1
|
Giang PD, Churchman LR, Stok JE, Bell SG, De Voss JJ. Cymredoxin, a [2Fe-2S] ferredoxin, supports catalytic activity of the p-cymene oxidising P450 enzyme CYP108N12. Arch Biochem Biophys 2023; 737:109549. [PMID: 36801262 DOI: 10.1016/j.abb.2023.109549] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Rhodococcus globerulus is a metabolically active organism that has been shown to utilise eucalypt oil as its sole source of carbon and energy. This oil includes 1,8-cineole, p-cymene and limonene. Two identified and characterised cytochromes P450 (P450s) from this organism initiate the biodegradation of the monoterpenes 1,8-cineole (CYP176A1) and p-cymene (CYP108N12). Extensive characterisation has been completed for CYP176A1 and it has been successfully reconstituted with its immediate redox partner, cindoxin, and E. coli flavodoxin reductase. Two putative redox partner genes are encoded in the same operon as CYP108N12 and here the isolation, expression, purification, and characterisation of its specific [2Fe-2S] ferredoxin redox partner, cymredoxin is presented. Reconstitution of CYP108N12 with cymredoxin in place of putidaredoxin, a [2Fe-2S] redox partner of another P450, improves both the rate of electron transfer (from 13 ± 2 to 70 ± 1 μM NADH/min/μM CYP108N12) and the efficiency of NADH utilisation (the so-called coupling efficiency increases from 13% to 90%). Cymredoxin improves the catalytic ability of CYP108N12 in vitro. Aldehyde oxidation products of the previously identified substrates p-cymene (4-isopropylbenzaldehyde) and limonene (perillaldehyde) were observed in addition to major hydroxylation products 4-isopropylbenzyl alcohol and perillyl alcohol respectively. These further oxidation products had not previously been seen with putidaredoxin supported oxidation. Furthermore, when supported by cymredoxin CYP108N12 is able to oxidise a wider range of substrates than previously reported. These include o-xylene, α-terpineol, (-)-carveol and thymol yielding o-tolylmethanol, 7-hydroxyterpineol, (4R)-7-hydroxycarveol and 5-hydroxymethyl-2-isopropylphenol, respectively. Cymredoxin is also capable of supporting CYP108A1 (P450terp) and CYP176A1 activity, allowing them to catalyse the hydroxylation of their native substrates α-terpineol to 7-hydroxyterpineol and 1,8-cineole to 6β-hydroxycineole respectively. These results indicate that cymredoxin not only improves the catalytic capability of CYP108N12 but can also support the activity of other P450s and prove useful for their characterisation.
Collapse
Affiliation(s)
- Peter D Giang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 4067, Australia.
| |
Collapse
|
2
|
Iyanagi T. Roles of Ferredoxin-NADP + Oxidoreductase and Flavodoxin in NAD(P)H-Dependent Electron Transfer Systems. Antioxidants (Basel) 2022; 11:2143. [PMID: 36358515 PMCID: PMC9687028 DOI: 10.3390/antiox11112143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 07/21/2023] Open
Abstract
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and some algae, one-electron carrier Fd serves as a substitute for low-potential FMN-containing flavodoxin (Fld) during growth under low-iron conditions. This complex evolves into the covalent FNR (FAD)-Fld (FMN) pair, which participates in a wide variety of NAD(P)H-dependent metabolic pathways as an electron donor, including bacterial sulfite reductase, cytochrome P450 BM3, plant or mammalian cytochrome P450 reductase and nitric oxide synthase isoforms. These electron transfer systems share the conserved Ser-Glu/Asp pair in the active site of the FAD module. In addition to physiological electron acceptors, the NAD(P)H-dependent diflavin reductase family catalyzes a one-electron reduction of artificial electron acceptors such as quinone-containing anticancer drugs. Conversely, NAD(P)H: quinone oxidoreductase (NQO1), which shares a Fld-like active site, functions as a typical two-electron transfer antioxidant enzyme, and the NQO1 and UDP-glucuronosyltransfease/sulfotransferase pairs function as an antioxidant detoxification system. In this review, the roles of the plant FNR-Fd and FNR-Fld complex pairs were compared to those of the diflavin reductase (FAD-FMN) family. In the final section, evolutionary aspects of NAD(P)H-dependent multi-domain electron transfer systems are discussed.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Akoh 678-1297, Hyogo, Japan
