of thymocyte development. When YY1 was depleted in CD4(-)CD8(-) double-negative thymocytes, development to the CD4(+)CD8(+) double-positive stage was impaired, due to increased apoptosis that prevented expansion of post-β-selection thymocytes. When YY1 was depleted in double-positive thymocytes, they underwent increased cell-autonomous apoptosis in vitro and displayed a shorter lifespan in vivo, as judged by their ability to undergo secondary Vα-to-Jα recombination. Mechanistically, we found that the increased apoptosis in YY1-deficient thymocytes was attributed to overexpression of p53, because concurrent loss of p53 completely rescued the developmental defects of YY1-deficient thymocytes. These results indicated that YY1 functions as a critical regulator of thymocyte survival and that it does so by suppressing the expression of p53.
Collapse
Affiliation(s)
- Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Daniel P Foreman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| |
Collapse
|
30
|
Zheng JH, Viacava Follis A, Kriwacki RW, Moldoveanu T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J 2015; 283:2690-700. [DOI: 10.1111/febs.13527] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/30/2015] [Accepted: 09/23/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Janet H. Zheng
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| | - Ariele Viacava Follis
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| | - Richard W. Kriwacki
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| | - Tudor Moldoveanu
- Department of Structural Biology; St Jude Children's Research Hospital; Memphis TN USA
| |
Collapse
|
31
|
Dashzeveg N, Yoshida K. Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett 2015; 367:108-12. [PMID: 26231733 DOI: 10.1016/j.canlet.2015.07.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 12/20/2022]
Abstract
The tumor suppressor p53 is mutated in more than half of human cancers. Recent evidence has revealed that p53 not only regulates apoptosis but also regulates necrotic/necroptotic cell death via the mitochondria. The regulation of apoptosis by p53 is tightly connected to the mitochondrial outer membrane permeabilization and the induction of and interaction with Bcl-2 family members. Interestingly, p53-mediated regulation of necrosis/necroptosis is correlated with mitochondrial permeabilization pore opening via interactions with CypD and Drp1. This review discusses the p53-regulating molecules that induce apoptosis or necrosis/necroptosis via the mitochondria.
Collapse
Affiliation(s)
- Nurmaa Dashzeveg
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
32
|
Milbradt AG, Arthanari H, Takeuchi K, Boeszoermenyi A, Hagn F, Wagner G. Increased resolution of aromatic cross peaks using alternate 13C labeling and TROSY. JOURNAL OF BIOMOLECULAR NMR 2015; 62:291-301. [PMID: 25957757 PMCID: PMC4782774 DOI: 10.1007/s10858-015-9944-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/02/2015] [Indexed: 05/21/2023]
Abstract
For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the (1)H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording (13)C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon-carbon (C-C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C-C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate (13)C labeling using 2-(13)C glycerol, 2-(13)C pyruvate, or 3-(13)C pyruvate as the carbon source. With the elimination of the strong one-bond C-C coupling, the TROSY effect can easily be exploited. We show that (1)H-(13)C TROSY spectra of alternately (13)C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex.
