1
|
Ye Y, Zeng S, Hu X. Unveiling the hidden role of disulfidptosis in kidney renal clear cell carcinoma: a prognostic signature for personalized treatment. Apoptosis 2024; 29:693-708. [PMID: 38296888 DOI: 10.1007/s10495-023-01933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
The role of disulfidptosis in kidney renal clear cell carcinoma (KIRC) remains unknown. This study investigated disulfidptosis-related biomarkers for KIRC prognosis prediction and individualized treatment. KIRC patients were clustered by disulfidptosis profiles. Differential expression analysis, survival models, and machine learning were used to construct the disulfidptosis-related prognostic signature (DRPS). Characterizations of the tumor immune microenvironment, genetic drivers, drug sensitivity, and immunotherapy response were explored according to the DRPS risk stratification. Markers included in the signature were validated using single-cell, spatial transcriptomics, quantitative RT-qPCR, and immunohistochemistry. In the discovery cohort, we unveiled two clusters of KIRC patients that differed significantly in disulfidptosis regulator expressions and overall survival (OS). After multiple feature selection steps, a DRPS prognostic model with four features (CHAC1, COL7A1, FOXM1, SHOX2) was constructed and validated. Combined with clinical factors, the model demonstrated robust performance in the discovery and external validation cohorts (5-year AUC = 0.793 and 0.846, respectively). KIRC patients with high-risk scores are characterized by inferior OS, less tumor purity, and increased infiltrations of fibroblasts, M1 macrophages, and B cells. High-risk patients also have higher frequencies of BAP1 and AHNAK2 mutation. Besides, the correlation between the DRPS score and the chemotherapy-response signature indicated the potential effect of Gefitinib for high-risk patients. Among the signature genes, FOXM1 is highly expressed in cycling tumor cells and exhibits spatial aggregation, while others are expressed sparsely within tumor samples. The DRPS model enables improved clinical management and personalized KIRC therapy. The identified biomarkers and immune characteristics offer new mechanistic insight into disulfidptosis in KIRC.
Collapse
Affiliation(s)
- Yang Ye
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Song Zeng
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China.
- Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Dibdiakova K, Majercikova Z, Galanda T, Richterova R, Kolarovszki B, Racay P, Hatok J. Relationship between the Expression of Matrix Metalloproteinases and Their Tissue Inhibitors in Patients with Brain Tumors. Int J Mol Sci 2024; 25:2858. [PMID: 38474106 DOI: 10.3390/ijms25052858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) play critical roles in regulating processes associated with malignant behavior. These endopeptidases selectively degrade components of the extracellular matrix (ECM), growth factors, and their receptors, contributing to cancer cell invasiveness and migratory characteristics by disrupting the basal membrane. However, the expression profile and role of various matrix metalloproteinases remain unclear, and only a few studies have focused on differences between diagnoses of brain tumors. Using quantitative real-time PCR analysis, we identified the expression pattern of ECM modulators (n = 10) in biopsies from glioblastoma (GBM; n = 20), astrocytoma (AST; n = 9), and meningioma (MNG; n = 19) patients. We found eight deregulated genes in the glioblastoma group compared to the benign meningioma group, with only MMP9 (FC = 2.55; p = 0.09) and TIMP4 (7.28; p < 0.0001) upregulated in an aggressive form. The most substantial positive change in fold regulation for all tumors was detected in matrix metalloproteinase 2 (MNG = 30.9, AST = 4.28, and GBM = 4.12). Notably, we observed an influence of TIMP1, demonstrating a positive correlation with MMP8, MMP9, and MMP10 in tumor samples. Subsequently, we examined the protein levels of the investigated MMPs (n = 7) and TIMPs (n = 3) via immunodetection. We confirmed elevated levels of MMPs and TIMPs in GBM patients compared to meningiomas and astrocytomas. Even when correlating glioblastomas versus astrocytomas, we showed a significantly increased level of MMP1, MMP3, MMP13, and TIMP1. The identified metalloproteases may play a key role in the process of gliomagenesis and may represent potential targets for personalized therapy. However, as we have not confirmed the relationship between mRNA expression and protein levels in individual samples, it is therefore natural that the regulation of metalloproteases will be subject to several factors.
Collapse
Affiliation(s)
- Katarina Dibdiakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4C, 03601 Martin, Slovakia
| | - Zuzana Majercikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
| | - Tomas Galanda
- Department of Neurosurgery, Roosevelt Hospital, Slovak Medical University, Nam. L. Svobodu 1, 97517 Banska Bystrica, Slovakia
| | - Romana Richterova
- Clinic of Neurosurgery, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia
| | - Branislav Kolarovszki
- Clinic of Neurosurgery, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, Kollarova 2, 03601 Martin, Slovakia
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
| | - Jozef Hatok
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 11161/4D, 03601 Martin, Slovakia
| |
Collapse
|
3
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
4
|
Koca D, Séraudie I, Jardillier R, Cochet C, Filhol O, Guyon L. COL7A1 Expression Improves Prognosis Prediction for Patients with Clear Cell Renal Cell Carcinoma Atop of Stage. Cancers (Basel) 2023; 15:2701. [PMID: 37345040 DOI: 10.3390/cancers15102701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 06/23/2023] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) accounts for 75% of kidney cancers. Due to the high recurrence rate and treatment options that come with high costs and potential side effects, a correct prognosis of patient survival is essential for the successful and effective treatment of patients. Novel biomarkers could play an important role in the assessment of the overall survival of patients. COL7A1 encodes for collagen type VII, a constituent of the basal membrane. COL7A1 is associated with survival in many cancers; however, the prognostic value of COL7A1 expression as a standalone biomarker in ccRCC has not been investigated. With five publicly available independent cohorts, we used Kaplan-Meier curves and the Cox proportional hazards model to investigate the prognostic value of COL7A1, as well as gene set enrichment analysis to investigate genes co-expressed with COL7A1. COL7A1 expression stratifies patients in terms of aggressiveness, where the 5-year survival probability of each of the four groups was 72.4%, 59.1%, 34.15%, and 8.6% in order of increasing expression. Additionally, COL7A1 expression was successfully used to further divide patients of each stage and histological grade into groups of high and low risk. Similar results were obtained in independent cohorts. In vitro knockdown of COL7A1 expression significantly affected ccRCC cells' ability to migrate, leading to the hypothesis that COL7A1 may have a role in cancer aggressiveness. To conclude, we identified COL7A1 as a new prognosis marker that can stratify ccRCC patients.
Collapse
Affiliation(s)
- Dzenis Koca
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Irinka Séraudie
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Rémy Jardillier
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Claude Cochet
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Odile Filhol
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| | - Laurent Guyon
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, INSERM, UMR 1292, F-38000 Grenoble, France
| |
Collapse
|
5
|
Chernov AV, Shubayev VI. Sexual dimorphism of early transcriptional reprogramming in degenerating peripheral nerves. Front Mol Neurosci 2022; 15:1029278. [DOI: 10.3389/fnmol.2022.1029278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism is a powerful yet understudied factor that influences the timing and efficiency of gene regulation in axonal injury and repair processes in the peripheral nervous system. Here, we identified common and distinct biological processes in female and male degenerating (distal) nerve stumps based on a snapshot of transcriptional reprogramming 24 h after axotomy reflecting the onset of early phase Wallerian degeneration (WD). Females exhibited transcriptional downregulation of a larger number of genes than males. RhoGDI, ERBB, and ERK5 signaling pathways increased activity in both sexes. Males upregulated genes and canonical pathways that exhibited robust baseline expression in females in both axotomized and sham nerves, including signaling pathways controlled by neuregulin and nerve growth factors. Cholesterol biosynthesis, reelin signaling, and synaptogenesis signaling pathways were downregulated in females. Signaling by Rho Family GTPases, cAMP-mediated signaling, and sulfated glycosaminoglycan biosynthesis were downregulated in both sexes. Estrogens potentially influenced sex-dependent injury response due to distinct regulation of estrogen receptor expression. A crosstalk of cytokines and growth hormones could promote sexually dimorphic transcriptional responses. We highlighted prospective regulatory activities due to protein phosphorylation, extracellular proteolysis, sex chromosome-specific expression, major urinary proteins (MUPs), and genes involved in thyroid hormone metabolism. Combined with our earlier findings in the corresponding dorsal root ganglia (DRG) and regenerating (proximal) nerve stumps, sex-specific and universal early phase molecular triggers of WD enrich our knowledge of transcriptional regulation in peripheral nerve injury and repair.
