1
|
Klukowski P, Damberger FF, Allain FHT, Iwai H, Kadavath H, Ramelot TA, Montelione GT, Riek R, Güntert P. The 100-protein NMR spectra dataset: A resource for biomolecular NMR data analysis. Sci Data 2024; 11:30. [PMID: 38177162 PMCID: PMC10767026 DOI: 10.1038/s41597-023-02879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Multidimensional NMR spectra are the basis for studying proteins by NMR spectroscopy and crucial for the development and evaluation of methods for biomolecular NMR data analysis. Nevertheless, in contrast to derived data such as chemical shift assignments in the BMRB and protein structures in the PDB databases, this primary data is in general not publicly archived. To change this unsatisfactory situation, we present a standardized set of solution NMR data comprising 1329 2-4-dimensional NMR spectra and associated reference (chemical shift assignments, structures) and derived (peak lists, restraints for structure calculation, etc.) annotations. With the 100-protein NMR spectra dataset that was originally compiled for the development of the ARTINA deep learning-based spectra analysis method, 100 protein structures can be reproduced from their original experimental data. The 100-protein NMR spectra dataset is expected to help the development of computational methods for NMR spectroscopy, in particular machine learning approaches, and enable consistent and objective comparisons of these methods.
Collapse
Affiliation(s)
- Piotr Klukowski
- Institute of Molecular Physical Science, ETH Zurich, 8093, Zurich, Switzerland.
| | - Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Hideo Iwai
- Institute of Biotechnology, University of Helsinki, 00100, Helsinki, Finland
| | | | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Roland Riek
- Institute of Molecular Physical Science, ETH Zurich, 8093, Zurich, Switzerland.
| | - Peter Güntert
- Institute of Molecular Physical Science, ETH Zurich, 8093, Zurich, Switzerland.
- Institute of Biophysical Chemistry, Goethe University, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan.
| |
Collapse
|
2
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Tessmer I. The roles of non-productive complexes of DNA repair proteins with DNA lesions. DNA Repair (Amst) 2023; 129:103542. [PMID: 37453245 DOI: 10.1016/j.dnarep.2023.103542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
A multitude of different types of lesions is continuously introduced into the DNA inside our cells, and their rapid and efficient repair is fundamentally important for the maintenance of genomic stability and cellular viability. This is achieved by a number of DNA repair systems that each involve different protein factors and employ versatile strategies to target different types of DNA lesions. Intriguingly, specialized DNA repair proteins have also evolved to form non-functional complexes with their target lesions. These proteins allow the marking of innocuous lesions to render them visible for DNA repair systems and can serve to directly recruit DNA repair cascades. Moreover, they also provide links between different DNA repair mechanisms or even between DNA lesions and transcription regulation. I will focus here in particular on recent findings from single molecule analyses on the alkyltransferase-like protein ATL, which is believed to initiate nucleotide excision repair (NER) of non-native NER target lesions, and the base excision repair (BER) enzyme hOGG1, which recruits the oncogene transcription factor Myc to gene promoters under oxidative stress.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Savin DA, Harris M, Eddy MT. Atomic-Scale View of Protein-PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin-3. Angew Chem Int Ed Engl 2022; 61:e202203784. [PMID: 35922375 PMCID: PMC9529833 DOI: 10.1002/anie.202203784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 07/28/2023]
Abstract
PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.
