1
|
Suzuki S, Liu J, Sato Y, Miyake R, Suzuki S, Okitsu Y, Fukuda T, Isaji T, Gu J, Takahashi S. Fucosylation inhibitor 6-alkynylfucose enhances the ATRA-induced differentiation effect on acute promyelocytic leukemia cells. Biochem Biophys Res Commun 2024; 710:149541. [PMID: 38608490 DOI: 10.1016/j.bbrc.2024.149541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 04/14/2024]
Abstract
For acute promyelocytic leukemia (APL), differentiation therapy with all-trans retinoic acid (ATRA) is well established. However, the narrow application and tolerance development of ATRA remain to be improved. In this study, we investigated the effects of combinations of glycosylation inhibitors with ATRA to achieve better efficiency than ATRA alone. We found that the combination of fucosylation inhibitor 6-alkynylfucose (6AF) and ATRA had an additional effect on cell differentiation, as revealed by expression changes in two differentiation markers, CD11b and CD11c, and significant morphological changes in NB4 APL and HL-60 acute myeloid leukemia (AML) cells. In AAL lectin blot analyses, ATRA or 6AF alone could decrease fucosylation, while their combination decreased fucosylation more efficiently. To clarify the molecular mechanism for the 6AF effect on ATRA-induced differentiation, we performed microarray analyses using NB4 cells. In a pathway analysis using DAVID software, we found that the C-type lectin receptor (CLR) signaling pathway was enriched with high significance. In real-time PCR analyses using NB4 and HL-60 cells, FcεRIγ, CLEC6A, CLEC7A, CASP1, IL-1β, and EGR3, as components of the CLR pathway, as well as CD45 and AKT3 were upregulated by 6AF in ATRA-induced differentiation. Taken together, the present findings suggest that the CLR signaling pathway is involved in the 6AF effect on ATRA-induced differentiation.
Collapse
Affiliation(s)
- Susumu Suzuki
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan; Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yuri Sato
- Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | - Rikuto Miyake
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Souma Suzuki
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Yoko Okitsu
- Division of Rheumatology and Hematology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8536, Japan; Department of Clinical Laboratory, Tohoku Medical and Pharmaceutical University Hospital, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan.
| |
Collapse
|
2
|
Xin X, Xu Z, Wei J, Zhang Y. MiR-376a-3p increases cell apoptosis in acute myeloid leukemia by targeting MT1X. Cancer Biol Ther 2022; 23:234-242. [PMID: 35316152 PMCID: PMC8942499 DOI: 10.1080/15384047.2022.2054243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Metallothioneins (MTs) are a group of low-molecular weight cysteine-rich proteins that play vital roles in oxidative stress, metal homeostasis, carcinogenesis and drug resistance. However, few studies have analyzed the roles of MTs in acute myeloid leukemia (AML). In this study, we revealed that the expression of metallothionein1X (MT1X), a main isoform of MTs, was highly expressed and acted as a candidate of prognostic indicator in AML patients. In vitro cell function experiments verified that silencing MT1X inhibited the proliferation of AML cells, sensitized cells to doxorubicin, and increased their apoptosis. We also showed that the downregulation of MT1X expression suppressed nuclear factor-κB (NF-κB) signaling by reducing p65, p-IκB-α, and downstream effectors. Elevated p65 and MT1X levels were indicators in AML. Moreover, we revealed that miR-376a-3p had binding sites with 3'-UTR of MT1X, suggesting that MT1X was negatively regulated by miR-376a-3p. Cell functional assay results indicated that miR-376a-3p overexpression significantly inhibited the proliferation, arrested the AML cells in the G0/G1 phase and induced cell apoptosis. The rescue experiments further confirmed that miR-376a-3p could reverse the promotion of MT1X overexpression on the progress of AML cells. Taken together, our results revealed that elevated MT1X expression might be involved in the mechanism underlying AML progression, indicating that the miR-376a/MT1X axis might serve as a promising novel target for the effective treatment of patients with AML.
