1
|
Honda A, Seino J, Huang C, Nakano M, Suzuki T. Occurrence of free glycans in salmonid serum. Biochem Biophys Res Commun 2025; 742:151096. [PMID: 39637704 DOI: 10.1016/j.bbrc.2024.151096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Free N-glycans (FNGs) are oligosaccharides that are structurally related to N-linked glycans, and are widely found in nature. The mechanisms responsible for the formation and degradation of intracellular FNGs are well characterized in mammalian cells. More recent analysis in mammalian sera shows that there are various types of extracellular free glycans, including FNGs. However, it is unknown whether these free glycans are widely distributed in vertebrates. In this study, we investigated the occurrence of free glycans in salmonid serum. We found that it contained sialyl or neutral FNGs and sialyl lactose/N-acetyllactosamine (LacNAc)-type glycans, which was consistent with that found in mammalian sera. Many of the structures of FNGs matched those of N-glycans from serum glycoproteins. This study revealed that various types of free glycans are present in fish serum, demonstrating their wide occurrence among vertebrates.
Collapse
Affiliation(s)
- Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Chengcheng Huang
- Chemical Glycobiology Laboratory, Institute for Glyco-core (iGOCRE), Tokai National Higher Education and Research System Nagoya University, Furo-cho, Nagoya, Aichi, 464-8601, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
2
|
Hirayama H, Tachida Y, Fujinawa R, Matsuda Y, Murase T, Nishiuchi Y, Suzuki T. Development of a fluorescence and quencher-based FRET assay for detection of endogenous peptide:N-glycanase/NGLY1 activity. J Biol Chem 2024; 300:107121. [PMID: 38417795 PMCID: PMC11065741 DOI: 10.1016/j.jbc.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Cytosolic peptide:N-glycanase (PNGase/NGLY1 in mammals) catalyzes deglycosylation of N-glycans on glycoproteins. A genetic disorder caused by mutations in the NGLY1 gene leads to NGLY1 deficiency with symptoms including motor deficits and neurological problems. Effective therapies have not been established, though, a recent study used the administration of an adeno-associated viral vector expressing human NGLY1 to dramatically rescue motor functions in young Ngly1-/- rats. Thus, early therapeutic intervention may improve symptoms arising from central nervous system dysfunction, and assay methods for measuring NGLY1 activity in biological samples are critical for early diagnostics. In this study, we established an assay system for plate-based detection of endogenous NGLY1 activity using a FRET-based probe. Using this method, we revealed significant changes in NGLY1 activity in rat brains during aging. This novel assay offers reliable disease diagnostics and provides valuable insights into the regulation of PNGase/NGLY1 activity in diverse organisms under different stress conditions.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Yuriko Tachida
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | | | | | | | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), Riken, Wako Saitama, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan.
| |
Collapse
|
3
|
Huang C, Seino J, Honda A, Fujihira H, Wu D, Okahara K, Kitazume S, Nakaya S, Kitajima K, Sato C, Suzuki T. Rat hepatocytes secrete free oligosaccharides. J Biol Chem 2024; 300:105712. [PMID: 38309509 PMCID: PMC10912633 DOI: 10.1016/j.jbc.2024.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Akinobu Honda
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Kyohei Okahara
- Discovery Concept Validation Function, KAN Research Institute, Inc, Kobe, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Shuichi Nakaya
- Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
4
|
Li ST, Hirayama H, Huang C, Matsuda T, Oka R, Yamasaki T, Kohda D, Suzuki T. Hydrolytic activity of yeast oligosaccharyltransferase is enhanced when misfolded proteins accumulate in the endoplasmic reticulum. FEBS J 2024; 291:884-896. [PMID: 37997624 DOI: 10.1111/febs.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
It is known that oligosaccharyltransferase (OST) has hydrolytic activity toward dolichol-linked oligosaccharides (DLO), which results in the formation of free N-glycans (FNGs), i.e. unconjugated oligosaccharides with structural features similar to N-glycans. The functional importance of this hydrolytic reaction, however, remains unknown. In this study, the hydrolytic activity of OST was characterized in yeast. It was shown that the hydrolytic activity of OST is enhanced in ubiquitin ligase mutants that are involved in endoplasmic reticulum-associated degradation. Interestingly, this enhanced hydrolysis activity is completely suppressed in asparagine-linked glycosylation (alg) mutants, bearing mutations related to the biosynthesis of DLO, indicating that the effect of ubiquitin ligase on OST-mediated hydrolysis is context-dependent. The enhanced hydrolysis activity in ubiquitin ligase mutants was also found to be canceled upon treatment of the cells with dithiothreitol, a reagent that potently induces protein unfolding in the endoplasmic reticulum (ER). Our results clearly suggest that the hydrolytic activity of OST is enhanced under conditions in which the formation of unfolded proteins is promoted in the ER in yeast. The possible role of FNGs on protein folding is discussed.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Takahiro Yamasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
5
|
Huang S, Haga Y, Li J, Zhang J, Kweon HK, Seino J, Hirayama H, Fujita M, Moremen KW, Andrews P, Suzuki T, Wang Y. Mitotic phosphorylation inhibits the Golgi mannosidase MAN1A1. Cell Rep 2022; 41:111679. [DOI: 10.1016/j.celrep.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
6
|
Pecori F, Hanamatsu H, Furukawa JI, Nishihara S. Comprehensive and Comparative Structural Glycome Analysis in Mouse Epiblast-like Cells. Methods Mol Biol 2022; 2490:179-193. [PMID: 35486246 DOI: 10.1007/978-1-0716-2281-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycosylation is one of the most abundant posttranslational modifications and is involved in a wide range of cellular processes. Glycome diversity in mammals is generated by the action of over 200 distinct glycosyltransferases and related enzymes. Nevertheless, glycosylation dynamics are tightly coordinated to allow proper organismal development. Here, using mouse embryonic stem cells (mESCs) and mouse epiblast-like cells (mEpiLCs) as model systems, we describe a robust protocol that allows comprehensive and comparative structural analysis of the glycome.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
- Glycan and Life System Integration Center (GaLSIC), Soka University, Tokyo, Japan.