Collapse
Affiliation(s)
- Amanda Pritzlaff
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Emma Mulry
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ling Lin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Daniel A. Savin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Michael Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Eddy M, Savin DA, Harris M. Atomic‐Scale View of Protein–PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin‐3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Emma Mulry
- University of Florida Department of Chemistry UNITED STATES
| | - Ling Lin
- University of Florida Department of Chemistry UNITED STATES
| | | | - Matthew Eddy
- University of Florida Chemistry 126 Sisler Hall 32611 Gainesville UNITED STATES
| | | | - Michael Harris
- University of Florida Department of Chemistry UNITED STATES
| |
Collapse
|
6
|
Sarr M, Kitoka K, Walsh-White KA, Kaldmäe M, Metlāns R, Tārs K, Mantese A, Shah D, Landreh M, Rising A, Johansson J, Jaudzems K, Kronqvist N. The dimerization mechanism of the N-terminal domain of spider silk proteins is conserved despite extensive sequence divergence. J Biol Chem 2022; 298:101913. [PMID: 35398358 PMCID: PMC9097459 DOI: 10.1016/j.jbc.2022.101913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
The N-terminal (NT) domain of spider silk proteins (spidroins) is crucial for their storage at high concentrations and also regulates silk assembly. NTs from the major ampullate spidroin (MaSp) and the minor ampullate spidroin are monomeric at neutral pH and confer solubility to spidroins, whereas at lower pH, they dimerize to interconnect spidroins in a fiber. This dimerization is known to result from modulation of electrostatic interactions by protonation of well-conserved glutamates, although it is undetermined if this mechanism applies to other spidroin types as well. Here, we determine the solution and crystal structures of the flagelliform spidroin NT, which shares only 35% identity with MaSp NT, and investigate the mechanisms of its dimerization. We show that flagelliform spidroin NT is structurally similar to MaSp NT and that the electrostatic intermolecular interaction between Asp 40 and Lys 65 residues is conserved. However, the protonation events involve a different set of residues than in MaSp, indicating that an overall mechanism of pH-dependent dimerization is conserved but can be mediated by different pathways in different silk types.
Collapse
Affiliation(s)
- Médoune Sarr
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Kristine Kitoka
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, 1006, Latvia
| | - Kellie-Ann Walsh-White
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Margit Kaldmäe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Rimants Metlāns
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, 1006, Latvia
| | - Kaspar Tārs
- Latvian Biomedical Research and Study Centre, Riga, 1067, Latvia
| | | | - Dipen Shah
- ZoBio BV, J.H. Oortweg 19, 2333CH Leiden, the Netherlands
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Solna, Sweden
| | - Anna Rising
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden; Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, 1006, Latvia
| | - Nina Kronqvist
- Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Karolinska Institutet, 141 83 Huddinge, Sweden; Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83 Huddinge, Sweden.
| |
Collapse
|
7
|
Aloisi CMN, Escher NA, Kim HS, Geisen SM, Fontana GA, Yeo JE, Schärer OD, Sturla SJ. A combination of direct reversion and nucleotide excision repair counters the mutagenic effects of DNA carboxymethylation. DNA Repair (Amst) 2022; 110:103262. [PMID: 35030424 PMCID: PMC9232693 DOI: 10.1016/j.dnarep.2021.103262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Distinct cellular DNA damage repair pathways maintain the structural integrity of DNA and protect it from the mutagenic effects of genotoxic exposures and processes. The occurrence of O6-carboxymethylguanine (O6-CMG) has been linked to meat consumption and hypothesized to contribute to the development of colorectal cancer. However, the cellular fate of O6-CMG is poorly characterized and there is contradictory data in the literature as to how repair pathways may protect cells from O6-CMG mutagenicity. To better address how cells detect and remove O6-CMG, we evaluated the role of two DNA repair pathways in counteracting the accumulation and toxic effects of O6-CMG. We found that cells deficient in either the direct repair protein O6-methylguanine-DNA methyltransferase (MGMT), or key components of the nucleotide excision repair (NER) pathway, accumulate higher levels O6-CMG DNA adducts than wild type cells. Furthermore, repair-deficient cells were more sensitive to carboxymethylating agents and displayed an increased mutation rate. These findings suggest that a combination of direct repair and NER circumvent the effects O6-CMG DNA damage.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nora A Escher