| |
Collapse
|
3
|
Liu X, Li F, Sun T, Guo J, Zhang X, Zheng X, Du L, Zhang W, Ma L, Li S. Three pairs of surrogate redox partners comparison for Class I cytochrome P450 enzyme activity reconstitution. Commun Biol 2022; 5:791. [PMID: 35933448 PMCID: PMC9357085 DOI: 10.1038/s42003-022-03764-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Most P450s require redox partners for the electron transfer during catalysis. However, little information is available on cognate redox partners for P450s, which greatly limits P450 function exploration and practical application. Thus, the stategy of building various hybrid P450 catalytic systems with surrogate redox partner has often adopted to engineer P450 biocatalysts. In this study, we compare three pairs of frequently-used surrogate redox partner SelFdx1499/SelFdR0978, Adx/AdR and Pdx/PdR and in terms of their electron transfer properties. The three selected bacterial Class I P450s include PikC, P450sca-2 and CYP-sb21, which are responsible for production of high-value-added products. Here we show that SelFdx1499/SelFdR0978 is the most promising redox partner compared to Adx/AdR and Pdx/PdR. The results provide insights into the domination for P450-redox partner interactions in modulating the catalytic activity of P450s. This study not only produces a more active biocatalyst but also suggests a general chose for a universal reductase which would facilitate engineering of P450 catalyst. Aiming for an efficient Class I cytochrome P450 catalytic system, three pairs of surrogate redox partners for biocatalyst applications are tested.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Tianjian Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Xianliang Zheng
- Center For Biocatalysis and Enzyme Technology, AngelYeast Co., Ltd., Cheng Dong Avenue, Yichang, Hubei, 443003, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
4
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
5
|
Ramos S, Basom EJ, Thielges MC. Conformational Change Induced by Putidaredoxin Binding to Ferrous CO-ligated Cytochrome P450cam Characterized by 2D IR Spectroscopy. Front Mol Biosci 2018; 5:94. [PMID: 30483514 PMCID: PMC6243089 DOI: 10.3389/fmolb.2018.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
The importance of conformational dynamics to protein function is now well-appreciated. An outstanding question is whether they are involved in the effector role played by putidaredoxin (Pdx) in its reduction of the O2 complex of cytochrome P450cam (P450cam), an archetypical member of the cytochrome P450 superfamily. Recent studies have reported that binding of Pdx induces a conformational change from a closed to an open state of ferric P450cam, but a similar conformational change does not appear to occur for the ferrous, CO-ligated enzyme. To better understand the effector role of Pdx when binding the ferrous, CO-ligated P450cam, we applied 2D IR spectroscopy to compare the conformations and dynamics of the wild-type (wt) enzyme in the absence and presence of Pdx, as well as of L358P P450cam (L358P), which has served as a putative model for the Pdx complex. The CO vibrations of the Pdx complex and L358P report population of two conformational states in which the CO experiences distinct environments. The dynamics among the CO frequencies indicate that the energy landscape of substates within one conformation are reflective of the closed state of P450cam, and for the other conformation, differ from the free wt enzyme, but are equivalent between the Pdx complex and L358P. The two states co-populated by the Pdx complex are postulated to reflect a loosely bound encounter complex and a more tightly bound state, as is commonly observed for the dynamic complexes of redox partners. Significantly, this study shows that the binding of Pdx to ferrous, CO-ligated P450cam does perturb the conformational ensemble in a way that might underlie the effector role of Pdx.