| |
Collapse
|
7
|
Huang C, Seino J, Fujihira H, Sato K, Fujinawa R, Sumer-Bayraktar Z, Ishii N, Matsuo I, Nakaya S, Suzuki T. Occurrence of free N-glycans with a single GlcNAc at the reducing termini in animal sera. Glycobiology 2021; 32:314-332. [PMID: 34939097 DOI: 10.1093/glycob/cwab124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies demonstrated the occurrence of sialyl free N-glycans (FNGs) in sera from a variety of animals. Unlike the intracellular FNGs that mainly carry a single N-acetylglucosamine at their reducing termini (Gn1-type), these extra-cellular FNGs have an N,N'-diacetylchitobiose at their reducing termini (Gn2-type). The detailed mechanism for how they are formed, however, remains unclarified. In this study, we report on an improved method for isolating FNGs from sera and found that, not only sialyl FNGs, but also neutral FNGs are present in animal sera. Most of the neutral oligomannose-type FNGs were found to be Gn1-type. We also found that a small portion of sialyl FNGs were Gn1-type. The ratio of Gn1-type sialyl FNGs varies between species, and appears to be partially correlated with the distribution of lysosomal chitobiase activity. We also identified small sialylated glycans similar to milk oligosaccharides, such as sialyl lactose or sialyl N-acetyllactosamine in sera. Our results indicate that there are variety of free oligosaccharides in sera and the mechanism responsible for their formation is more complicated than currently envisaged.
Collapse
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 133-8421, Japan
| | - Keiko Sato
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Zeynep Sumer-Bayraktar
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Shuichi Nakaya
- Global Application Development Center, Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN-Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Okamoto N, Ohto T, Enokizono T, Wada Y, Kohmoto T, Imoto I, Haga Y, Seino J, Suzuki T. Siblings with MAN1B1-CDG Showing Novel Biochemical Profiles. Cells 2021; 10:cells10113117. [PMID: 34831340 PMCID: PMC8618856 DOI: 10.3390/cells10113117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital disorders of glycosylation (CDG), inherited metabolic diseases caused by defects in glycosylation, are characterized by a high frequency of intellectual disability (ID) and various clinical manifestations. Two siblings with ID, dysmorphic features, and epilepsy were examined using mass spectrometry of serum transferrin, which revealed a CDG type 2 pattern. Whole-exome sequencing showed that both patients were homozygous for a novel pathogenic variant of MAN1B1 (NM_016219.4:c.1837del) inherited from their healthy parents. We conducted a HPLC analysis of sialylated N-linked glycans released from total plasma proteins and characterized the α1,2-mannosidase I activity of the lymphocyte microsome fraction. The accumulation of monosialoglycans was observed in MAN1B1-deficient patients, indicating N-glycan-processing defects. The enzymatic activity of MAN1B1 was compromised in patient-derived lymphocytes. The present patients exhibited unique manifestations including early-onset epileptic encephalopathy and cerebral infarction. They also showed coagulation abnormalities and hypertransaminasemia. Neither sibling had truncal obesity, which is one of the characteristic features of MAN1B1-CDG.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan
- Department of Molecular Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
- Correspondence:
| | - Tatsuyuki Ohto
- Department of Pediatrics, Tsukuba University Faculty of Medicine, Tsukuba 305-8576, Japan; (T.O.); (T.E.)
| | - Takashi Enokizono
- Department of Pediatrics, Tsukuba University Faculty of Medicine, Tsukuba 305-8576, Japan; (T.O.); (T.E.)
| | - Yoshinao Wada
- Department of Molecular Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Tomohiro Kohmoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; (T.K.); (I.I.)
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Issei Imoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; (T.K.); (I.I.)
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yoshimi Haga
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan; (Y.H.); (J.S.); (T.S.)
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan; (Y.H.); (J.S.); (T.S.)
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan; (Y.H.); (J.S.); (T.S.)
| |
Collapse
|
9
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Piirainen MA, Frey AD. Investigating the role of ERAD on antibody processing in glycoengineered Saccharomyces cerevisiae. FEMS Yeast Res 2021; 20:5700285. [PMID: 31922547 DOI: 10.1093/femsyr/foaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation plays an important role in the endoplasmic reticulum quality control (ERQC). N-glycan biosynthesis pathways have been engineered in yeasts and fungi to enable the production of therapeutic glycoproteins with human-compatible N-glycosylation, and some glycoengineering approaches alter the synthesis of the lipid-linked oligosaccharide (LLO). Because the effects of LLO engineering on ERQC are currently unknown, we characterized intracellular processing of IgG in glycoengineered Δalg3 Δalg11 Saccharomyces cerevisiae strain and analyzed how altered LLO structures affect endoplasmic reticulum-associated degradation (ERAD). Intracellular IgG light and heavy chain molecules expressed in Δalg3 Δalg11 strain are ERAD substrates and targeted to ERAD independently of Yos9p and Htm1p, whereas in the presence of ALG3 ERAD targeting is dependent on Yos9p but does not require Htm1p. Blocking of ERAD accumulated ER and post-Golgi forms of IgG and increased glycosylation of matα secretion signal but did not improve IgG secretion. Our results show ERAD targeting of a heterologous glycoprotein in yeast, and suggest that proteins in the ER can be targeted to ERAD via other mechanisms than the Htm1p-Yos9p-dependent route when the LLO biosynthesis is altered.