Collapse
Affiliation(s)
- Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Hematology, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, Henan, China
| | - Zheng Xu
- Department of Hematology, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, Henan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Fernández-Barroso MÁ, García-Casco JM, Núñez Y, Ramírez-Hidalgo L, Matos G, Muñoz M. Understanding the role of myoglobin content in Iberian pigs fattened in an extensive system through analysis of the transcriptome profile. Anim Genet 2022; 53:352-367. [PMID: 35355298 PMCID: PMC9314091 DOI: 10.1111/age.13195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Meat color is the first perceived sensory feature and one of the most important quality traits. Myoglobin is the main pigment in meat, giving meat its characteristic cherry‐red color, highly appreciated by the consumers. In the current study, we used the RNA‐seq technique to characterize the longissimus dorsi muscle transcriptome in two groups of Iberian pigs with divergent breeding values for myoglobin content. As a result, we identified 57 differentially expressed genes and transcripts (DEGs). Moreover, we have validated the RNA‐seq expression of a set of genes by quantitative PCR (qPCR). Functional analyses revealed an enrichment of DEGs in biological processes related to oxidation (HBA1), lipid metabolism (ECH1, PLA2G10, PLD2), inflammation (CHST1, CD209, PLA2G10), and immune system (CD209, MX2, LGALS3, LGALS9). The upstream analysis showed a total of five transcriptional regulatory factors and eight master regulators that could moderate the expression of some DEGs, highlighting SPI1 and MAPK1, since they regulate the expression of DEGs involved in immune defense and inflammatory processes. Iberian pigs with high myoglobin content also showed higher expression of the HBA1 gene and both molecules, myoglobin and hemoglobin, have been described as having a protective effect against oxidative and inflammatory processes. Therefore, the HBA1 gene is a very promising candidate gene to harbor polymorphisms underlying myoglobin content, whereby further studies should be carried out for its potential use in an Iberian pig selection program.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico, INIA-CSIC, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico, INIA-CSIC, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Gema Matos
- Sánchez Romero Carvajal-Jabugo, SRC, Huelva, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Yang J, Liu L, Li M, Huang X, Yang H, Li K. Naringenin inhibits pro‑inflammatory cytokine production in macrophages through inducing MT1G to suppress the activation of NF‑κB. Mol Immunol 2021; 137:155-162. [PMID: 34252709 DOI: 10.1016/j.molimm.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 01/02/2023]
Abstract
Naringenin (Nar) is a flavanone that has been suggested to provide human health benefits such as anti-inflammatory, anti-oxidant and anti-cancer properties. However, the mechanisms underlying these benefits are complex and still not fully understood. In this study, we investigated the effect of Nar on the inflammatory response of macrophages and its underlying mechanism. In lipopolysaccharide (LPS)-stimulated human macrophages, Nar inhibited the activation of NF-κB pathway and suppressed the downstream expression of pro-inflammatory factors. In addition, Nar was also able to induce metallothionein 1 G (MT1G) expression, and the inhibitory effects of Nar on the production of pro-inflammatory cytokines was dependent on MT1G. Mechanistically, we found that MT1G-mediated inhibition of pro-inflammatory cytokines responses might be through repressing NF-κB activation via zinc chelation. Overall, this study reveals a novel mechanism of Nar on inflammatory responses, the suppression of NF-κB activation through upregulation of MT1G.
Collapse
Affiliation(s)
- Jie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Lin Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
5
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
6
|
A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun 2019; 10:3660. [PMID: 31413257 PMCID: PMC6694122 DOI: 10.1038/s41467-019-11591-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Virtually all tumors are genetically heterogeneous, containing mutationally-defined subclonal cell populations that often have distinct phenotypes. Single-cell RNA-sequencing has revealed that a variety of tumors are also transcriptionally heterogeneous, but the relationship between expression heterogeneity and subclonal architecture is unclear. Here, we address this question in the context of Acute Myeloid Leukemia (AML) by integrating whole genome sequencing with single-cell RNA-sequencing (using the 10x Genomics Chromium Single Cell 5’ Gene Expression workflow). Applying this approach to five cryopreserved AML samples, we identify hundreds to thousands of cells containing tumor-specific mutations in each case, and use the results to distinguish AML cells (including normal-karyotype AML cells) from normal cells, identify expression signatures associated with subclonal mutations, and find cell surface markers that could be used to purify subclones for further study. This integrative approach for connecting genotype to phenotype is broadly applicable to any sample that is phenotypically and genetically heterogeneous. The advent of single-cell RNA sequencing has revealed significant transcriptional heterogeneity in cancer, but its relationship to genomic heterogeneity remains unclear. Focusing on acute myeloid leukemia samples, the authors describe a general approach for linking mutation-containing cells to their transcriptional phenotypes using single-cell RNA sequencing data.