Collapse
Affiliation(s)
- Alexander G. Milbradt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Franz Hagn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
- Dept. of Chemistry and Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Chi SW. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep 2014; 47:167-72. [PMID: 24499665 PMCID: PMC4163879 DOI: 10.5483/bmbrep.2014.47.3.261] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/16/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022] Open
Abstract
Reactivating the p53 pathway in tumors is an important strategy for anticancer therapy. In response to diverse cellular stresses, the tumor suppressor p53 mediates apoptosis in a transcriptionindependent and transcription-dependent manner. Although extensive studies have focused on the transcription-dependent apoptotic pathway of p53, the transcription-independent apoptotic pathway of p53 has only recently been discovered. Molecular interactions between p53 and Bcl-2 family proteins in the mitochondria play an essential role in the transcriptionindependent apoptosis of p53. This review describes the structural basis for the transcription-independent apoptotic pathway of p53 and discusses its potential application to anticancer therapy. [BMB Reports 2014; 47(3): 167-172]
Collapse
Affiliation(s)
- Seung-Wook Chi
- Medical Proteomics Research Center, KRIBB, Daejeon 305-806; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 305-350, Korea
| |
Collapse
|
34
|
Ben Safta T, Ziani L, Favre L, Lamendour L, Gros G, Mami-Chouaib F, Martinvalet D, Chouaib S, Thiery J. Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic lymphocyte-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 194:418-28. [PMID: 25404359 DOI: 10.4049/jimmunol.1401978] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granzyme B (GzmB) plays a major role in CTLs and NK cell-mediated elimination of virus-infected cells and tumors. Human GzmB preferentially induces target cell apoptosis by cleaving the proapoptotic Bcl-2 family member Bid, which, together with Bax, induces mitochondrial outer membrane permeabilization. We previously showed that GzmB also induces a rapid accumulation of the tumor-suppressor protein p53 within target cells, which seems to be involved in GzmB-induced apoptosis. In this article, we show that GzmB-activated p53 accumulates on target cell mitochondria and interacts with Bcl-2. This interaction prevents Bcl-2 inhibitory effect on both Bax and GzmB-truncated Bid, and promotes GzmB-induced mitochondrial outer membrane permeabilization. Consequently, blocking p53-Bcl-2 interaction decreases GzmB-induced Bax activation, cytochrome c release from mitochondria, and subsequent effector caspases activation leading to a decreased sensitivity of target cells to both GzmB and CTL/NK-mediated cell death. Together, our results define p53 as a new important player in the GzmB apoptotic signaling pathway and in CTL/NK-induced apoptosis.
Collapse
Affiliation(s)
- Thouraya Ben Safta
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Linda Ziani
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Loetitia Favre
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Lucille Lamendour
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Gwendoline Gros
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Fathia Mami-Chouaib
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | - Salem Chouaib
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Jerome Thiery
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| |
Collapse
|
35
|
Bethuyne J, De Gieter S, Zwaenepoel O, Garcia-Pino A, Durinck K, Verhelle A, Hassanzadeh-Ghassabeh G, Speleman F, Loris R, Gettemans J. A nanobody modulates the p53 transcriptional program without perturbing its functional architecture. Nucleic Acids Res 2014; 42:12928-38. [PMID: 25324313 PMCID: PMC4227789 DOI: 10.1093/nar/gku962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non-)covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds ‘structural’ mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 Å resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations.
Collapse
Affiliation(s)
- Jonas Bethuyne
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Steven De Gieter
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Olivier Zwaenepoel
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Kaat Durinck
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Adriaan Verhelle
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel and Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | - Jan Gettemans
- Nanobody Lab, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| |
Collapse
|
36
|
The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nat Struct Mol Biol 2014; 21:535-43. [PMID: 24814347 DOI: 10.1038/nsmb.2829] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/10/2014] [Indexed: 11/09/2022]
Abstract
Under conditions of genotoxic stress, human p53 activates the apoptotic effectors BAX or BAK to result in mitochondrial outer-membrane permeabilization and apoptosis. Antiapoptotic BCL-2 family member BCL-xL opposes this activity by sequestering cytosolic p53 via association with its DNA-binding domain, an interaction enhanced by p53 tetramerization. Here we characterized the BCL-xL-p53 complex by NMR spectroscopy and modulated it through mutagenesis to determine the relative contributions of BCL-xL's interactions with p53 or other BCL-2 family proteins to the BCL-xL-dependent inhibition of UV irradiation-induced apoptosis. Under our experimental conditions, one-third of the antiapoptotic activity of BCL-xL was mediated by p53 sequestration and the remaining two-thirds through sequestration of proapoptotic BCL-2 family members. Our studies define the contributions of cytosolic p53 to UV irradiation-induced apoptosis and provide opportunities to explore its contributions to other p53-dependent apoptotic signaling pathways.