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Susanne M Geisen
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
8
|
Aloisi CMN, Sandell ES, Sturla SJ. A Chemical Link between Meat Consumption and Colorectal Cancer Development? Chem Res Toxicol 2021; 34:12-23. [PMID: 33417435 DOI: 10.1021/acs.chemrestox.0c00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O6-carboxymethylguanine (O6-CMG) is a mutagenic DNA adduct that forms at increased levels when people eat meat. It has been studied as a potential initiating event in colorectal carcinogenesis. It can arise from alkylation of guanine in DNA by electrophilic degradation products of N-nitroso compounds. There is significant data regarding biochemical and cellular process, including DNA repair and translesion DNA synthesis that control O6-CMG accumulation, persistence, and mutagenicity. Mutation spectra arising from the adduct closely resemble common mutations in colorectal cancer; however, gaps remain in understanding the biochemical processes that regulate how and where the damage persists in the genome. Addressing such questions relies on advances in chemistry such as synthesis approaches and bioanalytical methods. Results of research in this area help advance our understanding of the toxicological relevance of O6-CMG-modified DNA. Further attention should focus on understanding how a combination of genetic and environmental factors control its biological persistence and how this information can be used as a basis of biomoniotoring and prevention efforts to help mitigate colon cancer risk.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Emma S Sandell
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
9
|
Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proc Natl Acad Sci U S A 2020; 117:9318-9328. [PMID: 32273391 DOI: 10.1073/pnas.1916860117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.
Collapse
|
10
|
Pottenger LH, Boysen G, Brown K, Cadet J, Fuchs RP, Johnson GE, Swenberg JA. Understanding the importance of low-molecular weight (ethylene oxide- and propylene oxide-induced) DNA adducts and mutations in risk assessment: Insights from 15 years of research and collaborative discussions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:100-121. [PMID: 30536466 PMCID: PMC6590209 DOI: 10.1002/em.22248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 05/11/2023]
Abstract
The interpretation and significance of DNA adduct data, their causal relationship to mutations, and their role in risk assessment have been debated for many years. An extended effort to identify key questions and collect relevant data to address them was focused on the ubiquitous low MW N7-alkyl/hydroxyalkylguanine adducts. Several academic, governmental, and industrial laboratories collaborated to gather new data aimed at better understanding the role and potential impact of these adducts in quantifiable genotoxic events (gene mutations/micronucleus). This review summarizes and evaluates the status of dose-response data for DNA adducts and mutations from recent experimental work with standard mutagenic agents and ethylene oxide and propylene oxide, and the importance for risk assessment. This body of evidence demonstrates that small N7-alkyl/hydroxyalkylguanine adducts are not pro-mutagenic and, therefore, adduct formation alone is not adequate evidence to support a mutagenic mode of action. Quantitative methods for dose-response analysis and derivation of thresholds, benchmark dose (BMD), or other points-of-departure (POD) for genotoxic events are now available. Integration of such analyses of genetox data is necessary to properly assess any role for DNA adducts in risk assessment. Regulatory acceptance and application of these insights remain key challenges that only the regulatory community can address by applying the many learnings from recent research. The necessary tools, such as BMDs and PODs, and the example datasets, are now available and sufficiently mature for use by the regulatory community. Environ. Mol. Mutagen. 60: 100-121, 2019. © 2018 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- L. H. Pottenger
- Olin Corporation/Blue Cube Operations, LLC, retired, LHP TOX CONSULT, LLCMidlandMIUSA
| | - G. Boysen
- Department of Environmental and Occupational Health and The Winthrop P Rockefeller Cancer Institute University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - K. Brown