Collapse
|
7
|
Using PU.1 and Jun dimerization protein 2 transcription factor expression in myelodysplastic syndromes to predict treatment response and leukaemia transformation. Ann Hematol 2019; 98:1529-1531. [DOI: 10.1007/s00277-019-03627-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 01/12/2023]
|
8
|
Yi Y, Yi J, Zhu X, Zhang J, Zhou J, Tang X, Lin J, Wang P, Deng Z. Circular RNA of
vimentin
expression as a valuable predictor for acute myeloid leukemia development and prognosis. J Cell Physiol 2018; 234:3711-3719. [PMID: 30152863 DOI: 10.1002/jcp.27145] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Yun‐Yun Yi
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Jing Yi
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Xin Zhu
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Jing Zhang
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Jiao Zhou
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Xi Tang
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Jiang Lin
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Peng Wang
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| | - Zhao‐Qun Deng
- The Affiliated People’s Hospital of Jiangsu University Zhenjiang China
| |
Collapse
|
9
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
10
|
Ziller A, Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 2018; 10:1549-1559. [DOI: 10.1039/c8mt00165k] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallothioneins are diverse, but not represented yet in all phyla. Moreover, they play a central role as a [MT:T:TO] protein system.
Collapse
Affiliation(s)
- Antoine Ziller
- Microbial Ecology
- CNRS UMR 5557
- UMR INRA 1418
- Université Lyon1
- Université de Lyon
| | | |
Collapse
|
11
|
Esaki S, Evich MG, Erlitzki N, Germann MW, Poon GMK. Multiple DNA-binding modes for the ETS family transcription factor PU.1. J Biol Chem 2017; 292:16044-16054. [PMID: 28790174 DOI: 10.1074/jbc.m117.798207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.
Collapse
Affiliation(s)
| | | | | | | | - Gregory M K Poon
- From the Departments of Chemistry and .,the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
12
|
Kimura T, Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 2016; 17:336. [PMID: 26959009 PMCID: PMC4813198 DOI: 10.3390/ijms17030336] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives.
Collapse
Affiliation(s)
- Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
13
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. The Role of Metallothioneins in Carcinogenesis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016. [DOI: 10.1007/978-3-319-27472-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Krizkova S, Kepinska M, Emri G, Rodrigo MAM, Tmejova K, Nerudova D, Kizek R, Adam V. Microarray analysis of metallothioneins in human diseases—A review. J Pharm Biomed Anal 2016; 117:464-73. [DOI: 10.1016/j.jpba.2015.09.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023]
|
15
|
Takahashi S. Positive and negative regulators of the metallothionein gene (review). Mol Med Rep 2015; 12:795-9. [PMID: 25760317 DOI: 10.3892/mmr.2015.3459] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Metallothioneins (MTs) are metal-binding proteins involved in diverse processes, including metal homeostasis and detoxification, the oxidative stress response and cell proliferation. Aberrant expression and silencing of these genes are important in a number of diseases. Several positive regulators of MT genes, including metal-responsive element-binding transcription factor (MTF)-1 and upstream stimulatory factor (USF)-1, have been identified and mechanisms of induction have been well described. However, the negative regulators of MT genes remain to be elucidated. Previous studies from the group of the present review have revealed that the hematopoietic master transcription factor, PU.1, directly represses the expression levels of MT genes through its epigenetic activities, and upregulation of MT results in the potent inhibition of myeloid differentiation. The present review focuses on PU.1 and several other negative regulators of this gene, including PZ120, DNA methyltransferase 3a with Mbd3 and Brg1 complex, CCAAT enhancer binding protein α and Ku protein, and describes the suppression of the MT genes through these transcription factors.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences and Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252‑0373, Japan
| |
Collapse
|
16
|
A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation. PLoS One 2014; 9:e103282. [PMID: 25072246 PMCID: PMC4114787 DOI: 10.1371/journal.pone.0103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT) 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE) cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT) reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M) induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.
Collapse
|
17
|
Nakano H, Yanagita A, Takahashi S. The differentiation effect of low-dose cytosine arabinoside is disturbed in PU.1-knockdown K562 cells. Biomed Rep 2014; 2:564-568. [PMID: 24944809 DOI: 10.3892/br.2014.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated by using PU.1-knockdown K562 (K562 PU.1KD) cells stably expressing PU.1 short inhibitory RNAs and PU.1-overexpressing K562 (K562 PU.1OE) cells, that therapeutic concentrations of 5-aza-2'-deoxycytidine (5-azadC) induce erythroid differentiation of these cells and that the PU.1 expression level is closely associated with the differentiating and apoptotic effects of 5-azadC on K562 cells. In this study, we investigated whether the effects of low-dose cytosine arabinoside (Ara-C), which is another erythroid differentiation inducer in K562 cells, is associated with the expression level of PU.1 in these cells. As a result, we demonstrated that the effect of Ara-C on cell viability and differentiation, as determined by the WST-8 assay and β-globin mRNA expression analysis, respectively, was suppressed in K562 PU.1KD cells compared to their controls. Collectively, these findings suggest that sufficient expression of PU.1 is indispensable for the erythroid differentiation of K562 cells.