Collapse
|
37
|
Matissek KJ, Okal A, Mossalam M, Lim CS. Delivery of a monomeric p53 subdomain with mitochondrial targeting signals from pro-apoptotic Bak or Bax. Pharm Res 2014; 31:2503-15. [PMID: 24633417 DOI: 10.1007/s11095-014-1346-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE p53 targeted to the mitochondria is the fastest and most direct pathway for executing p53 death signaling. The purpose of this work was to determine if mitochondrial targeting signals (MTSs) from pro-apoptotic Bak and Bax are capable of targeting p53 to the mitochondria and inducing rapid apoptosis. METHODS p53 and its DNA-binding domain (DBD) were fused to MTSs from Bak (p53-BakMTS, DBD-BakMTS) or Bax (p53-BaxMTS, DBD-BaxMTS). Mitochondrial localization was tested via fluorescence microscopy in 1471.1 cells, and apoptosis was detected via 7-AAD in breast (T47D), non-small cell lung (H1373), ovarian (SKOV-3) and cervical (HeLa) cancer cells. To determine that apoptosis is via the intrinsic apoptotic pathway, TMRE and caspase-9 assays were conducted. Finally, the involvement of p53/Bak specific pathway was tested. RESULTS MTSs from Bak and Bax are capable of targeting p53 to the mitochondria, and p53-BakMTS and p53-BaxMTS cause apoptosis through the intrinsic apoptotic pathway. Additionally, p53-BakMTS, DBD-BakMTS, p53-BaxMTS and DBD-BaxMTS caused apoptosis in T47D, H1373, SKOV-3 and HeLa cells. The apoptotic mechanism of p53-BakMTS and DBD-BakMTS was Bak dependent. CONCLUSION Our data demonstrates that p53-BakMTS (or BaxMTS) and DBD-BakMTS (or BaxMTS) cause apoptosis at the mitochondria and can be used as a potential gene therapeutic in cancer.
Collapse
Affiliation(s)
- Karina J Matissek
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
38
|
Xu J, Wang J, Hu Y, Qian J, Xu B, Chen H, Zou W, Fang JY. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death Dis 2014; 5:e1108. [PMID: 24603336 PMCID: PMC3973211 DOI: 10.1038/cddis.2014.75] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 12/19/2022]
Abstract
Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.
Collapse
Affiliation(s)
- J Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Hu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - B Xu
- Department of General Surgery, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - H Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Zou
- Department of Surgery, Tumor Biology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - J-Y Fang
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Lee DH, Ha JH, Kim Y, Jang M, Park SJ, Yoon HS, Kim EH, Bae KH, Park BC, Park SG, Yi GS, Chi SW. A conserved mechanism for binding of p53 DNA-binding domain and anti-apoptotic Bcl-2 family proteins. Mol Cells 2014; 37:264-9. [PMID: 24646834 PMCID: PMC3969048 DOI: 10.14348/molcells.2014.0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 01/12/2023] Open
Abstract
The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-XL. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.