- Leicester Cancer Research CentreUniversity of LeicesterLeicesterUnited Kingdom
| | - J. Cadet
- Institut Nanosciences et Cryogénie, CEA‐GrenobleGrenobleFrance
- Université de SherbrookeSherbrookeCanada
| | - R. P. Fuchs
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068Marseille, 13009France
- CNRS, UMR7258Marseille, 13009France
- Institut Paoli‐CalmettesMarseille, 13009France
- Aix‐Marseille UniversityUM 105, 13284, MarseilleFrance
| | - G. E. Johnson
- Swansea University, Institute of Life SciencesSwanseaUnited Kingdom
| | - J. A. Swenberg
- University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
11
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
12
|
Casanova E, Knowles TDJ, Williams C, Crump MP, Evershed RP. Use of a 700 MHz NMR Microcryoprobe for the Identification and Quantification of Exogenous Carbon in Compounds Purified by Preparative Capillary Gas Chromatography for Radiocarbon Determinations. Anal Chem 2017; 89:7090-7098. [DOI: 10.1021/acs.analchem.7b00987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuelle Casanova
- Organic
Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Timothy D. J. Knowles
- Bristol
Radiocarbon Accelerator Mass Spectrometer, University of Bristol, 43 Woodland Road, Bristol BS8 1UU, U.K
| | - Christopher Williams
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall
Avenue, Bristol BS8 1TQ, U.K
| | - Matthew P. Crump
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall
Avenue, Bristol BS8 1TQ, U.K
| | - Richard P. Evershed
- Organic
Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- Bristol
Radiocarbon Accelerator Mass Spectrometer, University of Bristol, 43 Woodland Road, Bristol BS8 1UU, U.K
| |
Collapse
|
13
|
van der Schot G, Bonvin AMJJ. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 62:497-502. [PMID: 25982706 PMCID: PMC4569659 DOI: 10.1007/s10858-015-9942-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 05/05/2023]
Abstract
We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.
Collapse
Affiliation(s)
- Gijs van der Schot
- Faculty of Science - Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75 124, Uppsala, Sweden
| | - Alexandre M J J Bonvin
- Faculty of Science - Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Blatter M, Dunin-Horkawicz S, Grishina I, Maris C, Thore S, Maier T, Bindereif A, Bujnicki JM, Allain FHT. The Signature of the Five-Stranded vRRM Fold Defined by Functional, Structural and Computational Analysis of the hnRNP L Protein. J Mol Biol 2015; 427:3001-22. [PMID: 26051023 DOI: 10.1016/j.jmb.2015.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 12/23/2022]
Abstract
The RNA recognition motif (RRM) is the far most abundant RNA binding domain. In addition to the typical β1α1β2β3α2β4 fold, various sub-structural elements have been described and reportedly contribute to the high functional versatility of RRMs. The heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a highly abundant protein of 64 kDa comprising four RRM domains. Involved in many aspects of RNA metabolism, hnRNP L specifically binds to RNAs containing CA repeats or CA-rich clusters. However, a comprehensive structural description of hnRNP L including its sub-structural elements is missing. Here, we present the structural characterization of the RRM domains of hnRNP L and demonstrate their function in repressing exon 4 of SLC2A2. By comparison of the sub-structural elements between the two highly similar paralog families of hnRNP L and PTB, we defined signatures underlying interacting C-terminal coils (ICCs), the RRM34 domain interaction and RRMs with a C-terminal fifth β-strand, a variation we denoted vRRMs. Furthermore, computational analysis revealed new putative ICC-containing RRM families and allowed us to propose an evolutionary scenario explaining the origins of the ICC and fifth β-strand sub-structural extensions. Our studies provide insights of domain requirements in alternative splicing mediated by hnRNP L and molecular descriptions for the sub-structural elements. In addition, the analysis presented may help to classify other abundant RRM extensions and to predict structure-function relationships.
Collapse
Affiliation(s)
- Markus Blatter
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Inna Grishina
- Institute of Biochemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Christophe Maris
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Stephane Thore
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Timm Maier
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
15
|
Abstract
Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology.