Collapse
Affiliation(s)
- Hiroko Nakano
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan
| | - Akane Yanagita
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan
| | - Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa 252-0373, Japan ; Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
18
|
Takahashi S. Epigenetic aberrations in myeloid malignancies (Review). Int J Mol Med 2013; 32:532-8. [PMID: 23760684 DOI: 10.3892/ijmm.2013.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/16/2013] [Indexed: 11/05/2022] Open
Abstract
The development of novel technologies, such as massively parallel DNA sequencing, has led to the identification of several novel recurrent gene mutations, such as DNA methyltransferase (Dnmt)3a, ten-eleven-translocation oncogene family member 2 (TET2), isocitrate dehydrogenase (IDH)1/2, additional sex comb-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and ubiquitously transcribed tetratricopeptide repeat X chromosome (UTX) mutations in acute myeloid leukemia (AML) and other myeloid malignancies. These findings strongly suggest a link between recurrent genetic alterations and aberrant epigenetic regulations, resulting from an abnormal DNA methylation and histone modification status. This review focuses on the current findings of aberrant epigenetic signatures by these newly described genetic alterations. Moreover, epigenetic aberrations resulting from transcription factor aberrations, such as mixed lineage leukemia (MLL) rearrangement, ecotropic viral integration site 1 (Evi1) overexpression, chromosomal translocations and the downregulation of PU.1 are also described.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences; Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
19
|
Suzuki S, Nakano H, Takahashi S. Epigenetic regulation of the metallothionein-1A promoter by PU.1 during differentiation of THP-1 cells. Biochem Biophys Res Commun 2013; 433:349-53. [PMID: 23501100 DOI: 10.1016/j.bbrc.2013.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/30/2023]
Abstract
We recently demonstrated that metallothionein (MT)-1 A is a direct target gene negatively regulated by PU.1. In this study, we revealed that the expression of PU.1 was increased and accompanied by downregulation of MT-1A expression during TPA-induced THP-1 monocyte differentiation. Chromatin immunoprecipitation (ChIP) analysis demonstrated that PU.1 and the methyl CpG binding protein (MeCP) 2 bound to the same -887 to -602 region in the MT-1A promoter, and the binding of these proteins to this promoter was enhanced during differentiation. Consistently, bisulfite sequencing analyses around this region revealed that the proportion of methylated CpG sites was obivously increased during differentiation. In addition, ChIP analysis demonstrated that acetylated histone H4 around this region tended to be reduced and this may also play a role in the reduction of MT-1A expression during differentiation. Taken together, these findings suggest that MT-1A is epigenetically regulated by PU.1 during monocytic differentiation.
Collapse
Affiliation(s)
- Sawami Suzuki
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, Miniami-ku, Sagamihara, Kanagawa, Japan
| | | | | |
Collapse
|
20
|
Takahashi S. Molecular functions of metallothionein and its role in hematological malignancies. J Hematol Oncol 2012; 5:41. [PMID: 22839501 PMCID: PMC3419633 DOI: 10.1186/1756-8722-5-41] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022] Open
Abstract
Metallothionein (MT) was reported to be a potential negative regulator of apoptosis, and various reports have suggested that it may play roles in carcinogenesis and drug resistance, in at least a portion of cancer cells. The author summarizes the current understanding of the molecular functions of MT for tumor cell growth and drug resistance. These activities are regulated through intracellular metal ion modulation and free radical scavenging. Compared with analyses of solid tumors, few studies have analyzed the roles of MT in hematological malignancies. This review mainly describes the functions of MT in hematopoietic cells. Furthermore, through expression analyses of leukemias and lymphomas, the roles of MT in the biology of these diseases are particularly focused upon.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan.
| |
Collapse
|
21
|
The differentiating and apoptotic effects of 2-aza-5′-deoxycytidine are dependent on the PU.1 expression level in PU.1-transgenic K562 cells. Biochem Biophys Res Commun 2012; 420:775-81. [DOI: 10.1016/j.bbrc.2012.03.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 01/27/2023]
|