Collapse
Affiliation(s)
- Sashary Ramos
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | - Edward J Basom
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| |
Collapse
|
6
|
Haga T, Hirakawa H, Nagamune T. Artificial Self‐Sufficient Cytochrome P450 Containing Multiple Auxiliary Proteins Demonstrates Improved Monooxygenase Activity. Biotechnol J 2018; 13:e1800088. [DOI: 10.1002/biot.201800088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoaki Haga
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of TokyoTokyo 113‐8656Japan
| | - Hidehiko Hirakawa
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of TokyoTokyo 113‐8656Japan
| | - Teruyuki Nagamune
- Department of Chemistry and BiotechnologySchool of EngineeringThe University of TokyoTokyo 113‐8656Japan
| |
Collapse
|
7
|
Mao Z, Liou SH, Khadka N, Jenney FE, Goodin DB, Seefeldt LC, Adams MWW, Cramer SP, Larsen DS. Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins. Biochemistry 2018; 57:978-990. [PMID: 29303562 DOI: 10.1021/acs.biochem.7b01159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoinduced charge-transfer dynamics and the influence of cluster size on the dynamics were investigated using five iron-sulfur clusters: the 1Fe-4S cluster in Pyrococcus furiosus rubredoxin, the 2Fe-2S cluster in Pseudomonas putida putidaredoxin, the 4Fe-4S cluster in nitrogenase iron protein, and the 8Fe-7S P-cluster and the 7Fe-9S-1Mo FeMo cofactor in nitrogenase MoFe protein. Laser excitation promotes the iron-sulfur clusters to excited electronic states that relax to lower states. The electronic relaxation lifetimes of the 1Fe-4S, 8Fe-7S, and 7Fe-9S-1Mo clusters are on the picosecond time scale, although the dynamics of the MoFe protein is a mixture of the dynamics of the latter two clusters. The lifetimes of the 2Fe-2S and 4Fe-4S clusters, however, extend to several nanoseconds. A competition between reorganization energies and the density of electronic states (thus electronic coupling between states) mediates the charge-transfer lifetimes, with the 2Fe-2S cluster of Pdx and the 4Fe-4S cluster of Fe protein lying at the optimum leading to them having significantly longer lifetimes. Their long lifetimes make them the optimal candidates for long-range electron transfer and as external photosensitizers for other photoactivated chemical reactions like solar hydrogen production. Potential electron-transfer and hole-transfer pathways that possibly facilitate these charge transfers are proposed.
Collapse
Affiliation(s)
- Ziliang Mao
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Shu-Hao Liou
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Nimesh Khadka
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Francis E Jenney
- Georgia Campus, Philadelphia College of Osteopathic Medicine , Suwanee, Georgia 30024, United States
| | - David B Goodin
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Michael W W Adams
- Department of Biochemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Stephen P Cramer
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
8
|
Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:327-347. [PMID: 29129662 DOI: 10.1016/j.bbapap.2017.11.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
NAD(P)H-dependent oxidoreductases catalyze the reduction or oxidation of a substrate coupled to the oxidation or reduction, respectively, of a nicotinamide adenine dinucleotide cofactor NAD(P)H or NAD(P)+. NAD(P)H-dependent oxidoreductases catalyze a large variety of reactions and play a pivotal role in many central metabolic pathways. Due to the high activity, regiospecificity and stereospecificity with which they catalyze redox reactions, they have been used as key components in a wide range of applications, including substrate utilization, the synthesis of chemicals, biodegradation and detoxification. There is great interest in tailoring NAD(P)H-dependent oxidoreductases to make them more suitable for particular applications. Here, we review the main properties and classes of NAD(P)H-dependent oxidoreductases, the types of reactions they catalyze, some of the main protein engineering techniques used to modify their properties and some interesting examples of their modification and application.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ciarán L Kelly
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paweł M Mordaka
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - John T Heap
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
9
|
Johnson EO, Wong LL. Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Catal Sci Technol 2016; 6:7549-7560. [PMID: 28944003 PMCID: PMC5609660 DOI: 10.1039/c6cy01042c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (CYP) enzymes catalyze the insertion of oxygen into carbon-hydrogen bonds and have great potential for enzymatic synthesis. Application development of class I CYPs is hampered by their dependence on two redox partners (a ferredoxin and ferredoxin reductase), slowing catalysis compared to self-sufficient CYPs such as CYP102A1 (P450BM3). Previous attempts to address this have fused all three components in several permutations and geometries, with much reduced activity compared to the native system. We report here the new approach of fusing putidaredoxin reductase (PdR) to the carboxy-terminus of CYP101A1 (P450cam) via a linker peptide and reconstituting camphor hydroxylase activity with free putidaredoxin (Pdx). Initial purification of a P450cam-PdR fusion yielded 2.0% heme incorporation. Co-expression of E. coli ferrochelatase, lengthening the linker from 5 to 20 residues, and altering culture conditions for enzyme production furnished 85% heme content. Fusion co-expression with Pdx gave a functional system with comparable in vivo camphor oxidation activity as the native system. In vitro, the fused system's steady state NADH oxidation rate was two-fold faster than that of the native system. In contrast to the native system, NADH oxidation rates for the fusion enzyme showed non-hyperbolic dependence on Pdx concentration, suggesting a role for the PdR domain; these data were consistent with a kinetic model based on two-site binding of Pdx by P450cam-PdR and inactive dimer formation of the fusion. P450cam-PdR is the first example of a class I P450 fusion that exhibits significantly more favorable behavior than that of the native system.