Collapse
|
6
|
Necula L, Matei L, Dragu D, Pitica I, Neagu A, Bleotu C, Diaconu CC, Chivu-Economescu M. Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012415. [PMID: 36293285 PMCID: PMC9604126 DOI: 10.3390/ijms232012415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in cancer detection and therapy, it has been estimated that the incidence of cancers will increase, while the mortality rate will continue to remain high, a fact explained by the large number of patients diagnosed in advanced stages when therapy is often useless. Therefore, it is necessary to invest knowledge and resources in the development of new non-invasive biomarkers for the early detection of cancer and new therapeutic targets for better health management. In this review, we provided an overview on the collagen family as promising biomarkers and on how they may be exploited as therapeutic targets in cancer. The collagen family tridimensional structure, organization, and functions are very complex, being in a tight relationship with the extracellular matrix, tumor, and immune microenvironment. Moreover, accumulating evidence underlines the role of collagens in promoting tumor growth and creating a permissive tumor microenvironment for metastatic dissemination. Knowledge of the molecular basis of these interactions may help in cancer diagnosis and prognosis, in overcoming chemoresistance, and in providing new targets for cancer therapies.
Collapse
Affiliation(s)
- Laura Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-324-2592
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Ioana Pitica
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Ana Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Carmen C. Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| |
Collapse
|
7
|
Chernov AV, Shubayev VI. Sexually dimorphic transcriptional programs of early-phase response in regenerating peripheral nerves. Front Mol Neurosci 2022; 15:958568. [PMID: 35983069 PMCID: PMC9378824 DOI: 10.3389/fnmol.2022.958568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.
Collapse
Affiliation(s)
- Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
- *Correspondence: Andrei V. Chernov,
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
8
|
Wu YH, Chou CY. Collagen XI Alpha 1 Chain, a Novel Therapeutic Target for Cancer Treatment. Front Oncol 2022; 12:925165. [PMID: 35847935 PMCID: PMC9277861 DOI: 10.3389/fonc.2022.925165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
The extracellular matrix (ECM) plays an important role in the progression of cancer. Collagen is the most abundant component in ECM, and is involved in the biological formation of cancer. Although type XI collagen is a minor fibrillar collagen, collagen XI alpha 1 chain (COL11A1) expression has been found to be upregulated in a variety of human cancers including colorectal, esophagus, glioma, gastric, head and neck, lung, ovarian, pancreatic, salivary gland, and renal cancers. High levels of COL11A1 usually predict poor prognosis, owing to its association with angiogenesis, invasion, and drug resistance in cancer. However, little is known about the specific mechanism through which COL11A1 regulates tumor progression. Here, we have organized and summarized recent developments regarding the interactions between COL11A1 and intracellular signaling pathways and selected therapeutic agents targeting COL11A1, as these indicate its potential as a target for treatment of cancers, especially epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Gupta R. Epigenetic regulation and targeting of ECM for cancer therapy. Am J Physiol Cell Physiol 2022; 322:C762-C768. [PMID: 35235427 PMCID: PMC8993518 DOI: 10.1152/ajpcell.00022.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
The tumor microenvironment (TME) composed of different types of cells embedded in extracellular matrix (ECM) has crucial effects on cancer growth and metastasis. ECM is made of a variety of proteins that provide structural support to the cells and regulate biological functions by modulating the cross talk among cells, thus effecting tumor growth and progression. In this mini-review, the author discusses epigenetic modifications that regulate the expression of fibrous ECM proteins and glycoproteins and the prospects of targeting them for cancer therapy.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Calori IR, Alves SR, Bi H, Tedesco AC. Type-I Collagen/Collagenase Modulates the 3D Structure and Behavior of Glioblastoma Spheroid Models. ACS APPLIED BIO MATERIALS 2022; 5:723-733. [PMID: 35068151 DOI: 10.1021/acsabm.1c01138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicellular tumor spheroids have emerged as well-structured, three-dimensional culture models that resemble and mimic the complexity of the dense and hypoxic cancer microenvironment. However, in brain tumor studies, a variety of glioblastoma multiforme (GBM) cell lines only self-assemble into loose cellular aggregates, lacking the properties of actual glioma tumors in humans. In this study, we used type-I collagen as an extracellular matrix component to promote the compaction of GBM aggregates forming tight spheroids to understand how collagen influences the properties of tumors, such as their growth, proliferation, and invasion, and collagenase to promote collagen degradation. The GBM cell lines U87MG, T98G, and A172, as well as the medulloblastoma cell line UW473, were used as standard cell lines that do not spontaneously self-assemble into spheroids, and GBM U251 was used as a self-assembling cell line. According to the findings, all cell lines formed tight spheroids at collagen concentrations higher than 15.0 μg mL-1. Collagen was distributed along the spheroid, similarly to that observed in invasive GBM tumors, and decreased cell migration with no effect on the cellular uptake of small active molecules, as demonstrated by uptake studies using the photosensitizer verteporfin. The enzymatic cleavage of collagen affected spheroid morphology and increased cell migration while maintaining cell viability. Such behaviors are relevant to the physiological models of GBM tumors and are useful for better understanding cell migration and the in vivo infiltration path, drug screening, and kinetics of progression of GBM tumors.
Collapse
Affiliation(s)
- Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Samara Rodrigues Alves
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.,School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Chernov AV, Shubayev VI. Sexual Dimorphism of Early Transcriptional Reprogramming in Dorsal Root Ganglia After Peripheral Nerve Injury. Front Mol Neurosci 2021; 14:779024. [PMID: 34966260 PMCID: PMC8710713 DOI: 10.3389/fnmol.2021.779024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.
Collapse
Affiliation(s)
- Andrei V Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
12
|
Noël A, Perveen Z, Xiao R, Hammond H, Le Donne V, Legendre K, Gartia MR, Sahu S, Paulsen DB, Penn AL. Mmp12 Is Upregulated by in utero Second-Hand Smoke Exposures and Is a Key Factor Contributing to Aggravated Lung Responses in Adult Emphysema, Asthma, and Lung Cancer Mouse Models. Front Physiol 2021; 12:704401. [PMID: 34912233 PMCID: PMC8667558 DOI: 10.3389/fphys.2021.704401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinase-12 (Mmp12) is upregulated by cigarette smoke (CS) and plays a critical role in extracellular matrix remodeling, a key mechanism involved in physiological repair processes, and in the pathogenesis of emphysema, asthma, and lung cancer. While cigarette smoking is associated with the development of chronic obstructive pulmonary diseases (COPD) and lung cancer, in utero exposures to CS and second-hand smoke (SHS) are associated with asthma development in the offspring. SHS is an indoor air pollutant that causes known adverse health effects; however, the mechanisms by which in utero SHS exposures predispose to adult lung diseases, including COPD, asthma, and lung cancer, are poorly understood. In this study, we tested the hypothesis that in utero SHS exposure aggravates adult-induced emphysema, asthma, and lung cancer. Methods: Pregnant BALB/c mice were exposed from gestational days 6–19 to either 3 or 10mg/m3 of SHS or filtered air. At 10, 11, 16, or 17weeks of age, female offspring were treated with either saline for controls, elastase to induce emphysema, house-dust mite (HDM) to initiate asthma, or urethane to promote lung cancer. At sacrifice, specific disease-related lung responses including lung function, inflammation, gene, and protein expression were assessed. Results: In the elastase-induced emphysema model, in utero SHS-exposed mice had significantly enlarged airspaces and up-regulated expression of Mmp12 (10.3-fold compared to air-elastase controls). In the HDM-induced asthma model, in utero exposures to SHS produced eosinophilic lung inflammation and potentiated Mmp12 gene expression (5.7-fold compared to air-HDM controls). In the lung cancer model, in utero exposures to SHS significantly increased the number of intrapulmonary metastases at 58weeks of age and up-regulated Mmp12 (9.3-fold compared to air-urethane controls). In all lung disease models, Mmp12 upregulation was supported at the protein level. Conclusion: Our findings revealed that in utero SHS exposures exacerbate lung responses to adult-induced emphysema, asthma, and lung cancer. Our data show that MMP12 is up-regulated at the gene and protein levels in three distinct adult lung disease models following in utero SHS exposures, suggesting that MMP12 is central to in utero SHS-aggravated lung responses.