Collapse
Affiliation(s)
- Dong-Hwa Lee
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Ji-Hyang Ha
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Yul Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology, Daejeon 305-701,
Korea
| | - Mi Jang
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, Incheon 406-799,
Korea
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637511,
Singapore
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon 363-883,
Korea
| | - Kwang-Hee Bae
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology, Daejeon 305-701,
Korea
| | - Seung-Wook Chi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| |
Collapse
|
40
|
Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Many players in BCL-2 family affairs. Trends Biochem Sci 2014; 39:101-11. [PMID: 24503222 DOI: 10.1016/j.tibs.2013.12.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023]
Abstract
During apoptotic cell death, cellular stress signals converge at the mitochondria to induce mitochondrial outer-membrane permeabilization (MOMP) through B cell lymphoma-2 (BCL-2) family proteins and their effectors. BCL-2 proteins function through protein-protein interactions, the mechanisms and structural aspects of which are only now being uncovered. Recently, the elucidation of the dynamic features underlying their function has highlighted their structural plasticity and the consequent complex thermodynamic landscape governing their protein-protein interactions. These studies show that canonical interactions involve a conserved, hydrophobic groove, whereas non-canonical interactions function allosterically outside the groove. We review the latest structural advances in understanding the interactions and functions of mammalian BCL-2 family members, and discuss new opportunities to modulate these proteins in health and disease.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
41
|
Zeng F, Tee C, Liu M, Sherry JP, Dixon B, Duncker BP, Bols NC. The p53/HSP70 inhibitor, 2-phenylethynesulfonamide, causes oxidative stress, unfolded protein response and apoptosis in rainbow trout cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:45-51. [PMID: 24270669 DOI: 10.1016/j.aquatox.2013.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 06/02/2023]
Abstract
The effect of 2-phenylethynesulfonamide (PES), which is a p53 and HSP70 inhibitor in mammalian cells, was studied on the rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1, in order to evaluate PES as a tool for understanding the cellular survival pathways operating in fish. As judged by three viability assays, fish cells were killed by 24h exposures to PES, but cell death was blocked by the anti-oxidant N-acetylcysteine (NAC). Cell death had several hallmarks of apoptosis: DNA laddering, nuclear fragmentation, Annexin V staining, mitochondrial membrane potential decline, and caspases activation. Reactive oxygen species (ROS) production peaked in several hours after the addition of PES and before cell death. HSP70 and BiP levels were higher in cultures treated with PES for 24h, but this was blocked by NAC. As well, PES treatment caused HSP70, BiP and p53 to accumulate in the detergent-insoluble fraction, and this too was prevented by NAC. Of several possible scenarios to explain the results, the following one is the simplest. PES enhances the generation of ROS, possibly by inhibiting the anti-oxidant actions of p53 and HSP70. ER stress arises from the ROS and from PES inhibiting the chaperone activities of HSP70. The ER stress in turn initiates the unfolded protein response (UPR), but this fails to restore ER homeostasis so proteins aggregate and cells die. Despite these multiple actions, PES should be useful for studying fish cellular survival pathways.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Tee
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Michelle Liu
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario L7R 4A6, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
42
|
Méndez-Callejas GM, Leone S, Tanzarella C, Antoccia A. Combretastatin A-4 induces p53 mitochondrial-relocalisation independent-apoptosis in non-small lung cancer cells. Cell Biol Int 2013; 38:296-308. [DOI: 10.1002/cbin.10199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Gina Marcela Méndez-Callejas
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
- Universidad de Ciencias Aplicadas y Ambientales; Calle 222 55-37 Bogotá Colombia
| | - Stefano Leone
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| | - Caterina Tanzarella
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| | - Antonio Antoccia
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| |
Collapse
|
43
|