Collapse
Affiliation(s)
- Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
11
|
Harada Y, Nakajima K, Li S, Suzuki T, Taniguchi N. Protocol for analyzing the biosynthesis and degradation of N-glycan precursors in mammalian cells. STAR Protoc 2021; 2:100316. [PMID: 33659899 PMCID: PMC7890039 DOI: 10.1016/j.xpro.2021.100316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
N-glycosylation is a fundamental post-translational protein modification in the endoplasmic reticulum of eukaryotic cells. The biosynthetic and catabolic flux of N-glycans in eukaryotic cells has long been analyzed by metabolic labeling using radiolabeled sugars. Here, we introduce a non-radiolabeling protocol for the isolation, structural determination, and quantification of N-glycan precursors, dolichol-linked oligosaccharides, and the related metabolites, including phosphorylated oligosaccharides and nucleotide sugars. Our protocol allows for capturing of the biosynthesis and degradation of N-glycan precursors at steady state. For complete details on the use and execution of this protocol, please refer to Harada et al. (2013), Harada et al. (2020), and Nakajima et al. (2013). Purification of DLOs, POSs, and nucleotide sugars from adherent mammalian cells Fluorescent labeling of glycans liberated from DLOs and POSs Liquid chromatography analysis of the fluorescently labeled glycans Liquid chromatography-mass spectrometry analysis of nucleotide sugars
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Kazuki Nakajima
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shengtao Li
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
12
|
Pecori F, Yokota I, Hanamatsu H, Miura T, Ogura C, Ota H, Furukawa JI, Oki S, Yamamoto K, Yoshie O, Nishihara S. A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Sci Rep 2021; 11:1276. [PMID: 33446700 PMCID: PMC7809059 DOI: 10.1038/s41598-020-79666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Hayato Ota
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Izumi, Sendai, Miyagi, 981-3205, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
- Glycan and Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
13
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
14
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
15
|
Yamasaki T, Kohda D. Uncoupling the hydrolysis of lipid-linked oligosaccharide from the oligosaccharyl transfer reaction by point mutations in yeast oligosaccharyltransferase. J Biol Chem 2020; 295:16072-16085. [PMID: 32938717 PMCID: PMC7681024 DOI: 10.1074/jbc.ra120.015013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Indexed: 11/06/2022] Open
Abstract
Oligosaccharyltransferase (OST) is responsible for the first step in the N-linked glycosylation, transferring an oligosaccharide chain onto asparagine residues to create glycoproteins. In the absence of an acceptor asparagine, OST hydrolyzes the oligosaccharide donor, releasing free N-glycans (FNGs) into the lumen of the endoplasmic reticulum (ER). Here, we established a purification method for mutated OSTs using a high-affinity epitope tag attached to the catalytic subunit Stt3, from yeast cells co-expressing the WT OST to support growth. The purified OST protein with mutations is useful for wide-ranging biochemical experiments. We assessed the effects of mutations in the Stt3 subunit on the two enzymatic activities in vitro, as well as their effects on the N-glycan attachment and FNG content levels in yeast cells. We found that mutations in the first DXD motif increased the FNG generation activity relative to the oligosaccharyl transfer activity, both in vitro and in vivo, whereas mutations in the DK motif had the opposite effect; the decoupling of the two activities may facilitate future deconvolution of the reaction mechanism. The isolation of the mutated OSTs also enabled us to identify different enzymatic properties in OST complexes containing either the Ost3 or Ost6 subunit and to find a 15-residue peptide as a better-quality substrate than shorter peptides. This toolbox of mutants, substrates, and methods will be useful for investigations of the molecular basis and physiological roles of the OST enzymes in yeast and other organisms.
Collapse
Affiliation(s)
- Takahiro Yamasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
16
|
Zhang J, Wang YY, Du LL, Ye K. Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1. FEBS Open Bio 2020; 10:2437-2451. [PMID: 32981237 PMCID: PMC7609781 DOI: 10.1002/2211-5463.12988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
Fungal α‐mannosidase Ams1 and its mammalian homolog MAN2C1 hydrolyze terminal α‐linked mannoses in free oligosaccharides released from misfolded glycoproteins or lipid‐linked oligosaccharide donors. Ams1 is transported by selective autophagy into vacuoles. Here, we determine the tetrameric structure of Ams1 from the fission yeast Schizosaccharomyces pombe at 3.2 Å resolution by cryo‐electron microscopy. Distinct from a low resolution structure of S. cerevisiae Ams1, S. pombe Ams1 has a prominent N‐terminal tail that mediates tetramerization and an extra β‐sheet domain. Ams1 shares a conserved active site with other enzymes in glycoside hydrolase family 38, to which Ams1 belongs, but contains extra N‐terminal domains involved in tetramerization. The atomic structure of Ams1 reported here will aid understanding of its enzymatic activity and transport mechanism.
Collapse
Affiliation(s)
- Jianxiu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Harada Y, Nakajima K, Suzuki T, Fukushige T, Kondo K, Seino J, Ohkawa Y, Suzuki T, Inoue H, Kanekura T, Dohmae N, Taniguchi N, Maruyama I. Glycometabolic Regulation of the Biogenesis of Small Extracellular Vesicles. Cell Rep 2020; 33:108261. [DOI: 10.1016/j.celrep.2020.108261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
|
18
|
Huang C, Suzuki T. The occurrence of nonglycosylated forms of
N
‐glycoprotein upon proteasome inhibition does not confirm cytosolic deglycosylation. FEBS Lett 2020; 594:1433-1442. [DOI: 10.1002/1873-3468.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
| |
Collapse
|
19
|
Saad H, Patel C, Lederkremer GZ. Letting go of O-glycans. J Biol Chem 2019; 294:15912-15913. [PMID: 31676555 DOI: 10.1074/jbc.h119.011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The generation of free N-glycans, or unconjugated oligosaccharides derived from N-linked glycoproteins, is well understood, but whether a similar fate awaits O-linked glycoprotein carbohydrates was unknown. Hirayama et al. now reveal, by using only mannose as an energy source, the generation of free O-glycans in Saccharomyces cerevisiae, in the lumen of a secretory compartment, possibly the vacuole. These findings uncover the presence of a possible regulated degradation pathway for O-mannosylated glycoproteins.
