1
|
Chen X, Guo C. Simulations of a PKA RIα homodimer reveal cAMP-coupled conformational dynamics of each protomer and the dimer interface with functional implications. Phys Chem Chem Phys 2024; 26:18266-18275. [PMID: 38910447 DOI: 10.1039/d4cp00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Protein kinase A (PKA) is a ubiquitous cAMP-dependent enzyme in mammalian tissues. The inactive PKA holoenzyme disassociates into a homodimer of regulatory (R) subunits and two active catalytic (C) subunits upon cAMP binding to two tandem domains (termed CBD-A and CBD-B) in R subunits. The release of cAMP facilitates reassociation of R and C subunits, resetting PKA to its basal state. The cAMP-mediated structural changes in the activation-termination cycle remain partially understood. The multimeric states of PKA complicate the issue and are particularly less studied. Therefore, we computationally investigated the conformational dynamics of the PKA RIα homodimer in different cAMP-bound states. The absence of cAMP in two CBDs differently affects the conformational dynamics of protomers. Moreover, such disparate responses are extended to the dimer interface constituted by the N-terminal helical sub-domains termed N3A motifs. The removal of cAMP from CBD-A induces large-scale structural changes of individual R subunits towards the holoenzyme state, consistent with previous simulations of a single R subunit. Meanwhile it keeps the structural heterogeneity of the N3A-N3A' dimer interface observed in the fully bound state. By contrast, the removal of cAMP from CBD-B does not affect individual R subunits but alters the conformational space of the N3A-N3A' dimer interface. The cAMP-coupled structural changes of each protomer and conserved conformational space of the N3A-N3A' dimer interface are essential for the transition between the fully cAMP-bound R2 homodimer and the R2C2 holoenzyme as suggested by their crystal structures. Our work provides structural insights into the regulatory mechanism of cAMP in PKA signaling.
Collapse
Affiliation(s)
- Xin Chen
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Adenylate control in cAMP signaling: implications for adaptation in signalosomes. Biochem J 2021; 477:2981-2998. [PMID: 32722762 DOI: 10.1042/bcj20200435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
In cAMP-Protein Kinase A (PKA) signaling, A-kinase anchoring protein scaffolds assemble PKA in close proximity to phosphodiesterases (PDE), kinase-substrates to form signaling islands or 'signalosomes'. In its basal state, inactive PKA holoenzyme (R2:C2) is activated by binding of cAMP to regulatory (R)-subunits leading to dissociation of active catalytic (C)-subunits. PDEs hydrolyze cAMP-bound to the R-subunits to generate 5'-AMP for termination and resetting the cAMP signaling. Mechanistic basis for cAMP signaling has been derived primarily by focusing on the proteins in isolation. Here, we set out to simulate cAMP signaling activation-termination cycles in a signalosome-like environment with PDEs and PKA subunits in close proximity to each other. Using a combination of fluorescence polarization and amide hydrogen exchange mass spectrometry with regulatory (RIα), C-subunit (Cα) and PDE8 catalytic domain, we have tracked movement of cAMP through activation-termination cycles. cAMP signaling operates as a continuum of four phases: (1) Activation and dissociation of PKA into R- and C-subunits by cAMP and facilitated by substrate (2) PDE recruitment to R-subunits (3) Hydrolysis of cAMP to 5'-AMP (4) Reassociation of C-subunit to 5'-AMP-bound-RIα in the presence of excess ATP to reset cAMP signaling to form the inactive PKA holoenzyme. Our results demonstrate that 5'-AMP is not merely a passive hydrolysis end-product of PDE action. A 'ligand-free' state R subunit does not exist in signalosomes as previously assumed. Instead the R-subunit toggles between cAMP- or 5'-AMP bound forms. This highlights, for the first time, the importance of 5'-AMP in promoting adaptation and uncovers adenylate control in cAMP signaling.
Collapse
|
3
|
Ahuja LG, Taylor SS, Kornev AP. Tuning the "violin" of protein kinases: The role of dynamics-based allostery. IUBMB Life 2019; 71:685-696. [PMID: 31063633 PMCID: PMC6690483 DOI: 10.1002/iub.2057] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
The intricacies of allosteric regulation of protein kinases continue to engage the research community. Allostery, or control from a distance, is seen as a fundamental biomolecular mechanism for proteins. From the traditional methods of conformational selection and induced fit, the field has grown to include the role of protein motions in defining a dynamics-based allosteric approach. Harnessing of these continuous motions in the protein to exert allosteric effects can be defined by a "violin" model that focuses on distributions of protein vibrations as opposed to concerted pathways. According to this model, binding of an allosteric modifier causes global redistribution of dynamics in the protein kinase domain that leads to changes in its catalytic properties. This model is consistent with the "entropy-driven allostery" mechanism proposed by Cooper and Dryden in 1984 and does not require, but does not exclude, any major structural changes. We provide an overview of practical implementation of the violin model and how it stands amidst the other known models of protein allostery. Protein kinases have been described as the biomolecules of interest. © 2019 IUBMB Life, 71(6):685-696, 2019.