Matissek KJ, Mossalam M, Okal A, Lim CS. The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol Pharm 2013; 10:3592-602. [PMID: 23968395 PMCID: PMC11614322 DOI: 10.1021/mp400380s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The tumor suppressor p53 is one of the most studied proteins in human cancer.1-3 While nuclear p53 has been utilized for cancer gene therapy, mitochondrial targeting of p53 has not been fully exploited to date.4,5 In response to cellular stress, p53 translocates to the mitochondria and directly interacts with Bcl-2 family proteins including antiapoptotic Bcl-XL and Bcl-2 and proapoptotic Bak and Bax.6 Antiapoptotic Bcl-XL forms inhibitory complexes with proapoptotic Bak and Bax preventing their homo-oligomerization.7 Upon translocation to the mitochondria, p53 binds to Bcl-XL, releases Bak and Bax from the inhibitory complex and enhances their homo-oligomerization.8 Bak and Bax homotetramer formation disrupts the mitochondrial outer membrane, releases antiapoptotic factors such as cytochrome c and triggers a rapid apoptotic response mediated by caspase induction.9 It is still unclear if the MDM2 binding domain (MBD), the proline-rich domain (PRD) and/or DNA binding domain (DBD) of p53 are the domains responsible for interaction with Bcl-XL.10-17 The purpose of this work is to determine if a smaller functional domain of p53 is capable of inducing apoptosis similarly to full length p53. To explore this question, different domains of p53 (MBD, PRD, DBD) were fused to the mitochondrial targeting signal (MTS) from Bcl-XL to ensure Bcl-XL specific targeting.18 The designed constructs were tested for apoptotic activity (TUNEL, Annexin-V, and 7-AAD) in 3 different breast cancer cell lines (T47D, MCF-7, MDA-MB-231), in a cervical cancer cell line (HeLa) and in non-small cell lung adenocarcinoma cells H1373. Our results indicate that DBD-XL (p53 DBD fused to the Bcl-XL MTS) reproduces (in T47D cells) or demonstrates increased apoptotic activity (in MCF-7, MDA-MB-231, and HeLa cells) compared to p53-XL (full length p53 fused to Bcl-XL MTS). Additionally, mitochondrial dependent apoptosis assays (TMRE, caspase-9), co-IP and overexpression of Bcl-XL in T47D cells suggest that DBD fused to XL MTS may bind to and inhibit Bcl-XL. Taken together, our data demonstrates for the first time that the DBD of p53 may be the minimally necessary domain for achieving apoptosis at the mitochondria in multiple cell lines. This work highlights the role of small functional domains of p53 as a novel cancer biologic therapy.
Collapse
Affiliation(s)
- Karina J. Matissek
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
- Department of Pharmaceutics and Biopharmacy, Philipps-Universitaẗ, D-35032 Marburg, Germany
| | - Mohanad Mossalam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
| | - Abood Okal
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
| | - Carol S. Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Utah 84112, United States
| |
Collapse
|
44
|
Ehrnhoefer DE, Skotte NH, Ladha S, Nguyen YTN, Qiu X, Deng Y, Huynh KT, Engemann S, Nielsen SM, Becanovic K, Leavitt BR, Hasholt L, Hayden MR. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant huntingtin. Hum Mol Genet 2013; 23:717-29. [PMID: 24070868 DOI: 10.1093/hmg/ddt458] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of caspase-6 in the striatum of both presymptomatic and affected persons with Huntington's disease (HD) is an early event in the disease pathogenesis. However, little is known about the role of caspase-6 outside the central nervous system (CNS) and whether caspase activation might play a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse embryonic fibroblasts (MEFs) from YAC128 mice, we show that this increase in caspase-6 activity can be mitigated by pifithrin-α (pifα), an inhibitor of p53 transcriptional activity, but not through the inhibition of p53's mitochondrial pro-apoptotic function. Remarkably, the p53-mediated increase in caspase-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6. Furthermore, these results suggest that this pathway is activated both within and outside the CNS in HD and may contribute to both loss of CNS neurons and muscle atrophy.
Collapse
Affiliation(s)
- Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics (CMMT), Department of Medical Genetics, CFRI, University of British Columbia, 950 West 28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao H, Mi S, Gong W, Lin J, Xu N, Perrett S, Xia B, Wang J, Feng Y. Anti-apoptosis proteins Mcl-1 and Bcl-xL have different p53-binding profiles. Biochemistry 2013; 52:6324-34. [PMID: 23977882 DOI: 10.1021/bi400690m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
One of the transcription-independent mechanisms of the tumor suppressor p53 discovered in recent years involves physical interaction between p53 and proteins of the Bcl-2 family. In this paper, significant differences between the interaction of p53 with Mcl-1 and Bcl-xL were demonstrated by NMR spectroscopy and isothermal titration calorimetry. Bcl-xL was found to bind strongly to the p53 DNA-binding domain (DBD) with a dissociation constant (Kd) of ~600 nM, whereas Mcl-1 binds to the p53 DBD weakly with a dissociation constant in the mM range. In contrast, the p53 transactivation domain (TAD) binds weakly to Bcl-xL with a Kd ~ 300-500 μM and strongly to Mcl-1 with a Kd ~ 10-20 μM. NMR titrations indicate that although the p53 TAD binds to the BH3-binding grooves of both Bcl-xL and Mcl-1, Bcl-xL prefers to bind to the first subdomain (TAD1) in the p53 TAD, and Mcl-1 prefers to bind to the second subdomain (TAD2). Therefore, Mcl-1 and Bcl-xL have different p53-binding profiles. This indicates that the detailed interaction mechanisms are different, although both Mcl-1 and Bcl-xL can mediate transcription-independent cytosolic roles of p53. The revealed differences in binding sites and binding affinities should be considered when BH3 mimetics are used in cancer therapy development.