Collapse
Affiliation(s)
- Haddas Saad
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chaitanya Patel
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
21
|
Application of high-mannose-type glycan-specific lectin from Oscillatoria Agardhii for affinity isolation of tumor-derived extracellular vesicles. Anal Biochem 2019; 580:21-29. [DOI: 10.1016/j.ab.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/25/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
|
22
|
Hirayama H, Matsuda T, Tsuchiya Y, Oka R, Seino J, Huang C, Nakajima K, Noda Y, Shichino Y, Iwasaki S, Suzuki T. Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. J Biol Chem 2019; 294:15900-15911. [PMID: 31311856 DOI: 10.1074/jbc.ra119.009491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, unconjugated oligosaccharides that are structurally related to N-glycans (i.e. free N-glycans) are generated either from misfolded N-glycoproteins destined for the endoplasmic reticulum-associated degradation or from lipid-linked oligosaccharides, donor substrates for N-glycosylation of proteins. The mechanism responsible for the generation of free N-glycans is now well-understood, but the issue of whether other types of free glycans are present remains unclear. Here, we report on the accumulation of free, O-mannosylated glycans in budding yeast that were cultured in medium containing mannose as the carbon source. A structural analysis of these glycans revealed that their structures are identical to those of O-mannosyl glycans that are attached to glycoproteins. Deletion of the cyc8 gene, which encodes for a general transcription repressor, resulted in the accumulation of excessive amounts of free O-glycans, concomitant with a severe growth defect, a reduction in the level of an O-mannosylated protein, and compromised cell wall integrity. Our findings provide evidence in support of a regulated pathway for the degradation of O-glycoproteins in yeast and offer critical insights into the catabolic mechanisms that control the fate of O-glycosylated proteins.
Collapse
Affiliation(s)
- Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yae Tsuchiya
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
23
|
Fermaintt CS, Sano K, Liu Z, Ishii N, Seino J, Dobbs N, Suzuki T, Fu YX, Lehrman MA, Matsuo I, Yan N. A bioactive mammalian disaccharide associated with autoimmunity activates STING-TBK1-dependent immune response. Nat Commun 2019; 10:2377. [PMID: 31147550 PMCID: PMC6542856 DOI: 10.1038/s41467-019-10319-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
Glycans from microbial pathogens are well known pathogen-associated molecular patterns that are recognized by the host immunity; however, little is known about whether and how mammalian self-glycans activate the host immune response, especially in the context of autoimmune disease. Using biochemical fractionation and two-dimensional HPLC, we identify an abundant and bioactive free glycan, the Manβ1-4GlcNAc disaccharide in TREX1-associated autoimmune diseases. We report that both monosaccharide residues and the β1-4 linkage are critical for bioactivity of this disaccharide. We also show that Manβ1-4GlcNAc is produced by oligosaccharyltransferase hydrolysis of lipid-linked oligosaccharides in the ER lumen, followed by ENGase and mannosidase processing in the cytosol and lysosomes. Furthermore, synthetic Manβ1-4GlcNAc disaccharide stimulates a broad immune response in vitro, which is in part dependent on the STING-TBK1 pathway, and enhances antibody response in vivo. Together, our data identify Manβ1-4GlcNAc as a novel innate immune modulator associated with chronic autoimmune diseases.
Collapse
Affiliation(s)
- Charles S Fermaintt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kanae Sano
- Division of Molecular Science, Gunma University, Maebashi, 371-8510, Japan
| | - Zhida Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nozomi Ishii
- Division of Molecular Science, Gunma University, Maebashi, 371-8510, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, 351-0198, Japan
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark A Lehrman
- Department of Pharmacology, Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ichiro Matsuo
- Division of Molecular Science, Gunma University, Maebashi, 371-8510, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
24
|
Hirayama H. Biology of Free Oligosaccharides: Function and Metabolism of Free N-Glycans in Eukaryote. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1761.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hiroto Hirayama
- Suzuki Project, T-CiRA Joint Program, Glycometabolic Biochemistry Laboratory, RIKEN
| |
Collapse
|
25
|
Deglycosylating enzymes acting on N- glycans in fungi: Insights from a genome survey. Biochim Biophys Acta Gen Subj 2017; 1861:2551-2558. [DOI: 10.1016/j.bbagen.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022]
|
26
|
Katafuchi Y, Li Q, Tanaka Y, Shinozuka S, Kawamitsu Y, Izumi M, Ekino K, Mizuki K, Takegawa K, Shibata N, Goto M, Nomura Y, Ohta K, Oka T. GfsA is a β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus. Glycobiology 2017; 27:568-581. [DOI: 10.1093/glycob/cwx028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yukako Katafuchi
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Qiushi Li
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Sendai 981-8558, Japan
| | - Saki Shinozuka
- Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 1-1-1, Okayama 700-8530, Japan
| | - Yohei Kawamitsu
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Minoru Izumi
- Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 1-1-1, Okayama 700-8530, Japan
| | - Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Keiji Mizuki
- Department of Nanoscience, Faculty of Engineering, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Sendai 981-8558, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Saga University, Honjo-machi 1, Saga 840-8502, Japan
| | - Yoshiyuki Nomura
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Kazuyoshi Ohta
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| |
Collapse
|
27
|
Yoshida Y, Furukawa JI, Naito S, Higashino K, Numata Y, Shinohara Y. Quantitative analysis of total serum glycome in human and mouse. Proteomics 2016; 16:2747-2758. [DOI: 10.1002/pmic.201500550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Yasunobu Yoshida
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Jun-ichi Furukawa
- Laboratory of Medical and Functional Glycomics; Graduate School of Advanced Life Science; Hokkaido University; Sapporo Japan
- Department of Orthopaedic Orthopaedic Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Shoichi Naito
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Yoshito Numata
- Shionogi Innovation Center for Drug Discovery; Shionogi & Co., Ltd; Sapporo Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics; Graduate School of Advanced Life Science; Hokkaido University; Sapporo Japan
- Department of Pharmacy; Kinjo Gakuin University; Nagoya Japan
| |
Collapse
|
28
|
The signaling pathways underlying starvation-induced upregulation of α-mannosidase Ams1 in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2016; 1860:1192-201. [DOI: 10.1016/j.bbagen.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
|
29
|