Collapse
Affiliation(s)
- Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Zakia Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, United States
| | - Harriet Hammond
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Kelsey Legendre
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Sushant Sahu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Nallanthighal S, Heiserman JP, Cheon DJ. Collagen Type XI Alpha 1 (COL11A1): A Novel Biomarker and a Key Player in Cancer. Cancers (Basel) 2021; 13:935. [PMID: 33668097 PMCID: PMC7956367 DOI: 10.3390/cancers13050935] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Collagen type XI alpha 1 (COL11A1), one of the three alpha chains of type XI collagen, is crucial for bone development and collagen fiber assembly. Interestingly, COL11A1 expression is increased in several cancers and high levels of COL11A1 are often associated with poor survival, chemoresistance, and recurrence. This review will discuss the recent discoveries in the biological functions of COL11A1 in cancer. COL11A1 is predominantly expressed and secreted by a subset of cancer-associated fibroblasts, modulating tumor-stroma interaction and mechanical properties of extracellular matrix. COL11A1 also promotes cancer cell migration, metastasis, and therapy resistance by activating pro-survival pathways and modulating tumor metabolic phenotype. Several inhibitors that are currently being tested in clinical trials for cancer or used in clinic for other diseases, can be potentially used to target COL11A1 signaling. Collectively, this review underscores the role of COL11A1 as a promising biomarker and a key player in cancer.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (S.N.); (J.P.H.)
| |
Collapse
|
14
|
The Role of MMP8 in Cancer: A Systematic Review. Int J Mol Sci 2019; 20:ijms20184506. [PMID: 31514474 PMCID: PMC6770849 DOI: 10.3390/ijms20184506] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have traditionally been considered as tumor promoting enzymes as they degrade extracellular matrix components, thus increasing the invasion of cancer cells. It has become evident, however, that MMPs can also cleave and alter the function of various non-matrix bioactive molecules, leading to both tumor promoting and suppressive effects. We applied systematic review guidelines to study MMP8 in cancer including the use of MMP8 as a prognostic factor or as a target/anti-target in cancer treatment, and its molecular mechanisms. A total of 171 articles met the inclusion criteria. The collective evidence reveals that in breast, skin and oral tongue cancer, MMP8 inhibits cancer cell invasion and proliferation, and protects patients from metastasis via cleavage of non-structural substrates. Conversely, in liver and gastric cancers, high levels of MMP8 worsen the prognosis. Expression and genetic alterations of MMP8 can be used as a prognostic factor by examination of the tumor and serum/plasma. We conclude, that MMP8 has differing effects on cancers depending on their tissue of origin. The use of MMP8 as a prognostic factor alone, or with other factors, seems to have potential. The molecular mechanisms of MMP8 in cancer further emphasize its role as an important regulator of bioactive molecules.
Collapse
|
15
|
Yan X, Zhang C, Liang T, Yang F, Wang H, Wu F, Wang W, Wang Z, Cheng W, Xu J, Jiang T, Chen J, Ding Y. A PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance. Oncotarget 2017; 8:85794-85803. [PMID: 29156757 PMCID: PMC5689647 DOI: 10.18632/oncotarget.20526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Abstract
Collagen XVII expression has recently been demonstrated to be correlated with the tumor malignance. While Collagen XVII is known to be widely distributed in neurons of the human brain, its precise role in pathogenesis of glioblastoma multiforme (GBM) is unknown. In this study, we identified and characterized a new PTEN-COL17A1 fusion gene in GMB using transcriptome sequencing. Although fusion gene did not result in measurable fusion protein production, its presence is accompanied with high levels of COL17A1 expression, revealed a novel regulatory mechanism of Collagen XVII expression by PTEN-COL17A1 gene fusion. Knocked down Collagen XVII expression in glioma cell lines resulted in decreased tumor invasiveness, along with significant reduction of MMP9 expression, while increased Collagen XVII expression promotes invasive activities of glioma cells and associated with GBM recurrences. Together, our results uncovered a new PTEN-COL17A1 fusion gene and its novel regulatory role in Collagen XVII expression and GBM malignance, and demonstrated that COL17A1 could serve as a useful prognostic biomarker and therapeutic targets for GBM.
Collapse
Affiliation(s)
- Xiaoyan Yan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.,The First Hospital of Baoding, Baoding, Hebei 071000, China
| | - Chuanbao Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Tingyu Liang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Fan Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Haoyuan Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Wen Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Jiangnan Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Jing Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China
| | - Yaozhong Ding
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
16
|
McCuaig R, Wu F, Dunn J, Rao S, Dahlstrom JE. The biological and clinical significance of stromal-epithelial interactions in breast cancer. Pathology 2017; 49:133-140. [DOI: 10.1016/j.pathol.2016.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
|
17
|
Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - Lessons learned from model organisms and human patients. Matrix Biol 2016; 57-58:55-75. [PMID: 27746220 DOI: 10.1016/j.matbio.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Collagen XVIII is a ubiquitous basement membrane (BM) proteoglycan produced in three tissue-specific isoforms that differ in their N-terminal non-collagenous sequences, but share collagenous and C-terminal non-collagenous domains. The collagenous domain provides flexibility to the large collagen XVIII molecules on account of multiple interruptions in collagenous sequences. Each isoform has a complex multi-domain structure that endows it with an ability to perform various biological functions. The long isoform contains a frizzled-like (Fz) domain with Wnt-inhibiting activity and a unique domain of unknown function (DUF959), which is also present in the medium isoform. All three isoforms share an N-terminal laminin-G-like/thrombospondin-1 sequence whose specific functions still remain unconfirmed. The proteoglycan nature of the isoforms further increases the functional diversity of collagen XVIII. An anti-angiogenic domain termed endostatin resides in the C-terminus of collagen XVIII and is proteolytically cleaved from the parental molecule during the BM breakdown for example in the process of tumour progression. Recombinant endostatin can efficiently reduce tumour angiogenesis and growth in experimental models by inhibiting endothelial cell migration and proliferation or by inducing their death, but its efficacy against human cancers is still a subject of debate. Mutations in the COL18A1 gene result in Knobloch syndrome, a genetic disorder characterised mainly by severe eye defects and encephalocele and, occasionally, other symptoms. Studies with gene-modified mice have elucidated some aspects of this rare disease, highlighting in particular the importance of collagen XVIII in the development of the eye. Research with model organisms have also helped in determining other structural and biological functions of collagen XVIII, such as its requirement in the maintenance of BM integrity and its emerging roles in regulating cell survival, stem or progenitor cell maintenance and differentiation and inflammation. In this review, we summarise current knowledge on the properties and endogenous functions of collagen XVIII in normal situations and tissue dysregulation. When data is available, we discuss the functions of the distinct isoforms and their specific domains.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Mari Aikio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
18
|
Pointer KB, Clark PA, Schroeder AB, Salamat MS, Eliceiri KW, Kuo JS. Association of collagen architecture with glioblastoma patient survival. J Neurosurg 2016; 126:1812-1821. [PMID: 27588592 DOI: 10.3171/2016.6.jns152797] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most malignant primary brain tumor. Collagen is present in low amounts in normal brain, but in GBMs, collagen gene expression is reportedly upregulated. However, to the authors' knowledge, direct visualization of collagen architecture has not been reported. The authors sought to perform the first direct visualization of GBM collagen architecture, identify clinically relevant collagen signatures, and link them to differential patient survival. METHODS Second-harmonic generation microscopy was used to detect collagen in a GBM patient tissue microarray. Focal and invasive GBM mouse xenografts were stained with Picrosirius red. Quantitation of collagen fibers was performed using custom software. Multivariate survival analysis was done to determine if collagen is a survival marker for patients. RESULTS In focal xenografts, collagen was observed at tumor brain boundaries. For invasive xenografts, collagen was intercalated with tumor cells. Quantitative analysis showed significant differences in collagen fibers for focal and invasive xenografts. The authors also found that GBM patients with more organized collagen had a longer median survival than those with less organized collagen. CONCLUSIONS Collagen architecture can be directly visualized and is different in focal versus invasive GBMs. The authors also demonstrate that collagen signature is associated with patient survival. These findings suggest that there are collagen differences in focal versus invasive GBMs and that collagen is a survival marker for GBM.
Collapse
Affiliation(s)
- Kelli B Pointer
- Departments of 1 Neurological Surgery and.,Cellular and Molecular Biology Graduate Program.,Laboratory for Optical and Computational Instrumentation
| | | | - Alexandra B Schroeder
- Laboratory for Optical and Computational Instrumentation.,Medical Physics Graduate Program.,Morgridge Institute for Research; and
| | - M Shahriar Salamat
- Pathology and Laboratory Medicine.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin; and
| | - Kevin W Eliceiri
- Cellular and Molecular Biology Graduate Program.,Laboratory for Optical and Computational Instrumentation.,Medical Physics Graduate Program.,Morgridge Institute for Research; and.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin; and
| | - John S Kuo
- Departments of 1 Neurological Surgery and.,Cellular and Molecular Biology Graduate Program.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin; and.,Department of Surgery, National University of Singapore, Singapore
| |
Collapse
|
19
|
Ko JS, Eddinger KA, Angert M, Chernov AV, Dolkas J, Strongin AY, Yaksh TL, Shubayev VI. Spinal activity of interleukin 6 mediates myelin basic protein-induced allodynia. Brain Behav Immun 2016; 56:378-89. [PMID: 26970355 PMCID: PMC4917441 DOI: 10.1016/j.bbi.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022] Open
Abstract
Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system.