Collapse
Affiliation(s)
| | - Luet-Lok Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| |
Collapse
|
10
|
Park AK, Kim IS, Do H, Jeon BW, Lee CW, Roh SJ, Shin SC, Park H, Kim YS, Kim YH, Yoon HS, Lee JH, Kim HW. Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica. Sci Rep 2016; 6:33903. [PMID: 27652777 PMCID: PMC5031999 DOI: 10.1038/srep33903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
Ascorbic acid (AsA) maintains redox homeostasis by scavenging reactive oxygen species from prokaryotes to eukaryotes, especially plants. The enzyme monodehydroascorbate reductase (MDHAR) regenerates AsA by catalysing the reduction of monodehydroascorbate, using NADH or NADPH as an electron donor. The detailed recycling mechanism of MDHAR remains unclear due to lack of structural information. Here, we present the crystal structures of MDHAR in the presence of cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), and complexed with AsA as well as its analogue, isoascorbic acid (ISD). The overall structure of MDHAR is similar to other iron-sulphur protein reductases, except for a unique long loop of 63–80 residues, which seems to be essential in forming the active site pocket. From the structural analysis and structure-guided point mutations, we found that the Arg320 residue plays a major substrate binding role, and the Tyr349 residue mediates electron transfer from NAD(P)H to bound substrate via FAD. The enzymatic activity of MDHAR favours NADH as an electron donor over NADPH. Our results show, for the first time, structural insights into this preference. The MDHAR-ISD complex structure revealed an alternative binding conformation of ISD, compared with the MDHAR-AsA complex. This implies a broad substrate (antioxidant) specificity and resulting greater protective ability of MDHAR.
Collapse
Affiliation(s)
- Ae Kyung Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Il-Sup Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Byung Wook Jeon
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Chang Woo Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Soo Jung Roh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Young-Saeng Kim
- Research Institute for Ulleung-do &Dok-do, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yul-Ho Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Han-Woo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
11
|
Rimal H, Lee SW, Lee JH, Oh TJ. Understanding of real alternative redox partner of Streptomyces peucetius DoxA: Prediction and validation using in silico and in vitro analyses. Arch Biochem Biophys 2015; 585:64-74. [PMID: 26334717 DOI: 10.1016/j.abb.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
Abstract
Streptomyces peucetius ATCC27952 contains the cytochrome P450 monoxygenase DoxA that is responsible for the hydroxylation of daunorubicin into doxorubicin. Although S. peucetius ATCC27952 contains several potential redox partners, the most suitable endogenous electron-transport system is still unclear; therefore, we conducted a study of potential redox partners using Accelrys Discovery Studio 3.5. Recombinant DoxA along with its redox partners from S. peucetius FDX1, FDR2, and FDX3, and the putidaredoxin and putidaredoxin reductase from Pseudomonas putida that are essential equivalents of the class I type of bacterial electron-transport system were over-expressed and purified. The successful development of an efficient redox system was achieved by an in vitro enzymatic catalysis reaction with DoxA. The optimal pH for the activation of the heme was 7.6 and the optimal temperature was 30 °C. Our findings suggest a two-fold increase of DoxA activity via the NADH → FDR2 → FDX1 → DoxA pathway for the hydroxylation of the daunorubicin, and indicate that the usage of a native redox partner may increase daunorubicin-derived doxorubicin production due to the inclusion of DoxA.