Collapse
Affiliation(s)
- Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
16
|
Alkyltransferase-like protein (Atl1) distinguishes alkylated guanines for DNA repair using cation-π interactions. Proc Natl Acad Sci U S A 2012; 109:18755-60. [PMID: 23112169 DOI: 10.1073/pnas.1209451109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alkyltransferase-like (ATL) proteins in Schizosaccharomyces pombe (Atl1) and Thermus thermophilus (TTHA1564) protect against the adverse effects of DNA alkylation damage by flagging O(6)-alkylguanine lesions for nucleotide excision repair (NER). We show that both ATL proteins bind with high affinity to oligodeoxyribonucleotides containing O(6)-alkylguanines differing in size, polarity, and charge of the alkyl group. However, Atl1 shows a greater ability than TTHA1564 to distinguish between O(6)-alkylguanine and guanine and in an unprecedented mechanism uses Arg69 to probe the electrostatic potential surface of O(6)-alkylguanine, as determined using molecular mechanics calculations. An unexpected consequence of this feature is the recognition of 2,6-diaminopurine and 2-aminopurine, as confirmed in crystal structures of respective Atl1-DNA complexes. O(6)-Alkylguanine and guanine discrimination is diminished for Atl1 R69A and R69F mutants, and S. pombe R69A and R69F mutants are more sensitive toward alkylating agent toxicity, revealing the key role of Arg69 in identifying O(6)-alkylguanines critical for NER recognition.
Collapse
|
17
|
Deaconescu AM, Artsimovitch I, Grigorieff N. Interplay of DNA repair with transcription: from structures to mechanisms. Trends Biochem Sci 2012; 37:543-52. [PMID: 23084398 DOI: 10.1016/j.tibs.2012.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 01/29/2023]
Abstract
Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Howard Hughes Medical Institute, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS 029, Waltham, MA 02454, USA.
| | | | | |
Collapse
|
18
|
Kim JH, Tonelli M, Kim T, Markley JL. Three-dimensional structure and determinants of stability of the iron-sulfur cluster scaffold protein IscU from Escherichia coli. Biochemistry 2012; 51:5557-63. [PMID: 22734684 DOI: 10.1021/bi300579p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly conserved protein, IscU, serves as the scaffold for iron-sulfur cluster (ISC) assembly in the ISC system common to bacteria and eukaryotic mitochondria. The apo-form of IscU from Escherichia coli has been shown to populate two slowly interconverting conformational states: one structured (S) and one dynamically disordered (D). Furthermore, single-site amino acid substitutions have been shown to shift the equilibrium between the metamorphic states. Here, we report three-dimensional structural models derived from NMR spectroscopy for the S-state of wild-type (WT) apo-IscU, determined under conditions where the protein was 80% in the S-state and 20% in the D-state, and for the S-state of apo-IscU(D39A), determined under conditions where the protein was ~95% in the S-state. We have used these structures in interpreting the effects of single site amino acid substitutions that alter %S = (100 × [S])/([S] + [D]). These include different residues at the same site, %S: D39V > D39L > D39A > D39G ≈ WT, and alanine substitutions at different sites, %S: N90A > S107A ≈ E111A > WT. Hydrophobic residues at residue 39 appear to stabilize the S-state by decreasing the flexibility of the loops that contain the conserved cysteine residues. The alanine substitutions at positions 90, 107, and 111, on the other hand, stabilize the protein without affecting the loop dynamics. In general, the stability of the S-state correlates with the compactness and thermal stability of the variant.