Collapse
Affiliation(s)
- Justin S. Ko
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Kelly A. Eddinger
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,VA San Diego Healthcare System, La Jolla, California, USA
| | - Andrei V. Chernov
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,VA San Diego Healthcare System, La Jolla, California, USA
| | - Alex Y. Strongin
- Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA,VA San Diego Healthcare System, La Jolla, California, USA,Corresponding Author: Veronica I. Shubayev, Department of Anesthesiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0629. Phone: (858) 534-5278; Fax: (858) 534-1445;
| |
Collapse
|
20
|
Yapp C, Carr AJ, Price A, Oppermann U, Snelling SJB. H3K27me3 demethylases regulate in vitro chondrogenesis and chondrocyte activity in osteoarthritis. Arthritis Res Ther 2016; 18:158. [PMID: 27388528 PMCID: PMC4936015 DOI: 10.1186/s13075-016-1053-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic changes (i.e., chromatin modifications) occur during chondrogenesis and in osteoarthritis (OA). We investigated the effect of H3K27me3 demethylase inhibition on chondrogenesis and assessed its utility in cartilage tissue engineering and in understanding cartilage destruction in OA. Methods We used a high-content screen to assess the effect of epigenetic modifying compounds on collagen output during chondrogenesis of monolayer human mesenchymal stem cells (MSCs). The impact of GSK-J4 on gene expression, glycosaminoglycan output and collagen formation during differentiation of MSCs into cartilage discs was investigated. Expression of lysine (K)-specific demethylase 6A (UTX) and Jumonji domain-containing 3 (JMJD3), the HEK27Me3 demethylases targeted by GSK-J4, was measured in damaged and undamaged cartilage from patients with OA. The impact of GSK-J4 on ex vivo cartilage destruction and expression of OA-related genes in human articular chondrocytes (HACs) was assessed. H3K27Me3 demethylase regulation of transforming growth factor (TGF)-β-induced gene expression was measured in MSCs and HACs. Results Treatment of chondrogenic MSCs with the H3K27me3 demethylase inhibitor GSK-J4, which targets JMJD3 and UTX, inhibited collagen output; expression of chondrogenic genes, including SOX9 and COL2A1; and disrupted glycosaminoglycan and collagen synthesis. JMJD3 but not UTX expression was increased during chondrogenesis and in damaged OA cartilage, suggesting a predominant role of JMJD3 in chondrogenesis and OA. GSK-J4 prevented ex vivo cartilage destruction and expression of the OA-related genes MMP13 and PTGS2. TGF-β is a key regulator of chondrogenesis and articular cartilage homeostasis, and TGF-β-induced gene expression was inhibited by GSK-J4 treatment of both chondrogenic MSCs and HACs. Conclusions Overall, we show that H3K27me3 demethylases modulate chondrogenesis and that enhancing this activity may improve production of tissue-engineered cartilage. In contrast, targeted inhibition of H3K27me3 demethylases could provide a novel approach in OA therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1053-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clarence Yapp
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, Oxford, UK.,Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, Oxford, UK
| | - Andrew Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, Oxford, UK
| | - Udo Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, Oxford, UK.,Structural Genomics Consortium, University of Oxford, Oxford, UK.,Oxford Stem Cell Institute, Oxford, UK
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Nuffield Orthopaedic Centre, Windmill Road, Headington, OX3 7LD, Oxford, UK.
| |
Collapse
|
21
|
Yuki R, Aoyama K, Kubota S, Yamaguchi N, Kubota S, Hasegawa H, Morii M, Huang X, Liu K, Williams R, Fukuda MN, Yamaguchi N. Overexpression of zinc-finger protein 777 (ZNF777) inhibits proliferation at low cell density through down-regulation of FAM129A. J Cell Biochem 2016; 116:954-68. [PMID: 25560148 DOI: 10.1002/jcb.25046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023]
Abstract
Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) regulate a wide range of cellular processes. KRAB-ZFPs have a KRAB domain, which binds to transcriptional corepressors, and a zinc finger domain, which binds to DNA to activate or repress gene transcription. Here, we characterize ZNF777, a member of KRAB-ZFPs. We show that ZNF777 localizes to the nucleus and inducible overexpression of ZNF777 inhibits cell proliferation in a manner dependent on its zinc finger domain but independent of its KRAB domain. Intriguingly, ZNF777 overexpression drastically inhibits cell proliferation at low cell density but slightly inhibits cell proliferation at high cell density. Furthermore, ZNF777 overexpression decreases the mRNA level of FAM129A irrespective of cell density. Importantly, the protein level of FAM129A strongly decreases at low cell density, but at high cell density the protein level of FAM129A does not decrease to that observed at low cell density. ZNF777-mediated inhibition of cell proliferation is attenuated by overexpression of FAM129A at low cell density. Furthermore, ZNF777-mediated down-regulation of FAM129A induces moderate levels of the cyclin-dependent kinase inhibitor p21. These results suggest that ZNF777 overexpression inhibits cell proliferation at low cell density and that p21 induction by ZNF777-mediated down-regulation of FAM129A plays a role in inhibition of cell proliferation.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kukreja M, Shiryaev SA, Cieplak P, Muranaka N, Routenberg DA, Chernov AV, Kumar S, Remacle AG, Smith JW, Kozlov IA, Strongin AY. High-Throughput Multiplexed Peptide-Centric Profiling Illustrates Both Substrate Cleavage Redundancy and Specificity in the MMP Family. ACTA ACUST UNITED AC 2015; 22:1122-33. [PMID: 26256476 DOI: 10.1016/j.chembiol.2015.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Matrix metalloproteinases (MMPs) play incompletely understood roles in health and disease. Knowing the MMP cleavage preferences is essential for a better understanding of the MMP functions and design of selective inhibitors. To elucidate the cleavage preferences of MMPs, we employed a high-throughput multiplexed peptide-centric profiling technology involving the cleavage of 18,583 peptides by 18 proteinases from the main sub-groups of the MMP family. Our results enabled comparison of the MMP substrates on a global scale, leading to the most efficient and selective substrates. The data validated the accuracy of our cleavage prediction software. This software allows us and others to locate, with nearly 100% accuracy, the MMP cleavage sites in the peptide sequences. In addition to increasing our understanding of both the selectivity and the redundancy of the MMP family, our study generated a roadmap for the subsequent MMP structural-functional studies and efficient substrate and inhibitor design.
Collapse
Affiliation(s)
| | - Sergey A Shiryaev
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Piotr Cieplak
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey W Smith
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Igor A Kozlov
- Prognosys Biosciences Inc., San Diego, CA 92121, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Vázquez-Villa F, García-Ocaña M, Galván JA, García-Martínez J, García-Pravia C, Menéndez-Rodríguez P, González-del Rey C, Barneo-Serra L, de Los Toyos JR. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression. Tumour Biol 2015; 36:2213-22. [PMID: 25761876 DOI: 10.1007/s13277-015-3295-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
The COL11A1 human gene codes for the α1 chain of procollagen 11A1 and mature collagen 11A1, an extracellular minor fibrillar collagen. Under regular conditions, this gene and its derived products are mainly expressed by chondrocytes and mesenchymal stem cells as well as osteoblasts. Normal epithelial cells and quiescent fibroblasts from diverse locations do not express them. Mesenchyme-derived tumors and related conditions, such as scleroderma and keloids, are positive for COL11A1/(pro)collagen 11A1 expression, as well as high-grade human gliomas/glioblastomas. This expression is almost absent in benign pathological processes such as breast hyperplasia, sclerosing adenosis, idiopathic pulmonary fibrosis, cirrhosis, pancreatitis, diverticulitis, and inflammatory bowel disease. By contrast, COL11A1/(pro)collagen 11A1 is highly expressed by activated stromal cells of the desmoplastic reaction of different human invasive carcinomas, and this expression is correlated with carcinoma aggressiveness and progression, and lymph node metastasis. COL11A1 upregulation has been shown to be associated to TGF-β1, Wnt, and Hh signaling pathways, which are especially active in cancer-associated stromal cells. At the front of invasive carcinomas, neoplastic epithelial cells, putatively undergoing epithelial-to-mesenchymal transition, and carcinoma-derived cells with highly metastatic capabilities, can express COL11A1. Thus, in established metastases, the expression of COL11A1/(pro)collagen 11A1 could rely on both the metastatic epithelial cells and/or the accompanying activated stromal cells. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human carcinoma-associated stromal cells and carcinoma progression.