Collapse
Affiliation(s)
- Hemraj Rimal
- Department of Pharmaceutical Engineering, SunMoon University, #100, Kalsan-ri, Tangjeong-myeon, Asansi, Chungnam 336-708, Republic of Korea
| | - Seung-Won Lee
- Department of Pharmaceutical Engineering, SunMoon University, #100, Kalsan-ri, Tangjeong-myeon, Asansi, Chungnam 336-708, Republic of Korea
| | - Joo-Ho Lee
- Department of Pharmaceutical Engineering, SunMoon University, #100, Kalsan-ri, Tangjeong-myeon, Asansi, Chungnam 336-708, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering, SunMoon University, #100, Kalsan-ri, Tangjeong-myeon, Asansi, Chungnam 336-708, Republic of Korea.
| |
Collapse
|
12
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
13
|
Hollingsworth SA, Poulos TL. Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts. Protein Sci 2014; 24:49-57. [PMID: 25307478 DOI: 10.1002/pro.2583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 11/07/2022]
Abstract
Cytochrome P450cam catalyzes the stereo and regiospecific hydroxylation of camphor to 5-exo-hydroxylcamphor. The two electrons for the oxidation of camphor are provided by putidaredoxin (Pdx), a Fe2 S2 containing protein. Two recent crystal structures of the P450cam-Pdx complex, one solved with the aid of covalent cross-linking and one without, have provided a structural picture of the redox partner interaction. To study the stability of the complex structure and the minor differences between the recent crystal structures, a 100 nanosecond molecular dynamics (MD) simulation of the cross-linked structure, mutated in silico to wild type and the linker molecule removed, was performed. The complex was stable over the course of the simulation though conformational changes including the movement of the C helix of P450cam further toward Pdx allowed for the formation of a number of new contacts at the complex interface that remained stable throughout the simulation. While several minor crystal contacts were lost in the simulation, all major contacts that had been experimentally studied previously were maintained. The equilibrated MD structure contained a mixture of contacts resembling both the cross-linked and noncovalent structures and the newly identified interactions. Finally, the reformation of the P450cam Asp251-Arg186 ion pair in the MD simulation mirrors the ion pair observed in the more promiscuous CYP101D1 and suggests that the Asp251-Arg186 ion pair may be important.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Departments of Chemistry, Pharmaceutical Sciences, and Molecular Biology and Biochemistry, University of California, Irvine, California, 92697
| | | |
Collapse
|
14
|
Hiruma Y, Gupta A, Kloosterman A, Olijve C, Ölmez B, Hass MAS, Ubbink M. Hot-Spot Residues in the Cytochrome P450cam-Putidaredoxin Binding Interface. Chembiochem 2013; 15:80-6. [DOI: 10.1002/cbic.201300582] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Indexed: 11/09/2022]
|
15
|
Hiruma Y, Hass MA, Kikui Y, Liu WM, Ölmez B, Skinner SP, Blok A, Kloosterman A, Koteishi H, Löhr F, Schwalbe H, Nojiri M, Ubbink M. The Structure of the Cytochrome P450cam–Putidaredoxin Complex Determined by Paramagnetic NMR Spectroscopy and Crystallography. J Mol Biol 2013; 425:4353-65. [DOI: 10.1016/j.jmb.2013.07.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
|
16
|
Tripathi S, Li H, Poulos TL. Structural basis for effector control and redox partner recognition in cytochrome P450. Science 2013; 340:1227-30. [PMID: 23744947 DOI: 10.1126/science.1235797] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytochromes P450 catalyze a variety of monooxygenase reactions that require electron transfer from redox partners. Although the structure of many P450s and a small handful of redox partners are known, there is very little structural information available on redox complexes, thus leaving a gap in our understanding on the control of P450-redox partner interactions. We have solved the crystal structure of oxidized and reduced P450cam complexed with its redox partner, putidaredoxin (Pdx), to 2.2 and 2.09 angstroms, respectively. It was anticipated that Pdx would favor closed substrate-bound P450cam, which differs substantially from the open conformer, but instead we found that Pdx favors the open state. These new structures indicate that the effector role of Pdx is to shift P450cam toward the open conformation, which enables the establishment of a water-mediated H-bonded network, which is required for proton-coupled electron transfer.