Collapse
Affiliation(s)
- Hongwei Yao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aguirre C, ten Brink T, Walker O, Guillière F, Davesne D, Krimm I. BcL-xL conformational changes upon fragment binding revealed by NMR. PLoS One 2013; 8:e64400. [PMID: 23717610 PMCID: PMC3662666 DOI: 10.1371/journal.pone.0064400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP) of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4′-fluoro-[1,1′-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices 2, 3 and the very beginning of 5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the fragment-based drug design approach.
Collapse
Affiliation(s)
- Clémentine Aguirre
- UMR5280/Université de Lyon/Université Lyon 1, Institut des Sciences Analytiques, Villeurbanne, France
| | - Tim ten Brink
- UMR5280/Université de Lyon/Université Lyon 1, Institut des Sciences Analytiques, Villeurbanne, France
| | - Olivier Walker
- UMR5280/Université de Lyon/Université Lyon 1, Institut des Sciences Analytiques, Villeurbanne, France
| | - Florence Guillière
- UMR5280/Université de Lyon/Université Lyon 1, Institut des Sciences Analytiques, Villeurbanne, France
| | - Dany Davesne
- UMR5822/IN2P3/F-69622 Lyon, Université de Lyon, IPNL, Villeurbanne, France
| | - Isabelle Krimm
- UMR5280/Université de Lyon/Université Lyon 1, Institut des Sciences Analytiques, Villeurbanne, France
- * E-mail:
| |
Collapse
|
47
|
Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc Natl Acad Sci U S A 2013; 110:E1839-48. [PMID: 23589839 DOI: 10.1073/pnas.1208530110] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oncogenic transcription factor Myc deregulates the cell cycle and simultaneously reprograms cellular metabolism to meet the biosynthetic and bioenergetic needs of proliferation. Myc also sensitizes cells to mitochondria-dependent apoptosis. Although metabolic reprogramming has been circumstantially connected to vulnerability to apoptosis, the connecting molecular pathways have remained poorly defined. Here, we show that Myc-induced altered glutamine metabolism involves ATP depletion and activation of the energy sensor AMP-activated protein kinase (AMPK), which induces stabilizing phosphorylation of p53 at Ser15. Under influence of Myc, AMPK-stabilized tumor suppressor protein p53 accumulates in the mitochondria and interacts with the protein complex comprised of B-cell lymphoma 2 (Bcl-2) antagonist/killer (BAK) and Bcl2-like 1 (Bcl-xL). Mitochondrial p53 induces conformational activation of proapoptotic Bak without disrupting the Bak-Bcl-xL interaction. Further liberation of Bak specifically from the p53-activated Bak-Bcl-xL complex leads to spontaneous oligomerization of Bak and apoptosis. Thus, Myc-induced metabolic changes are coupled via AMPK and phospho-p53 to the mitochondrial apoptosis effector Bak, demonstrating a cell-intrinsic mechanism to counteract uncontrolled proliferation.
Collapse
|
48
|
PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nat Chem Biol 2013; 9:163-8. [PMID: 23340338 PMCID: PMC3683295 DOI: 10.1038/nchembio.1166] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/14/2012] [Indexed: 02/01/2023]
Abstract
Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the anti-apoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique amongst BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules, BAX and BAK. Structural investigations using nuclear magnetic resonance spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the anti-apoptotic BCL-2 repertoire to sensitize for death receptor (DR)-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.