Collapse
Affiliation(s)
- Fernando Vázquez-Villa
- Surgery Department, School of Medicine and Health Sciences, University of Oviedo, 33006, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chernov AV, Reyes L, Xu Z, Gonzalez B, Golovko G, Peterson S, Perucho M, Fofanov Y, Strongin AY. Mycoplasma CG- and GATC-specific DNA methyltransferases selectively and efficiently methylate the host genome and alter the epigenetic landscape in human cells. Epigenetics 2015; 10:303-18. [PMID: 25695131 DOI: 10.1080/15592294.2015.1020000] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aberrant DNA methylation is frequently observed in disease, including many cancer types, yet the underlying mechanisms remain unclear. Because germline and somatic mutations in the genes that are responsible for DNA methylation are infrequent in malignancies, additional mechanisms must be considered. Mycoplasmas spp., including Mycoplasma hyorhinis, efficiently colonize human cells and may serve as a vehicle for delivery of enzymatically active microbial proteins into the intracellular milieu. Here, we performed, for the first time, genome-wide and individual gene mapping of methylation marks generated by the M. hyorhinis CG- and GATC-specific DNA cytosine methyltransferases (MTases) in human cells. Our results demonstrated that, upon expression in human cells, MTases readily translocated to the cell nucleus. In the nucleus, MTases selectively and efficiently methylated the host genome at the DNA sequence sites free from pre-existing endogenous methylation, including those in a variety of cancer-associated genes. We also established that mycoplasma is widespread in colorectal cancers, suggesting that either the infection contributed to malignancy onset or, alternatively, that tumors provide a favorable environment for mycoplasma growth. In the human genome, ∼ 11% of GATC sites overlap with CGs (e.g., CGAT(m)CG); therefore, the methylated status of these sites can be perpetuated by human DNMT1. Based on these results, we now suggest that the GATC-specific methylation represents a novel type of infection-specific epigenetic mark that originates in human cells with a previous exposure to infection. Overall, our findings unveil an entirely new panorama of interactions between the human microbiome and epigenome with a potential impact in disease etiology.
Collapse
Affiliation(s)
- Andrei V Chernov
- a Infectious & Inflammatory Disease Center ; Sanford-Burnham Medical Research Institute ; La Jolla , CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vihinen P, Tervahartiala T, Sorsa T, Hansson J, Bastholt L, Aamdal S, Stierner U, Pyrhönen S, Syrjänen K, Lundin J, Hernberg M. Benefit of adjuvant interferon alfa-2b (IFN-α) therapy in melanoma patients with high serum MMP-8 levels. Cancer Immunol Immunother 2015; 64:173-80. [PMID: 25319807 PMCID: PMC11029364 DOI: 10.1007/s00262-014-1620-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are important enzymes in tissue turnover and various inflammatory processes. In this study, it was evaluated whether serum MMP-8 can predict the response to adjuvant interferon alfa-2b (IFN-α) therapy in patients with operated high-risk cutaneous melanoma. Pre-treatment sera from 460 patients with stage IIB-IIIC melanoma were analyzed for MMP-8. The patients were randomized after surgery to adjuvant IFN-α for 12 or 24 months (n = 313) or observation only (n = 147). The median serum MMP-8 level was used to classify the patients into a low MMP-8 (n = 232) and a high MMP-8 (n = 228) group. In the high MMP-8 subgroup, IFN-α therapy significantly improved relapse-free survival (RFS). RFS was 36.8 months in patients with high MMP-8 levels receiving IFN-α therapy, whereas RFS for those with high MMP-8 levels with observation only was 10.6 months (P = 0.027). Median overall survival for patients with high MMP-8 and observation only was 36.7 versus 71.7 months in those receiving IFN-α (P = 0.13). In a multivariate model, IFN-α therapy was a significant predictor of favorable RFS (HR 0.74; 95 % CI 0.55-0.99; P = 0.048), after adjustment for pre-treatment MMP-8 (HR 1.17; 95 % CI 0.88-1.55; P = 0.28), gender (HR 1.16; 95 % CI 0.86-1.56; P = 0.32), age (HR 1.00; 95 % CI 1.00-1.02; P = 0.12), ulceration (HR 1.09; 95 % CI 0.81-1.46; P = 0.58), and the presence of node metastases (HR 1.36; 95 % CI 1.17-1.58; P < 0.0001). In conclusion, patients with high serum MMP-8 levels may benefit from adjuvant IFN-α therapy, but this observation should be further investigated.
Collapse
Affiliation(s)
- Pia Vihinen
- Department of Oncology and Radiotherapy, Turku University Hospital, POB 52, 20521, Turku, Finland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Raglow Z, Thomas SM. Tumor matrix protein collagen XIα1 in cancer. Cancer Lett 2014; 357:448-53. [PMID: 25511741 DOI: 10.1016/j.canlet.2014.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
The extracellular matrix is increasingly recognized as an essential player in cancer development and progression. Collagens are one of the most important components of the extracellular matrix, and have themselves been implicated in many aspects of neoplastic transformation. Collagen XI is a minor collagen whose main physiologic function is to regulate the diameter of major collagen fibrils. The α1 chain of collagen XI (colXIα1) has known pathogenic roles in several musculoskeletal disorders. Recent research has highlighted the importance of colXIα1 in many types of cancer, including its roles in metastasis, angiogenesis, and drug resistance, as well as its potential utility in screening tests and as a therapeutic target. High levels of colXIα1 overexpression have been reported in multiple expression profile studies examining differences between cancerous and normal tissue, and between beginning and advanced stage cancer. Its expression has been linked to poor progression-free and overall survival. The consistency of these data across cancer types is particularly striking, including colorectal, ovarian, breast, head and neck, lung, and brain cancers. This review discusses the role of collagen XIα1 in cancer and its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sufi M Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
27
|
Galván JA, García-Martínez J, Vázquez-Villa F, García-Ocaña M, García-Pravia C, Menéndez-Rodríguez P, González-del Rey C, Barneo-Serra L, de los Toyos JR. Validation of COL11A1/procollagen 11A1 expression in TGF-β1-activated immortalised human mesenchymal cells and in stromal cells of human colon adenocarcinoma. BMC Cancer 2014; 14:867. [PMID: 25417197 PMCID: PMC4246482 DOI: 10.1186/1471-2407-14-867] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/12/2014] [Indexed: 01/23/2023] Open
Abstract
Background The human COL11A1 gene has been shown to be up-regulated in stromal cells of colorectal tumours, but, so far, the immunodetection of procollagen 11A1, the primary protein product of COL11A1, has not been studied in detail in human colon adenocarcinomas. Some cancer-associated stromal cells seem to be derived from bone marrow mesenchymal cells; the expression of the COL11A1 gene and the parallel immunodetection of procollagen 11A1 have not been evaluated in these latter cells, either. Methods We used quantitative RT-PCR and/or immunocytochemistry to study the expression of DES/desmin, VIM/vimentin, ACTA2/αSMA (alpha smooth muscle actin) and COL11A1/procollagen 11A1 in HCT 116 human colorectal adenocarcinoma cells, in immortalised human bone marrow mesenchymal cells and in human colon adenocarcinoma-derived cultured stromal cells. The immunodetection of procollagen 11A1 was performed with the new recently described DMTX1/1E8.33 mouse monoclonal antibody. Human colon adenocarcinomas and non-malignant colon tissues were evaluated by immunohistochemistry as well. Statistical associations were sought between anti-procollagen 11A1 immunoscoring and patient clinicopathological features. Results Procollagen 11A1 was immunodetected in human bone marrow mesenchymal cells and in human colon adenocarcinoma-associated spindle-shaped stromal cells but not in colon epithelial or stromal cells of the normal colon. This immunodetection paralleled, in both kinds of cells, that of the other mesenchymal-related biomarkers studied: vimentin and alpha smooth muscle actin, but not desmin. Thus, procollagen 11A1+ adenocarcinoma-associated stromal cells are similar to “activated myofibroblasts”. In the series of human colon adenocarcinomas here studied, a high procollagen 11A1 expression was associated with nodal involvement (p = 0.05), the development of distant metastases (p = 0.017), and advanced Dukes stages (p = 0.047). Conclusion The immunodetection of procollagen 11A1 in cancer-associated stromal cells could be a useful biomarker for human colon adenocarcinoma characterisation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-867) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan R de los Toyos
- Oncology University Institute of the Principality of Asturias (IUOPA), 33006 Oviedo, Spain.
| |
Collapse
|
28
|
Bodnar M, Szylberg Ł, Kazmierczak W, Marszalek A. Tumor progression driven by pathways activating matrix metalloproteinases and their inhibitors. J Oral Pathol Med 2014; 44:437-43. [PMID: 25244188 DOI: 10.1111/jop.12270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is still a problem worldwide. In some publications interactions between the expression of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, and their tissue inhibitors (TIMPs) implicated during cancer progression were suggested. METHODS The immunohistochemical staining using primary antibody against MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 were performed. The research group consists of primary N(0) LSCC (20 cases), primary N(+) LSCC (17 cases), and 18 cases of normal mucosa. RESULTS Studied MMPs and TIMPs were localized in tumor cells and tumor stroma compartment. MMP-2 expression was higher in stroma compared to tumor cells. MMP-9, TIMP-1, TIMP-2, and TIMP-3 expression was higher in tumor cells than in tumor stroma (P < 0.05). In tumor stroma MMP-2, MMP-9, TIMP-1, and TIMP-3 expression, in LSCC N(0) vs. LSCC N(+) was significantly higher (P < 0.05). The ratios between MMP-2 and TIMP-3 expression were statistically significant (N(0) vs. N(+); P = 0.012). The analyses using classification trees predicted the probability of metastases according to TIMP-3/MMP-14/MMP-2 and MMP-9/TIMP-1 expression levels. CONCLUSIONS The presence of MMP-2, MMP-9, TIMP-1, TIMP-2, TIMP-3 expression in tumor cells and in tumor stroma, and additionally different expression according to lymph node involvement suggested of their impact during cancer progression. The significant correlation between TIMP-3 expression and the presence of lymph node metastases and MMP-2 expression might suggest the importance of TIMP-3 as a prognostic factor during tumor progression. The evaluation of molecular markers which participate in MMP-2 activation pathway have a major impact during metastasis.