Collapse
Affiliation(s)
- Sarvind Tripathi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
17
|
Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 2012; 491:478-82. [PMID: 23086143 DOI: 10.1038/nature11541] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/29/2012] [Indexed: 01/13/2023]
Abstract
The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.
Collapse
|
18
|
Warman AJ, Robinson JW, Luciakova D, Lawrence AD, Marshall KR, Warren MJ, Cheesman MR, Rigby SEJ, Munro AW, McLean KJ. Characterization of Cupriavidus metallidurans CYP116B1--a thiocarbamate herbicide oxygenating P450-phthalate dioxygenase reductase fusion protein. FEBS J 2012; 279:1675-93. [PMID: 22356105 DOI: 10.1111/j.1742-4658.2012.08543.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.
Collapse
Affiliation(s)
- Ashley J Warman
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abdalla JAB, Bowen AM, Bell SG, Wong LL, Timmel CR, Harmer J. Characterisation of the paramagnetic [2Fe–2S]+ centre in palustrisredoxin-B (PuxB) from Rhodopseudomonas palustris CGA009: g-matrix determination and spin coupling analysis. Phys Chem Chem Phys 2012; 14:6526-37. [DOI: 10.1039/c2cp24112a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Kenaan C, Zhang H, Shea EV, Hollenberg PF. Uncovering the role of hydrophobic residues in cytochrome P450-cytochrome P450 reductase interactions. Biochemistry 2011; 50:3957-67. [PMID: 21462923 DOI: 10.1021/bi1020748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYP or P450)-mediated drug metabolism requires the interaction of P450s with their redox partner, cytochrome P450 reductase (CPR). In this work, we have investigated the role of P450 hydrophobic residues in complex formation with CPR and uncovered novel roles for the surface-exposed residues V267 and L270 of CYP2B4 in mediating CYP2B4--CPR interactions. Using a combination of fluorescence labeling and stopped-flow spectroscopy, we have investigated the basis for these interactions. Specifically, in order to study P450--CPR interactions, a single reactive cysteine was introduced in to a genetically engineered variant of CYP2B4 (C79SC152S) at each of seven strategically selected surface-exposed positions. Each of these cysteine residues was modified by reaction with fluorescein-5-maleimide (FM), and the CYP2B4-FM variants were then used to determine the K(d) of the complex by monitoring fluorescence enhancement in the presence of CPR. Furthermore, the intrinsic K(m) values of the CYP2B4 variants for CPR were measured, and stopped-flow spectroscopy was used to determine the intrinsic kinetics and the extent of reduction of the ferric P450 mutants to the ferrous P450--CO adduct by CPR. A comparison of the results from these three approaches reveals that the sites on P450 exhibiting the greatest changes in fluorescence intensity upon binding CPR are associated with the greatest increases in the K(m) values of the P450 variants for CPR and with the greatest decreases in the rates and extents of reduced P450--CO formation.
Collapse
Affiliation(s)
- Cesar Kenaan
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
21
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
22
|
Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system. Arch Biochem Biophys 2010; 507:66-74. [PMID: 20816746 DOI: 10.1016/j.abb.2010.08.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/28/2010] [Accepted: 08/31/2010] [Indexed: 11/21/2022]
Abstract
The P450cam monooxygenase system consists of three separate proteins: the FAD-containing, NADH-dependent oxidoreductase (putidaredoxin reductase or Pdr), cytochrome P450cam and the 2Fe2S ferredoxin (putidaredoxin or Pdx), which transfers electrons from Pdr to P450cam. Over the past few years our lab has focused on the interaction between these redox components. It has been known for some time that Pdx can serve as an effector in addition to its electron shuttle role. The binding of Pdx to P450cam is thought to induce structural changes in the P450cam active site that couple electron transfer to substrate hydroxylation. The nature of these structural changes has remained unclear until a particular mutant of P450cam (Leu358Pro) was found to exhibit spectral perturbations similar to those observed in wild type P450cam bound to Pdx. The crystal structure of the L358P variant has provided some important insights on what might be happening when Pdx docks. In addition to these studies, many Pdx mutants have been analyzed to identify regions important for electron transfer. Somewhat surprisingly, we found that Pdx residues predicted to be at the P450cam-Pdx interface play different roles in the reduction of ferric P450cam and the ferrous P450-O(2) complex. More recently we have succeeded in obtaining the structure of a chemically cross-linked Pdr-Pdx complex. This fusion protein represents a valid model for the noncovalent Pdr-Pdx complex as it retains the redox activities of native Pdr and Pdx and supports monooxygenase reactions catalyzed by P450cam. The insights gained from these studies will be summarized in this review.