Dwivedi R, Nothaft H, Reiz B, Whittal RM, Szymanski CM. Generation of free oligosaccharides from bacterial protein N-linked glycosylation systems. Biopolymers 2016; 99:772-83. [PMID: 23749285 DOI: 10.1002/bip.22296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/28/2013] [Indexed: 11/10/2022]
Abstract
All Campylobacter species are capable of N-glycosylating their proteins and releasing the same oligosaccharides into the periplasm as free oligosaccharides (fOS). Previously, analysis of fOS production in Campylobacter required fOS derivatization or large culture volumes and several chromatography steps prior to fOS analysis. In this study, label-free fOS extraction and purification methods were developed and coupled with quantitative analysis techniques. Our method follows three simple steps: (1) fOS extraction from the periplasmic space, (2) fOS purification using silica gel chromatography followed by porous graphitized carbon purification and (3) fOS analysis and accurate quantitation using a combination of thin-layer chromatography, mass spectrometry, NMR, and high performance anion exchange chromatography with pulsed amperometric detection. We applied our techniques to analyze fOS from C. jejuni, C. lari, C. rectus, and C. fetus fetus that produce different fOS structures. We accurately quantified fOS in Campylobacter species that ranged from 7.80 (±0.84) to 49.82 (±0.46) nmoles per gram of wet cell pellet and determined that the C. jejuni fOS comprises 2.5% of the dry cell weight. In addition, a novel di-phosphorylated fOS species was identified in C. lari. This method provides a sensitive and quantitative method to investigate the genesis, biology and breakdown of fOS in the bacterial N-glycosylation systems.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Center and Department of Biological Sciences, University of Alberta, Canada
| | | | | | | | | |
Collapse
|
30
|
Seino J, Fujihira H, Nakakita SI, Masahara-Negishi Y, Miyoshi E, Hirabayashi J, Suzuki T. Occurrence of free sialyl oligosaccharides related to N-glycans (sialyl free N-glycans) in animal sera. Glycobiology 2016; 26:1072-1085. [PMID: 27102284 DOI: 10.1093/glycob/cww048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 04/01/2016] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
Free oligosaccharides that are structurally related to N-glycans [free N-glycans (FNGs)] are widely distributed in the cytosol of animal cells. The diverse molecular mechanisms responsible for the formation of these FNGs have been well clarified. In this study we demonstrate the wide occurrence of sialylated FNGs in sera of various animals. The features of these extracellular FNGs are quite distinct from the cytosolic FNGs, as they are Gn2-type glycans, bearing an N,N'-diacetylchitobiose unit at their reducing termini, while the cytosolic FNGs are predominantly Gn1-type, with a single GlcNAc at their reducing termini. The major structures observed varied from species to species, and the structures of the FNGs appear to be correlated with the major sialyl N-glycans on serum glycoproteins, suggesting that the serum FNGs are produced by hepatocytes. Interestingly, glycan-profiles of the FNGs indicated that they are altered in a developmental stage-dependent manner. Sialyl FNGs in the sera may not only be of biological relevance, in that they might reflect the functionality of the liver, but also can be attractive sources for obtaining uniform sialyl FNGs in the chemoenzymatic synthesis of glycoproteins.
Collapse
Affiliation(s)
- Junichi Seino
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Haruhiko Fujihira
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shin-Ichi Nakakita
- Division of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuki Masahara-Negishi
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University School of Medicine, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jun Hirabayashi
- Division of Functional Glycomics, Life Science Research Center, Institute of Research Promotion, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, RIKEN-Max Planck Institute Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
31
|
Hossain TJ, Harada Y, Hirayama H, Tomotake H, Seko A, Suzuki T. Structural Analysis of Free N-Glycans in α-Glucosidase Mutants of Saccharomyces cerevisiae: Lack of the Evidence for the Occurrence of Catabolic α-Glucosidase Acting on the N-Glycans. PLoS One 2016; 11:e0151891. [PMID: 27010459 PMCID: PMC4807098 DOI: 10.1371/journal.pone.0151891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
Saccharomyces cerevisiae produces two different α-glucosidases, Glucosidase 1 (Gls1) and Glucosidase 2 (Gls2), which are responsible for the removal of the glucose molecules from N-glycans (Glc3Man9GlcNAc2) of glycoproteins in the endoplasmic reticulum. Whether any additional α-glucosidases playing a role in catabolizing the glucosylated N-glycans are produced by this yeast, however, remains unknown. We report herein on a search for additional α-glucosidases in S. cerevisiae. To this end, the precise structures of cytosolic free N-glycans (FNGs), mainly derived from the peptide:N-glycanase (Png1) mediated deglycosylation of N-glycoproteins were analyzed in the endoplasmic reticulum α-glucosidase-deficient mutants. 12 new glucosylated FNG structures were successfully identified through 2-dimentional HPLC analysis. On the other hand, non-glucosylated FNGs were not detected at all under any culture conditions. It can therefore be safely concluded that no catabolic α-glucosidases acting on N-glycans are produced by this yeast.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | - Haruna Tomotake
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, Wako, Saitama, Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
- * E-mail:
| |
Collapse
|
32
|
Harada Y, Huang C, Yamaki S, Dohmae N, Suzuki T. Non-lysosomal Degradation of Singly Phosphorylated Oligosaccharides Initiated by the Action of a Cytosolic Endo-β-N-acetylglucosaminidase. J Biol Chem 2016; 291:8048-58. [PMID: 26858256 DOI: 10.1074/jbc.m115.685313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/29/2023] Open
Abstract
Phosphorylated oligosaccharides (POSs) are produced by the degradation of dolichol-linked oligosaccharides (DLOs) by an unclarified mechanism in mammalian cells. Although POSs are exclusively found in the cytosol, their intracellular fates remain unclear. Our findings indicate that POSs are catabolized via a non-lysosomal glycan degradation pathway that involves a cytosolic endo-β-N-acetylglucosaminidase (ENGase). Quantitative and structural analyses of POSs revealed that ablation of the ENGase results in the significant accumulation of POSs with a hexasaccharide structure composed of Manα1,2Manα1,3(Manα1,6)Manβ1,4GlcNAcβ1,4GlcNAc.In vitroENGase assays revealed that the presence of an α1,2-linked mannose residue facilitates the hydrolysis of POSs by the ENGase. Liquid chromatography-mass spectrometric analyses and fluorescent labeling experiments show that such POSs contain one phosphate group at the reducing end. These results indicate that ENGase efficiently hydrolyzes POSs that are larger than Man4GlcNAc2-P, generating GlcNAc-1-P and neutral Gn1-type free oligosaccharides. These results provide insight into important aspects of the generation and degradation of POSs.