Collapse
Affiliation(s)
- Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Wojciech Kazmierczak
- Department of Otolaryngology and Clinical Oncology Chair and Clinic of Otolaryngology and Department of Pathophysiology of Hearing and Balance System, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland.,Department of Oncologic Pathology, Poznan University of Medical Sciences and Greater Poland Oncology Center, Poznan, Poland
| |
Collapse
|
29
|
Adaptation or malignant transformation: the two faces of epigenetically mediated response to stress. BIOMED RESEARCH INTERNATIONAL 2013; 2013:954060. [PMID: 24187667 PMCID: PMC3803131 DOI: 10.1155/2013/954060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023]
Abstract
Adaptive response to stress is a fundamental property of living systems. At the cellular level, many different types of stress elicit an essentially limited repertoire of adaptive responses. Epigenetic changes are the main mechanism for medium- to long-term adaptation to accumulated (intense, long-term, or repeated) stress. We propose the adaptive deregulation of the epigenome in response to stress (ADERS) hypothesis which assumes that the unspecific adaptive stress response grows stronger with the increasing stress level, epigenetically activating response gene clusters while progressively deregulating other cellular processes. The balance between the unspecific adaptive response and the general epigenetic deregulation is critical because a strong response can lead to pathology, particularly to malignant transformation. The main idea of our hypothesis is the continuum traversed by a cell subjected to accumulated stress, which lies between an unspecific adaptive response and pathological deregulation--the two extremes sharing the same underlying cause, which is a manifestation of a unified epigenetically mediated adaptive response to stress. The evolutionary potential of epigenetic regulation in multigenerational adaptation is speculatively discussed in the light of neo-Lamarckism. Finally, an approach to testing the proposed hypothesis is presented, relying on either the publicly available datasets or on conducting new experiments.
Collapse
|
30
|
Spyropoulou A, Piperi C, Adamopoulos C, Papavassiliou AG. Deregulated chromatin remodeling in the pathobiology of brain tumors. Neuromolecular Med 2013; 15:1-24. [PMID: 23114751 DOI: 10.1007/s12017-012-8205-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors encompass a heterogeneous group of malignant tumors with variable histopathology, aggressiveness, clinical outcome and prognosis. Current gene expression profiling studies indicate interplay of genetic and epigenetic alterations in their pathobiology. A central molecular event underlying epigenetics is the alteration of chromatin structure by post-translational modifications of DNA and histones as well as nucleosome repositioning. Dynamic remodeling of the fundamental nucleosomal structure of chromatin or covalent histone marks located in core histones regulate main cellular processes including DNA methylation, replication, DNA-damage repair as well as gene expression. Deregulation of these processes has been linked to tumor suppressor gene silencing, cancer initiation and progression. The reversible nature of deregulated chromatin structure by DNA methylation and histone deacetylation inhibitors, leading to re-expression of tumor suppressor genes, makes chromatin-remodeling pathways as promising therapeutic targets. In fact, a considerable number of these inhibitors are being tested today either alone or in combination with other agents or conventional treatments in the management of brain tumors with considerable success. In this review, we focus on the mechanisms underpinning deregulated chromatin remodeling in brain tumors, discuss their potential clinical implications and highlight the advances toward new therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | | | | |
Collapse
|
31
|
Davis MB, Liu X, Wang S, Reeves J, Khramtsov A, Huo D, Olopade OI. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity. Mol Cancer 2013; 12:40. [PMID: 23663560 PMCID: PMC3663705 DOI: 10.1186/1476-4598-12-40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/03/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. METHODS We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. RESULTS We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. CONCLUSIONS Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product.
Collapse
Affiliation(s)
- Melissa B Davis
- The Institute for Genomics and Systems Biology, University of Chicago Biological Sciences Division, Chicago, IL, USA
- Department of Human Genetics, University of Chicago Biological Sciences Division, Chicago, IL, USA
- Georgia Health Sciences University, Athens, GA 30602, USA
- University of Georgia Medical Partnership, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xinyu Liu
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Shiyao Wang
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Jaxk Reeves
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Andrey Khramtsov
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Dezheng Huo
- Department of Health Studies, Center for Clinical Cancer Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Thirkettle S, Decock J, Arnold H, Pennington CJ, Jaworski DM, Edwards DR. Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem 2013; 288:16282-16294. [PMID: 23632023 PMCID: PMC3675567 DOI: 10.1074/jbc.m113.464230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Matrix metalloproteinase 8 (MMP-8) is a tumor-suppressive protease that cleaves numerous substrates, including matrix proteins and chemokines. In particular, MMP-8 proteolytically activates IL-8 and, thereby, regulates neutrophil chemotaxis in vivo. We explored the effects of expression of either a WT or catalytically inactive (E198A) mutant version of MMP-8 in human breast cancer cell lines. Analysis of serum-free conditioned media from three breast cancer cell lines (MCF-7, SK-BR-3, and MDA-MB-231) expressing WT MMP-8 revealed elevated levels of IL-6 and IL-8. This increase was mirrored at the mRNA level and was dependent on MMP-8 catalytic activity. However, sustained expression of WT MMP-8 by breast cancer cells was non-permissive for long-term growth, as shown by reduced colony formation compared with cells expressing either control vector or E198A mutant MMP-8. In long-term culture of transfected MDA-MB-231 cells, expression of WT but not E198A mutant MMP-8 was lost, with IL-6 and IL-8 levels returning to base line. Rare clonal isolates of MDA-MB-231 cells expressing WT MMP-8 were generated, and these showed constitutively high levels of IL-6 and IL-8, although production of the interleukins was no longer dependent upon MMP-8 activity. These studies support a causal connection between MMP-8 activity and the IL-6/IL-8 network, with an acute response to MMP-8 involving induction of the proinflammatory mediators, which may in part serve to compensate for the deleterious effects of MMP-8 on breast cancer cell growth. This axis may be relevant to the recognized ability of MMP-8 to orchestrate the innate immune system in inflammation in vivo.
Collapse
Affiliation(s)
- Sally Thirkettle
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Julie Decock
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Hugh Arnold
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Caroline J Pennington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Diane M Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
33
|
Noreen R, Moenner M, Hwu Y, Petibois C. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol Adv 2012; 30:1432-46. [DOI: 10.1016/j.biotechadv.2012.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 01/07/2023]
|
34
|
ARMAKOLAS ATHANASIOS, STATHOPOULOS GEORGEP, NEZOS ADRIANOS, THEOS APOSTOLOS, STATHAKI MARTHA, KOUTSILIERIS MICHAEL. Subdivision of molecularly-classified groups by new gene signatures in breast cancer patients. Oncol Rep 2012; 28:2255-63. [DOI: 10.3892/or.2012.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/07/2012] [Indexed: 11/05/2022] Open
|
35
|
Zhang SN, Sun HH, Jin YM, Piao LZ, Jin DH, Lin ZH, Shen XH. Identification of differentially expressed genes in gastric cancer by high density cDNA microarray. Cancer Genet 2012; 205:147-55. [PMID: 22559975 DOI: 10.1016/j.cancergen.2012.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 12/24/2011] [Accepted: 01/09/2012] [Indexed: 11/25/2022]
Abstract
The identification of molecular markers for diagnosis, treatment, and prognosis is a significant issue in the management of patients with gastric cancer. We compared the expression profiles of 23 gastric cancers and 22 normal gastric tissues using cDNA microarrays. We divided the samples into two sets, 11 pairs as a training set and 12 unpaired gastric cancer and 11 unpaired normal gastric tissues as a test set. We selected significant genes in the training set and validated the significance of the genes in the test set. We obtained 238 classifier genes that showed a maximum cross-validation probability and clear hierarchical clustering pattern in the training set, and showed excellent class prediction probability in the independent test set. The classifier genes consisted of known genes related to the biological features of cancer and 28% unknown genes. We obtained genome-wide molecular signatures of gastric cancer, which provides preliminary exploration data for the pathophysiology of gastric cancer.