Collapse
|
49
|
Ha JH, Shin JS, Yoon MK, Lee MS, He F, Bae KH, Yoon HS, Lee CK, Park SG, Muto Y, Chi SW. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 2013; 288:7387-98. [PMID: 23316052 DOI: 10.1074/jbc.m112.400754] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Molecular interactions between the tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins play an important role in the transcription-independent apoptosis of p53. The p53 transactivation domain (p53TAD) contains two conserved ΦXXΦΦ motifs (Φ indicates a bulky hydrophobic residue and X is any other residue) referred to as p53TAD1 (residues 15-29) and p53TAD2 (residues 39-57). We previously showed that p53TAD1 can act as a binding motif for anti-apoptotic Bcl-2 family proteins. In this study, we have identified p53TAD2 as a binding motif for anti-apoptotic Bcl-2 family proteins by using NMR spectroscopy, and we calculated the structures of Bcl-X(L)/Bcl-2 in complex with the p53TAD2 peptide. NMR chemical shift perturbation data showed that p53TAD2 peptide binds to diverse members of the anti-apoptotic Bcl-2 family independently of p53TAD1, and the binding between p53TAD2 and p53TAD1 to Bcl-X(L) is competitive. Refined structural models of the Bcl-X(L)·p53TAD2 and Bcl-2·p53TAD2 complexes showed that the binding sites occupied by p53TAD2 in Bcl-X(L) and Bcl-2 overlap well with those occupied by pro-apoptotic BH3 peptides. Taken together with the mutagenesis, isothermal titration calorimetry, and paramagnetic relaxation enhancement data, our structural comparisons provided the structural basis of p53TAD2-mediated interaction with the anti-apoptotic proteins, revealing that Bcl-X(L)/Bcl-2, MDM2, and cAMP-response element-binding protein-binding protein/p300 share highly similar modes of binding to the dual p53TAD motifs, p53TAD1 and p53TAD2. In conclusion, our results suggest that the dual-site interaction of p53TAD is a highly conserved mechanism underlying target protein binding in the transcription-dependent and transcription-independent apoptotic pathways of p53.
Collapse
Affiliation(s)
- Ji-Hyang Ha
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
De Vitto H, Mendonça BS, Elseth KM, Onul A, Xue J, Vesper BJ, Gallo CVM, Rumjanek FD, Paradise WA, Radosevich JA. Part III. Molecular changes induced by high nitric oxide adaptation in human breast cancer cell line BT-20 (BT-20-HNO): a switch from aerobic to anaerobic metabolism. Tumour Biol 2012; 34:403-13. [PMID: 23238817 DOI: 10.1007/s13277-012-0564-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/15/2012] [Indexed: 01/22/2023] Open
Abstract
Nutrient deprivation and reactive oxygen species (ROS) play an important role in breast cancer mitochondrial adaptation. Adaptations to these conditions allow cells to survive in the stressful microenvironment of the tumor bed. This study is directed at defining the consequences of High Nitric Oxide (HNO) exposure to mitochondria in human breast cancer cells. The breast cancer cell line BT-20 (parent) was adapted to HNO as previously reported, resulting in the BT-20-HNO cell line. Both cell lines were analyzed by a variety of methods including MTT, LDH leakage assay, DNA sequencing, and Western blot analysis. The LDH assay and the gene chip data showed that BT-20-HNO was more prone to use the glycolytic pathway than the parent cell line. The BT-20-HNO cells were also more resistant to the apoptotic inducing agent salinomycin, which suggests that p53 may be mutated in these cells. Polymerase chain reaction (PCR) followed by DNA sequencing of the p53 gene showed that it was, in fact, mutated at the DNA-binding site (L194F). Western blot analysis showed that p53 was significantly upregulated in these cells. These results suggest that free radicals, such as nitric oxide (NO), pressure human breast tumor cells to acquire an aggressive phenotype and resistance to apoptosis. These data collectively provide a mechanism by which the dysregulation of ROS in the mitochondria of breast cancer cells can result in DNA damage.
Collapse
Affiliation(s)
- H De Vitto
- Universidade Federal do Rio de Janeiro, IBqM, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|