Collapse
Affiliation(s)
- Yoichiro Harada
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Chengcheng Huang
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Satoshi Yamaki
- the Global Application Development Center, Analytical and Measuring Instruments Division, Shimadzu Corp., Hadano, Kanagawa 259-1304, and
| | - Naoshi Dohmae
- the Collaboration Promotion Unit, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - Tadashi Suzuki
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198,
| |
Collapse
|
33
|
Niang B, Jin L, Chen X, Guo X, Zhang H, Wu Q, Padhiar AA, Xiao M, Fang D, Zhang J. GalNAc-T4 putatively modulates the estrogen regulatory network through FOXA1 glycosylation in human breast cancer cells. Mol Cell Biochem 2016; 411:393-402. [PMID: 26541755 DOI: 10.1007/s11010-015-2601-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
GALNT4 belongs to a family of N-acetylgalactosaminyltransferases, which catalyze the transfer of GalNAc to Serine or Threonine residues in the initial step of mucin-type O-linked protein glycosylation. This glycosylation type is the most complex post-translational modification of proteins, playing important roles during cellular differentiation and in pathological disorders. Most of the breast cancer subtypes are estrogen receptor positive, and hence, the estrogen pathway represents a key regulatory network. We investigated the expression of GalNAc-T4 in a panel of mammary epithelial cell lines and found its expression is associated with the estrogen status of the cells. FOXA1, a key transcription factor, functions to promote estrogen responsive gene expression by acting as a cofactor to estrogen receptor alpha (ERα), but all the aspects of this regulatory mechanism are not fully explored. This study found that knockdown of GALNT4 expression in human breast cancer cells attenuated the protein expression of ERα, FOXA1, and Cyclin D1. Further, our immunoprecipitation assays depicted the possibility of FOXA1 to undergo O-GalNAc modifications with a decrease of GalNAc residues in the GALNT4 knockdown cells and also impairment in the FOXA1-ERα association. Rescuing GALNT4 expression could restore the interaction as well as the glycosylation of FOXA1. Together, these findings suggest a key role for GalNAc-T4 in the estrogen pathway through FOXA1 glycosylation.
Collapse
Affiliation(s)
- Bachir Niang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Liyuan Jin
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Xixi Chen
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Xiaohan Guo
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Hongshuo Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Qiong Wu
- School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Arshad Ahmed Padhiar
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China
| | - Min Xiao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Jianing Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, 9 South Lvshun Road Western Section, Dalian, 116044, China.
- School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
34
|
The cytoplasmic peptide:N-glycanase (NGLY1) - Structure, expression and cellular functions. Gene 2015; 577:1-7. [PMID: 26611529 DOI: 10.1016/j.gene.2015.11.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022]
Abstract
NGLY1/Ngly1 is a cytosolic peptide:N-glycanase, i.e. de-N-glycosylating enzyme acting on N-glycoproteins in mammals, generating free, unconjugated N-glycans and deglycosylated peptides in which the N-glycosylated asparagine residues are converted to aspartates. This enzyme is known to be involved in the quality control system for the newly synthesized glycoproteins in the endoplasmic reticulum (ER). In this system, misfolded (glyco)proteins are retrotranslocated to the cytosol, where the 26S proteasomes play a central role in degrading the proteins: a process referred to as ER-associated degradation or ERAD in short. PNGase-mediated deglycosylation is believed to facilitate the efficient degradation of some misfolded glycoproteins. Human patients harboring mutations of NGLY1 gene (NGLY1-deficiency) have recently been discovered, clearly indicating the functional importance of this enzyme. This review summarizes the current state of our knowledge on NGLY1 and its gene product in mammalian cells.
Collapse
|
35
|
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16:742-52. [PMID: 26465718 DOI: 10.1038/nrm4073] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.