Collapse
Affiliation(s)
- Song-Nan Zhang
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Pope WB, Mirsadraei L, Lai A, Eskin A, Qiao J, Kim HJ, Ellingson B, Nghiemphu PL, Kharbanda S, Soriano RH, Nelson SF, Yong W, Phillips HS, Cloughesy TF. Differential gene expression in glioblastoma defined by ADC histogram analysis: relationship to extracellular matrix molecules and survival. AJNR Am J Neuroradiol 2012; 33:1059-64. [PMID: 22268080 PMCID: PMC8013245 DOI: 10.3174/ajnr.a2917] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/17/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE ADC histogram analysis can stratify outcomes in patients with GBM treated with bevacizumab. Therefore, we compared gene expression between high-versus-low ADC tumors to identify gene expression modules that could underlie this difference and impact patient prognosis. MATERIALS AND METHODS Up-front bevacizumab-treated patients (N = 38) with newly diagnosed glioblastoma were analyzed by using an ADC histogram approach based on enhancing tumor. Using microarrays, we compared gene expression in high-versus-low ADC tumors in patients subsequently treated with bevacizumab. Tissue sections from a subset of tumors were stained for collagen and collagen-binding proteins. Progression-free and overall survival was determined by using Cox proportional hazard ratios and the Kaplan-Meier method with the log rank test. RESULTS A total of 13 genes were expressed at 2-fold or greater levels in high- compared with low-ADC tumors at the P < .05 level. Of these, 6 encode for collagen or collagen-binding proteins. High gene expression for the collagen-binding protein decorin was associated with shorter survival (HR, 2.5; P = .03). The pattern and degree of collagen staining were highly variable in both high- and low-ADC tumors. CONCLUSIONS High-ADC GBMs show greater levels of ECM protein gene expression compared with low-ADC GBMs. It is unclear whether this translates to the accumulation of higher levels of the encoded proteins. However, because ECM molecules could contribute to a proinvasive phenotype, this relationship merits further investigation.
Collapse
Affiliation(s)
- W B Pope
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1721, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hagemann C, Anacker J, Ernestus RI, Vince GH. A complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol 2012; 3:67-79. [PMID: 22582165 PMCID: PMC3349915 DOI: 10.5306/wjco.v3.i5.67] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/12/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
Glioblastomas are characterized by an aggressive local growth pattern, a marked degree of invasiveness and poor prognosis. Tumor invasiveness is facilitated by the increased activity of proteolytic enzymes which are involved in destruction of the extracellular matrix of the surrounding healthy brain tissue. Elevated levels of matrix metalloproteinases (MMPs) were found in glioblastoma (GBM) cell-lines, as well as in GBM biopsies as compared with low-grade astrocytoma (LGA) and normal brain samples, indicating a role in malignant progression. A careful review of the available literature revealed that both the expression and role of several of the 23 human MMP proteins is controversely discussed and for some there are no data available at all. We therefore screened a panel of 15 LGA and 15 GBM biopsy samples for those MMPs for which there is either no, very limited or even contradictory data available. Hence, this is the first complete compilation of the expression pattern of all 23 human MMPs in astrocytic tumors. This study will support a better understanding of the specific expression patterns and interaction of proteolytic enzymes in malignant human glioma and may provide additional starting points for targeted patient therapy.
Collapse
Affiliation(s)
- Carsten Hagemann
- Carsten Hagemann, Ralf-Ingo Ernestus, Giles H Vince, Department of Neurosurgery, Tumorbiology Laboratory, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
38
|
Caramori ML, Kim Y, Moore JH, Rich SS, Mychaleckyj JC, Kikyo N, Mauer M. Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes. Diabetes 2012; 61:739-44. [PMID: 22315306 PMCID: PMC3282806 DOI: 10.2337/db11-0617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical studies suggest metabolic memory to hyperglycemia. We tested whether diabetes leads to persistent systematic in vitro gene expression alterations in patients with type 1 diabetes (T1D) compared with their monozygotic, nondiabetic twins. Microarray gene expression was determined in skin fibroblasts (SFs) of five twin pairs cultured in high glucose (HG) for ∼6 weeks. The Exploratory Visual Analysis System tested group differences in gene expression levels within KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. An overabundance of differentially expressed genes was found in eight pathways: arachidonic acid metabolism (P = 0.003849), transforming growth factor-β signaling (P = 0.009167), glutathione metabolism (P = 0.01281), glycosylphosphatidylinositol anchor (P = 0.01949), adherens junction (P = 0.03134), dorsal-ventral axis formation (P = 0.03695), proteasome (P = 0.04327), and complement and coagulation cascade (P = 0.04666). Several genes involved in epigenetic mechanisms were also differentially expressed. All differentially expressed pathways and all the epigenetically relevant differentially expressed genes have previously been related to HG in vitro or to diabetes and its complications in animal and human studies. However, this is the first in vitro study demonstrating diabetes-relevant gene expression differences between T1D-discordant identical twins. These SF gene expression differences, persistent despite the HG in vitro conditions, likely reflect "metabolic memory", and discordant identical twins thus represent an excellent model for studying diabetic epigenetic processes in humans.
Collapse
Affiliation(s)
- M Luiza Caramori
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Feng XL, Liu QT, Cao RB, Zhou B, Ma ZY, Deng WL, Wei JC, Qiu YF, Wang FQ, Gu JY, Wang FJ, Zheng QS, Ishag H, Chen PY. Identification and characterization of novel immunomodulatory bursal-derived pentapeptide-II (BPP-II). J Biol Chem 2011; 287:3798-807. [PMID: 22184121 DOI: 10.1074/jbc.m111.273854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bursa of Fabricius, the acknowledged central humoral immune organ, plays a vital role in B lymphocyte differentiation. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of bursal-derived peptides. In this paper, a novel bursal-derived pentapeptide-II (BPP-II, MTLTG) was isolated and exerted immunomodulatory functions on antibody responses in vitro. Gene microarray analyses demonstrated that BPP-II regulated expression of 2478 genes in a mouse-derived hybridoma cell line. Immune-related gene ontology functional procedures were employed for further functional analysis. Furthermore, the majority of BPP-II-regulated pathways were associated with immune responses and tumor processes. Moreover, BPP-II exhibited immunomodulatory effects on antigen-specific immune responses in vivo, including enhancement of avian influenza virus (H9N2 subtype)-specific antibody and cytokine production and modification of T cell immunophenotypes and lymphocyte proliferation. Finally, BPP-II triggered p53 expression and stabilization and selectively inhibited tumor cell proliferation. These data identified the multifunctional factor, BPP-II, as a novel biomaterial representing an important linking between the humoral central immune system and immune induction, including antitumor. Information generated in this study elucidates further the mechanisms involved in humoral immune system and represents the potential basis of effective immunotherapeutic strategies for treating human tumors and immune improvement.
Collapse
Affiliation(s)
- Xiu-Li Feng
- Division of Key Laboratory of Animal Disease Diagnosis and Immunology, Department of Agriculture of China, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tong W, Zhang L. Fetal hypoxia and programming of matrix metalloproteinases. Drug Discov Today 2011; 17:124-34. [PMID: 21946060 DOI: 10.1016/j.drudis.2011.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/15/2011] [Accepted: 09/14/2011] [Indexed: 12/17/2022]
Abstract
Fetal hypoxia adversely affects the brain and heart development, yet the mechanisms responsible remain elusive. Recent studies indicate an important role of the extracellular matrix in fetal development and tissue remodeling. The matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs) have been implicated in a variety of physiological and pathological processes in the cardiovascular and central nervous systems. This review summarizes current knowledge of the mechanisms by which fetal hypoxia induces the imbalance of MMPs, TIMPs and collagen expression patterns, resulting in growth restriction and aberrant tissue remodeling in the developing heart and brain. Collectively, this information could lead to the development of preventive diagnoses and therapeutic strategies in the fetal programming of cardiovascular and neurological disorders.