Collapse
|
23
|
Sevrioukova IF, Poulos TL. Arginines 65 and 310 in putidaredoxin reductase are critical for interaction with putidaredoxin. Biochemistry 2010; 49:5160-6. [PMID: 20524621 DOI: 10.1021/bi100626f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we test the functional validity of the recently determined crystal structure of a covalently linked putidaredoxin reductase (Pdr)-putidaredoxin (Pdx) complex. The structure predicts several surface residues in Pdr as important for complex formation and/or electron transfer (ET). The R65A, R310A, R310E, K339A, N384A, K387A, and K409A mutants of Pdr have been prepared and characterized, and the mutational effects on the kinetics of Pdx reduction during single and steady-state turnover have been assessed. Replacement of Asp384 was found to have no effect on the Pdr-Pdx interaction. The K339A, K387A, and K409A substitutions moderately inhibited the binding affinity and reduction of Pdx, whereas the R65A and R310A mutations lowered the interprotein ET rate by 20-30-fold without perturbing the Pdx association step. The charge reversal on Arg310 had the most profound effect and decreased both the Pdr-to-Pdx ET and partner binding affinity by 100- and 8-fold, respectively. Our findings support the structural data and suggest that (i) the X-ray model is biologically relevant, (ii) arginines 65 and 310 are the key elements required for the formation of a productive ET complex with Pdx, (iii) the C-terminal lysine cluster assists in Pdx docking by fine-tuning Pdr-Pdx interactions to achieve the optimal geometry between the redox centers, and (iv) the basic surface residues in Pdr-like ferredoxin reductases not only define specificity for the redox partner but also may facilitate its dissociation.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.
| | | |
Collapse
|
24
|
Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, Bartlam M, Wong LL, Rao Z. Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J Biol Chem 2010; 285:27372-27384. [PMID: 20576606 DOI: 10.1074/jbc.m110.118349] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 are heme monooxygenases that receive electrons from NADH via Arx, a [2Fe-2S] ferredoxin, and ArR, a ferredoxin reductase. These systems show fast NADH turnovers (k(cat) = 39-91 s(-1)) that are efficiently coupled to product formation. The three-dimensional structures of ArR, Arx, and CYP101D1, which form a physiological class I P450 electron transfer chain, have been resolved by x-ray crystallography. The general structural features of these proteins are similar to their counterparts in other class I systems such as putidaredoxin reductase (PdR), putidaredoxin (Pdx), and CYP101A1 of the camphor hydroxylase system from Pseudomonas putida, and adrenodoxin (Adx) of the mitochondrial steroidogenic CYP11 and CYP24A1 systems. However, significant differences in the proposed protein-protein interaction surfaces of the ferredoxin reductase, ferredoxin, and P450 enzyme are found. There are regions of positive charge on the likely interaction face of ArR and CYP101D1 and a corresponding negatively charged area on the surface of Arx. The [2Fe-2S] cluster binding loop in Arx also has a neutral, hydrophobic patch on the surface. These surface characteristics are more in common with those of Adx than Pdx. The observed structural features are consistent with the ionic strength dependence of the activity.
Collapse
Affiliation(s)
- Wen Yang
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Stephen G Bell
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.
| | - Hui Wang
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Weihong Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nicola Hoskins
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alison Dale
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Mark Bartlam
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.
| | - Luet-Lok Wong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Zihe Rao
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|