Collapse
Affiliation(s)
- Chengchao Xu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Duke University-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
36
|
Liu XM, Sun LL, Hu W, Ding YH, Dong MQ, Du LL. ESCRTs Cooperate with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos. Mol Cell 2015; 59:1035-42. [DOI: 10.1016/j.molcel.2015.07.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 11/16/2022]
|
37
|
Hossain TJ, Hirayama H, Harada Y, Suzuki T. Lack of the evidence for the enzymatic catabolism of Man1GlcNAc2 in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2015; 80:152-7. [PMID: 26264652 DOI: 10.1080/09168451.2015.1072464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the cytosol of Saccharomyces cerevisiae, most of the free N-glycans (FNGs) are generated from misfolded glycoproteins by the action of the cytoplasmic peptide: N-glycanase (Png1). A cytosol/vacuole α-mannosidase, Ams1, then trims the FNGs to eventually form a trisaccharide composed of Manβ1,4GlcNAc β1,4GlcNAc (Man1GlcNAc2). Whether or not the resulting Man1GlcNAc2 is enzymatically degraded further, however, is currently unknown. The objective of this study was to unveil the fate of Man1GlcNAc2 in S. cerevisiae. Quantitative analyses of the FNGs revealed a steady increase in the amount of Man1GlcNAc2 produced in the post-diauxic and stationary phases, suggesting that this trisaccharide is not catabolized during this period. Inoculation of the stationary phase cells into fresh medium resulted in a reduction in the levels of Man1GlcNAc2. However, this reduction was caused by its dilution due to cell division in the fresh medium. Our results thus indicate that Man1GlcNAc2 is not enzymatically catabolized in S. cerevisiae.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan.,b Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| | - Hiroto Hirayama
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan
| | - Yoichiro Harada
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan.,c Department of Systems Biology in Thromboregulation , Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | - Tadashi Suzuki
- a Glycometabolome Team, Systems Glycobiology Research Group , RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster , Saitama , Japan.,b Graduate School of Science and Engineering , Saitama University , Saitama , Japan
| |
Collapse
|
38
|
Harada Y, Masahara-Negishi Y, Suzuki T. Cytosolic-free oligosaccharides are predominantly generated by the degradation of dolichol-linked oligosaccharides in mammalian cells. Glycobiology 2015. [DOI: 10.1093/glycob/cwv055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Co-Expression of NEU2 and GBA3 Causes a Drastic Reduction in Cytosolic Sialyl Free N-glycans in Human MKN45 Stomach Cancer Cells-Evidence for the Physical Interaction of NEU2 and GBA3. Biomolecules 2015; 5:1499-514. [PMID: 26193330 PMCID: PMC4598761 DOI: 10.3390/biom5031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
It is well known that the "free" form of glycans that are structurally related to asparagine (N)-linked glycans ("free N-glycans") are found in a wide variety of organisms. The mechanisms responsible for the formation/degradation of high mannose-type free N-glycans have been extensively studied in mammalian cells. Recent evidence, however, also suggests that sialylated, complex-type free N-glycans are also present in the cytosol of various mammalian-derived cultured cells/tissues. We report herein on an investigation of the mechanism responsible for the degradation of such sialyl free N-glycans. The findings show that the amount of glycans is dramatically reduced upon the co-expression of cytosolic sialidase NEU2 with cytosolic β-glycosidase GBA3 in human stomach cancer-derived MKN45 cells. The physical interaction between NEU2 and GBA3 was confirmed by co-precipitation analyses as well as gel filtration assays. The NEU2 protein was found to be stabilized in the presence of GBA3 both in cellulo and in vitro. Our results thus indicate that cytosolic GBA3 is likely involved in the catabolism of cytosolic sialyl free N-glycans, possibly by stabilizing the activity of the NEU2 protein.
Collapse
|
40
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
41
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
42
|
Hirayama H, Hosomi A, Suzuki T. Physiological and molecular functions of the cytosolic peptide:N-glycanase. Semin Cell Dev Biol 2015; 41:110-20. [DOI: 10.1016/j.semcdb.2014.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
|
43
|
Endo-β-N-acetylglucosaminidase forms N-GlcNAc protein aggregates during ER-associated degradation in Ngly1-defective cells. Proc Natl Acad Sci U S A 2015; 112:1398-403. [PMID: 25605922 DOI: 10.1073/pnas.1414593112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic peptide:N-glycanase (PNGase; Ngly1 in mice) is a deglycosylating enzyme involved in the endoplasmic reticulum (ER)-associated degradation (ERAD) process. The precise role of Ngly1 in the ERAD process, however, remains unclear in mammals. The findings reported herein, using mouse embryonic fibroblast (MEF) cells, that the ablation of Ngly1 causes dysregulation of the ERAD process. Interestingly, not only delayed degradation but also the deglycosylation of a misfolded glycoprotein was observed in Ngly1(-/-) MEF cells. The unconventional deglycosylation reaction was found to be catalyzed by the cytosolic endo-β-N-acetylglucosaminidase (ENGase), generating aggregation-prone N-GlcNAc proteins. The ERAD dysregulation in cells lacking Ngly1 was restored by the additional knockout of ENGase gene. Thus, our study underscores the functional importance of Ngly1 in the ERAD process and provides a potential mechanism underlying the phenotypic consequences of a newly emerging genetic disorder caused by mutation of the human NGLY1 gene.
Collapse
|
44
|
Suzuki T. The cytoplasmic peptide:N-glycanase (Ngly1)--basic science encounters a human genetic disorder. J Biochem 2014; 157:23-34. [DOI: 10.1093/jb/mvu068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Mochida K, Ohsumi Y, Nakatogawa H. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions. FEBS Lett 2014; 588:3862-9. [PMID: 25281559 DOI: 10.1016/j.febslet.2014.09.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023]
Abstract
In Saccharomyces cerevisiae, under nitrogen-starvation conditions, the α-mannosidase Ams1 is recognized by the autophagic receptor Atg34 and transported into the vacuole, where it functions as an active enzyme. In this study, we identified Hrr25 as the kinase that phosphorylates Atg34 under these conditions. Hrr25-mediated phosphorylation does not affect the interaction of Atg34 with Ams1, but instead promotes Atg34 binding to the adaptor protein Atg11, which recruits the autophagy machinery to the Ams1-Atg34 complex, resulting in activation of the vacuolar transport of Ams1. Our findings reveal the regulatory mechanism of a biosynthetic pathway mediated by the autophagy machinery.
Collapse
Affiliation(s)
- Keisuke Mochida
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | - Hitoshi Nakatogawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan; Frontier Research Center, Tokyo Institute of Technology, Japan.
| |
Collapse
|
46
|
Suzuki T, Harada Y. Non-lysosomal degradation pathway for N-linked glycans and dolichol-linked oligosaccharides. Biochem Biophys Res Commun 2014; 453:213-9. [PMID: 24866240 DOI: 10.1016/j.bbrc.2014.05.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/11/2023]
Abstract
There is growing evidence that asparagine (N)-linked glycans play pivotal roles in protein folding and intra- or intercellular trafficking of N-glycosylated proteins. During the N-glycosylation of proteins, significant amounts of free oligosaccharides (fOSs) and phosphorylated oligosaccharides (POSs) are generated at the endoplasmic reticulum (ER) membrane by unclarified mechanisms. fOSs are also formed in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins destined for proteasomal degradation. This article summarizes the current knowledge of the molecular and regulatory mechanisms underlying the formation of fOSs and POSs in mammalian cells and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan.
| | - Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Japan
| |
Collapse
|
47
|
Metabolically programmed quality control system for dolichol-linked oligosaccharides. Proc Natl Acad Sci U S A 2013; 110:19366-71. [PMID: 24218558 DOI: 10.1073/pnas.1312187110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycolipid Glc3Man9GlcNAc2-pyrophosphate-dolichol serves as the precursor for asparagine (N)-linked protein glycosylation in mammals. The biosynthesis of dolichol-linked oligosaccharides (DLOs) is arrested in low-glucose environments via unknown mechanisms, resulting in abnormal N-glycosylation. Here, we show that under glucose deprivation, DLOs are prematurely degraded during the early stages of DLO biosynthesis by pyrophosphatase, leading to the release of singly phosphorylated oligosaccharides into the cytosol. We identified that the level of GDP-mannose (Man), which serves as a donor substrate for DLO biosynthesis, is substantially reduced under glucose deprivation. We provide evidence that the selective shutdown of the GDP-Man biosynthetic pathway is sufficient to induce the release of phosphorylated oligosaccharides. These results indicate that glucose-regulated metabolic changes in the GDP-Man biosynthetic pathway cause the biosynthetic arrest of DLOs and facilitate their premature degradation by pyrophosphatase. We propose that this degradation system may avoid abnormal N-glycosylation with premature oligosaccharides under conditions that impair efficient DLO biosynthesis.
Collapse
|
48
|
Wei HS, Wei HL, Zhao F, Zhong LP, Zhan YT. Glycosyltransferase GLT8D2 positively regulates ApoB100 protein expression in hepatocytes. Int J Mol Sci 2013; 14:21435-46. [PMID: 24173238 PMCID: PMC3856013 DOI: 10.3390/ijms141121435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by triglyceride (TG) accumulation in hepatocytes. Very low density lipoprotein (VLDL) is a major secretory product of the liver that transports endogenously synthesized TG. Disrupted VLDL secretion may contribute to the accumulation of TG in hepatocytes. ApoB100 (apolipoprotein B100) is a glycoprotein and an essential protein component of VLDL. Its glycosylation may affect VLDL assembly and secretion. However, which glycosyltransferase catalyzes apoB100 glycosylation is unknown. In this study, we cloned the GLT8D2 (glycosyltransferase 8 domain containing 2) gene from HepG2 cells and generated a series of plasmids for in vitro studies of its molecular functions. We discovered that GLT8D2 was localized in the ER, interacted with apoB100, and positively regulated the levels of apoB100 protein in HepG2 cells. Based on these results, we propose that GLT8D2 is a glycosyltransferase of apoB100 that regulates apoB100 levels in hepatocytes.
Collapse
Affiliation(s)
- Hong-Shan Wei
- Institutes of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; E-Mail:
| | - Hong-Lian Wei
- Seventh Department of Internal Medicine, Linyi People’s Hospital, Linyi 276000, Shandong, China; E-Mail:
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Fei Zhao
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Le-Ping Zhong
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| | - Yu-Tao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; E-Mails: (F.Z.); (L.-P.Z.)
| |
Collapse
|
49
|
Harada Y, Buser R, Ngwa EM, Hirayama H, Aebi M, Suzuki T. Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. J Biol Chem 2013; 288:32673-32684. [PMID: 24062310 DOI: 10.1074/jbc.m113.486985] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asparagine (N)-linked glycosylation regulates numerous cellular activities, such as glycoprotein quality control, intracellular trafficking, and cell-cell communications. In eukaryotes, the glycosylation reaction is catalyzed by oligosaccharyltransferase (OST), a multimembrane protein complex that is localized in the endoplasmic reticulum (ER). During N-glycosylation in the ER, the protein-unbound form of oligosaccharides (free oligosaccharides; fOSs), which is structurally related to N-glycan, is released into the ER lumen. However, the enzyme responsible for this process remains unidentified. Here, we demonstrate that eukaryotic OST generates fOSs. Biochemical and genetic analyses using mutant strains of Saccharomyces cerevisiae revealed that the generation of fOSs is tightly correlated with the N-glycosylation activity of OST. Furthermore, we present evidence that the purified OST complex can generate fOSs by hydrolyzing dolichol-linked oligosaccharide, the glycan donor substrate for N-glycosylation. The heterologous expression of a single subunit of OST from the protozoan Leishmania major in S. cerevisiae demonstrated that this enzyme functions both in N-glycosylation and generation of fOSs. This study provides insight into the mechanism of PNGase-independent formation of fOSs.
Collapse
Affiliation(s)
- Yoichiro Harada
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Reto Buser
- the Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Elsy M Ngwa
- the Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Hiroto Hirayama
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Markus Aebi
- the Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Tadashi Suzuki
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
50
|
Seino J, Wang L, Harada Y, Huang C, Ishii K, Mizushima N, Suzuki T. Basal autophagy is required for the efficient catabolism of sialyloligosaccharides. J Biol Chem 2013; 288:26898-907. [PMID: 23880766 DOI: 10.1074/jbc.m113.464503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy is an essential, homeostatic process involving degradation of a cell's own components; it plays a role in catabolizing cellular components, such as protein or lipids, and damaged or excess organelles. Here, we show that in Atg5(-/-) cells, sialyloligosaccharides specifically accumulated in the cytosol. Accumulation of these glycans was observed under non-starved conditions, suggesting that non-induced, basal autophagy is essential for their catabolism. Interestingly, once accumulated in the cytosol, sialylglycans cannot be efficiently catabolized by resumption of the autophagic process, suggesting that functional autophagy is important for preventing sialyloligosaccharides from accumulating in the cytosol. Moreover, knockdown of sialin, a lysosomal transporter of sialic acids, resulted in a significant reduction of sialyloligosaccharides, implying that autophagy affects the substrate specificity of this transporter. This study thus provides a surprising link between basal autophagy and catabolism of N-linked glycans.
Collapse
Affiliation(s)
- Junichi Seino
- From the Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Max Planck Joint Research Center, RIKEN Global Research Cluster, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|