Collapse
Affiliation(s)
- Wenni Tong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | |
Collapse
|
41
|
Golubkov VS, Chernov AV, Strongin AY. Intradomain cleavage of inhibitory prodomain is essential to protumorigenic function of membrane type-1 matrix metalloproteinase (MT1-MMP) in vivo. J Biol Chem 2011; 286:34215-23. [PMID: 21832072 DOI: 10.1074/jbc.m111.264036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Invasive cancers use pericellular proteolysis to breach the extracellular matrix and basement membrane barriers and invade the surrounding tissue. Proinvasive membrane type-1 matrix metalloproteinase (MT1-MMP) is the primary mediator of proteolytic events on the cancer cell surface. MT1-MMP is synthesized as a zymogen. The latency of MT1-MMP is maintained by its N-terminal inhibitory prodomain. In the course of MT1-MMP activation, the R(108)RKR(111) ↓ Y(112) prodomain sequence is processed by furin. The intact prodomain released by furin alone, however, is a potent inhibitor of the emerging MT1-MMP enzyme. Evidence suggests that the prodomain undergoes intradomain cleavage at the PGD ↓ L(50) site followed by the release of the degraded prodomain by furin cleavage that finalizes the two-step activation event. These cleavages, only if combined, cause the activation of MT1-MMP. The significance of the intradomain cleavage in the protumorigenic program of MT1-MMP, however, remained unidentified. To identify this important parameter, in our current study, we used the cells that expressed the wild-type prodomain-based fluorescent biosensor and the mutant biosensor with the inactivated PGD↓L(50) cleavage site (L50D mutant) and also the cells with the enforced expression of the wild-type and L50D mutant MT1-MMP. Using cell-based tests, orthotopic breast cancer xenografts in mice, and genome-wide transcriptional profiling of cultured cells and tumor xenografts, we demonstrated that the intradomain cleavage of the PGD ↓ L(50) sequence of the prodomain is essential for the protumorigenic function of MT1-MMP. Our results emphasize the importance of the intradomain cleavages resulting in the inactivation of the respective inhibitory prodomains not only for MT1-MMP but also for other MMP family members.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
42
|
Chernov AV, Strongin AY. Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer. Biomol Concepts 2011; 2:135-147. [PMID: 21779312 DOI: 10.1515/bmc.2011.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Our review covers the recent epigenetic data that are focused on matrix metalloproteinases (MMPs), their inhibitors (tissue inhibitors of MMPs; TIMPs) and collagen substrates. Twenty-four MMPs, four TIMPs and at least 28 collagen types are known in humans. The MMP activity regulates the functionality of multiple extracellular matrix proteins, cytokines, growth factors and cell signaling and adhesion receptors. Aberrantly enhanced MMP proteolysis affects multiple cell functions, including proliferation, migration and invasion. This aberrant MMP proteolysis is frequently recorded in cancer. Recent evidence, however, indicates that several MMPs function as tumor suppressors in cancer. Their inhibition could have pro-tumorigenic effects (making them anti-targets), counterbalancing the benefits of target inhibition and leading to adverse effects in cancer patients. The current epigenetic data suggest that there are distinct multi-layered epigenetic mechanisms that regulate MMPs, TIMPs and collagens. We show that in certain cancer types, epigenetic signatures of selected MMPs exhibit stem cell-like characteristics. Epigenetic mechanisms appear to play an especially important role in glioblastoma multiforme. Glioblastomas/gliomas synthesize de novo and then deposit collagens into the brain parenchyma. The collagen deposition, combined with an enhanced MMP activity in glioblastomas/gliomas, facilitates rapid invasion of tumor cells through the brain. It is tempting to hypothesize that the epigenetic mechanisms which control MMPs, TIMPs and collagens and, consequently, tumor cell invasion, represent promising drug targets and that in the near future these targets will be challenged pharmacologically.
Collapse
Affiliation(s)
- Andrei V Chernov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 2010; 30:15337-57. [PMID: 21084591 DOI: 10.1523/jneurosci.3467-10.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the metzincin family of metalloproteinases have long been considered merely degradative enzymes for extracellular matrix molecules. Recently, however, there has been growing appreciation for these proteinases and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), as fine modulators of nervous system physiology and pathology. Present all along the phylogenetic tree, in all neural cell types, from the nucleus to the synapse and in the extracellular space, metalloproteinases exhibit a complex spatiotemporal profile of expression in the nervous parenchyma and at the neurovascular interface. The irreversibility of their proteolytic activity on numerous biofactors (e.g., growth factors, cytokines, receptors, DNA repair enzymes, matrix proteins) is ideally suited to sustain structural changes that are involved in physiological or postlesion remodeling of neural networks, learning consolidation or impairment, neurodegenerative and neuroinflammatory processes, or progression of malignant gliomas. The present review provides a state of the art overview of the involvement of the metzincin/TIMP system in these processes and the prospects of new therapeutic strategies based on the control of metalloproteinase activity.
Collapse
|
44
|
Hagemann C, Anacker J, Haas S, Riesner D, Schömig B, Ernestus RI, Vince GH. Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures. BMC Res Notes 2010; 3:293. [PMID: 21067565 PMCID: PMC2996401 DOI: 10.1186/1756-0500-3-293] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/10/2010] [Indexed: 02/07/2023] Open
Abstract
Background Glioblastomas (GBM), the most frequent malignant brain tumors in adults, are characterized by an aggressive local growth pattern and highly invasive tumor cells. This invasion is facilitated by expression of matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases. They mediate the degradation of protein components of the extracellular matrix. Twenty-three family members are known. Elevated levels of several of them have been reported in GBM. GBM cell-lines are used for in vitro studies of cell migration and invasion. Therefore, it is essential to know their MMP expression patterns. Only limited data for some of the cell-lines are published, yet. To fill the gaps in our knowledge would help to choose suitable model systems for analysis of regulation and function of MMPs during GBM tumorigenesis, cell migration and invasion. Findings We analysed MMP-1, -8, -9, -10, -11, -13, -17, -19, -20, -21, -23, -24, -26, -27, and MMP-28 expression in seven GBM cell-lines (SNB-19, GaMG, U251, U87, U373, U343, U138) and in four primary cell cultures by semiquantitative RT-PCR, followed changes in the MMP expression pattern with increasing passages of cell culture and examined the influence of TNF-α and TGF-β1 stimulation on the expression of selected MMPs in U251 and U373 cells. MMP-13, -17, -19 and -24 were expressed by all analyzed cell-lines, whereas MMP-20 and MMP-21 were not expressed by any of them. The other MMPs showed variable expression, which was dependent on passage number. Primary cells displayed a similar MMP-expression pattern as the cell-lines. In U251 and U373 cells expression of MMP-9 and MMP-19 was stimulated by TNF-α. MMP-1 mRNA expression was significantly increased in U373 cells, but not in U251 cells by this cytokine. Whereas TGF-β1 had no impact on MMP expression in U251 cells, it significantly induced MMP-11 and MMP-24 expression in U373 cells. Conclusions Literature-data and our own results suggest that the expression pattern of MMPs is highly variable, dependent on the cell-line and the cell-culture conditions used and that also regulation of MMP expression by cytokines is cell-line dependent. This is of high impact for the transfer of cell-culture experiments to clinical implementation.
Collapse
Affiliation(s)
- Carsten Hagemann
- University of Würzburg, Department of Neurosurgery, Tumorbiology Laboratory, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Kushi LH, Kwan ML, Wiencke JK. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet 2010; 6:e1001043. [PMID: 20686660 PMCID: PMC2912395 DOI: 10.1371/journal.pgen.1001043] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 06/29/2010] [Indexed: 12/13/2022] Open
Abstract
Although tumor size and lymph node involvement are the current cornerstones of breast cancer prognosis, they have not been extensively explored in relation to tumor methylation attributes in conjunction with other tumor and patient dietary and hormonal characteristics. Using primary breast tumors from 162 (AJCC stage I-IV) women from the Kaiser Division of Research Pathways Study and the Illumina GoldenGate methylation bead-array platform, we measured 1,413 autosomal CpG loci associated with 773 cancer-related genes and validated select CpG loci with Sequenom EpiTYPER. Tumor grade, size, estrogen and progesterone receptor status, and triple negative status were significantly (Q-values <0.05) associated with altered methylation of 209, 74, 183, 69, and 130 loci, respectively. Unsupervised clustering, using a recursively partitioned mixture model (RPMM), of all autosomal CpG loci revealed eight distinct methylation classes. Methylation class membership was significantly associated with patient race (P<0.02) and tumor size (P<0.001) in univariate tests. Using multinomial logistic regression to adjust for potential confounders, patient age and tumor size, as well as known disease risk factors of alcohol intake and total dietary folate, were all significantly (P<0.0001) associated with methylation class membership. Breast cancer prognostic characteristics and risk-related exposures appear to be associated with gene-specific tumor methylation, as well as overall methylation patterns.
Collapse
Affiliation(s)
- Brock C. Christensen
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
- Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island, United States of America
| | - Karl T. Kelsey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
- Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island, United States of America
| | - Shichun Zheng
- Department of Neurological Surgery, Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - E. Andres Houseman
- Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island, United States of America
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Carmen J. Marsit
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
- Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, Rhode Island, United States of America
| | - Margaret R. Wrensch
- Department of Neurological Surgery, Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph L. Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Heather H. Nelson
- Masonic Cancer Center, Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Karagas
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Lawrence H. Kushi
- Division of Research, Kaiser Permanente, Oakland, California, United States of America
| | - Marilyn L. Kwan
- Division of Research, Kaiser Permanente, Oakland, California, United States of America
| | - John K. Wiencke
- Department of Neurological Surgery, Helen Diller Family Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|