Collapse
Affiliation(s)
- Jin Hae Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
19
|
Tubbs JL, Tainer JA. P53 conformational switching for selectivity may reveal a general solution for specific DNA binding. EMBO J 2011; 30:2099-100. [PMID: 21629273 DOI: 10.1038/emboj.2011.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Julie L Tubbs
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
20
|
Morita R, Hishinuma H, Ohyama H, Mega R, Ohta T, Nakagawa N, Agari Y, Fukui K, Shinkai A, Kuramitsu S, Masui R. An alkyltransferase-like protein from Thermus thermophilus HB8 affects the regulation of gene expression in alkylation response. J Biochem 2011; 150:327-39. [PMID: 21531768 DOI: 10.1093/jb/mvr052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alkylation is a type of stress that is fatal to cells. However, cells have various responses to alkylation. Alkyltransferase-like (ATL) protein is a novel protein involved in the repair of alkylated DNA; however, its repair mechanism at the molecular level is unclear. DNA microarray analysis revealed that the upregulation of 71 genes because of treatment with an alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine was related to the presence of TTHA1564, the ATL protein from Thermus thermophilus HB8. Affinity chromatography showed a direct interaction of purified TTHA1564 with purified RNA polymerase holoenzyme. The amino acid sequence of TTHA1564 is homologous to that of the C-terminal domain of Ada protein, which acts as a transcriptional activator. These results suggest that TTHA1564 might act as a transcriptional regulator. The results of DNA microarray analysis also implied that the alkylating agent induced oxidation stress in addition to alkylation stress.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
22
|
Onodera T, Morino K, Tokishita SI, Morita R, Masui R, Kuramitsu S, Ohta T. Role of alkyltransferase-like (ATL) protein in repair of methylated DNA lesions in Thermus thermophilus. Mutagenesis 2010; 26:303-8. [PMID: 21059809 DOI: 10.1093/mutage/geq093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thermus thermophilus is an extremely thermophilic eubacterium that grows optimally at 70-75°C. It does not have a gene encoding O(6)-alkylguanine-DNA alkyltransferase (AGT) for the repair of O(6)-methylguanine (O(6)-meG), but it has a homologous gene atl encoding alkyltransferase-like (ATL) proteins in which the cysteine residue in the active site of the PCHR motif conserved in AGT is replaced by alanine (i.e. lack of methyltransferase activity). To investigate the role of ATL protein in the repair of O(6)-meG, we isolated atl deletion mutants and measured specific G:C→A:T transition mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) by a His(+) reversion system at the hisD3110 locus. MNNG caused an increased mutation frequency in the atl-deficient mutant but a significantly higher frequency increase in a uvrA mutant, which is deficient in nucleotide excision repair (NER), indicating that both ATL protein and NER played an important role in preventing G:C→A:T transitions. We observed no difference in MNNG sensitivity between the uvrA atl double mutant and the parent uvrA strain. Our results support a recently proposed repair model in which ATL protein acts as a sensor of O(6)-meG damage and recruits UvrA protein to repair the lesion via an NER system. In addition, the finding that the uvrA atl strain mutated with greater frequency than the single atl strain suggests that O(6)-meG is repaired by NER in the absence of ATL protein. We also discuss the possible association of a transcription-repair coupling factor in a transcription-coupled repair pathway and of MutS protein in a mismatch repair pathway with ATL/NER-mediated repair of O(6)-meG.
Collapse
Affiliation(s)
- Takefumi Onodera
- Department of Environmental Genomics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Alkyltransferase-like proteins: molecular switches between DNA repair pathways. Cell Mol Life Sci 2010; 67:3749-62. [PMID: 20502938 DOI: 10.1007/s00018-010-0405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/04/2010] [Accepted: 05/10/2010] [Indexed: 01/08/2023]
Abstract
Alkyltransferase-like proteins (ATLs) play a role in the protection of cells from the biological effects of DNA alkylation damage. Although ATLs share functional motifs with the DNA repair protein and cancer chemotherapy target O⁶-alkylguanine-DNA alkyltransferase, they lack the reactive cysteine residue required for alkyltransferase activity, so its mechanism for cell protection was previously unknown. Here we review recent advances in unraveling the enigmatic cellular protection provided by ATLs against the deleterious effects of DNA alkylation damage. We discuss exciting new evidence that ATLs aid in the repair of DNA O⁶-alkylguanine lesions through a novel repair cross-talk between DNA-alkylation base damage responses and the DNA nucleotide excision repair pathway.
Collapse
|