Collapse
Affiliation(s)
- Lalima G. Ahuja
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Moon TM, Sheehe JL, Nukareddy P, Nausch LW, Wohlfahrt J, Matthews DE, Blumenthal DK, Dostmann WR. An N-terminally truncated form of cyclic GMP-dependent protein kinase Iα (PKG Iα) is monomeric and autoinhibited and provides a model for activation. J Biol Chem 2018; 293:7916-7929. [PMID: 29602907 DOI: 10.1074/jbc.ra117.000647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers.
Collapse
Affiliation(s)
- Thomas M Moon
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405.
| | - Jessica L Sheehe
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Praveena Nukareddy
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405
| | - Lydia W Nausch
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Jessica Wohlfahrt
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Dwight E Matthews
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405
| | - Donald K Blumenthal
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112
| | - Wolfgang R Dostmann
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
6
|
Unidirectional allostery in the regulatory subunit RIα facilitates efficient deactivation of protein kinase A. Proc Natl Acad Sci U S A 2016; 113:E6776-E6785. [PMID: 27791125 DOI: 10.1073/pnas.1610142113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The holoenzyme complex of protein kinase A is in an inactive state; activation involves ordered cAMP binding to two tandem domains of the regulatory subunit and release of the catalytic subunit. Deactivation has been less studied, during which the two cAMPs unbind from the regulatory subunit to allow association of the catalytic subunit to reform the holoenzyme complex. Unbinding of the cAMPs appears ordered as indicated by a large difference in unbinding rates from the two sites, but the cause has remained elusive given the structural similarity of the two tandem domains. Even more intriguingly, NMR data show that allosteric communication between the two domains is unidirectional. Here, we present a mechanism for the unidirectionality, developed from extensive molecular dynamics simulations of the tandem domains in different cAMP-bound forms. Disparate responses to cAMP releases from the two sites (A and B) in conformational flexibility and chemical shift perturbation confirmed unidirectional allosteric communication. Community analysis revealed that the A-site cAMP, by forming across-domain interactions, bridges an essential pathway for interdomain communication. The pathway is impaired when this cAMP is removed but remains intact when only the B-site cAMP is removed. Specifically, removal of the A-site cAMP leads to the separation of the two domains, creating room for binding the catalytic subunit. Moreover, the A-site cAMP, by maintaining interdomain coupling, retards the unbinding of the B-site cAMP and stalls an unproductive pathway of cAMP release. Our work expands the perspective on allostery and implicates functional importance for the directionality of allostery.
Collapse
|
7
|
Schueler-Furman O, Wodak SJ. Computational approaches to investigating allostery. Curr Opin Struct Biol 2016; 41:159-171. [PMID: 27607077 DOI: 10.1016/j.sbi.2016.06.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
Allosteric regulation plays a key role in many biological processes, such as signal transduction, transcriptional regulation, and many more. It is rooted in fundamental thermodynamic and dynamic properties of macromolecular systems that are still poorly understood and are moreover modulated by the cellular context. Here we review the computational approaches used in the investigation of allosteric processes in protein systems. We outline how the models of allostery have evolved from their initial formulation in the sixties to the current views, which more fully account for the roles of the thermodynamic and dynamic properties of the system. We then describe the major classes of computational approaches employed to elucidate the mechanisms of allostery, the insights they have provided, as well as their limitations. We complement this analysis by highlighting the role of computational approaches in promising practical applications, such as the engineering of regulatory modules and identifying allosteric binding sites.
Collapse
Affiliation(s)
- Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University, Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | - Shoshana J Wodak
- VIB Structural Biology Research Center, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
8
|
Abstract
The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.
Collapse
Affiliation(s)
- Jingjing Guo
- School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, People's Republic of China
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
9
|
Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα. PLoS Biol 2015; 13:e1002305. [PMID: 26618408 PMCID: PMC4664472 DOI: 10.1371/journal.pbio.1002305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/22/2015] [Indexed: 01/31/2023] Open
Abstract
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. Protein Kinase A (PKA) is the major receptor for the cAMP secondary messenger in eukaryotes. This study shows how PKA's regulatory subunit dynamically samples a degenerate free energy landscape that controls affinities for the catalytic subunit and cAMP; intra-domain conformational selection by cAMP controls inter-domain interactions and PKA activation. Cyclic adenosine monophosphate (cAMP) is a messenger molecule produced within cells to control cellular metabolism in response to external stimuli. Protein Kinase A (PKA) is the major receptor for cAMP. cAMP binds to tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunits of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A is required for C-subunit inhibition and activation, in RIα CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. However, it is not currently clear how ligand binding and dynamics of CBD-B mediate its gatekeeper function. We comparatively analyzed by Nuclear Magnetic Resonance (NMR) a two-domain construct of the regulatory subunit RIα with no ligand, with cAMP2 bound, and the C-bound form. These data show that both CBDs can exist in a system of uncorrelated conformational selection as both can independently sample activated and inactivated states (in what is known as a nearly degenerate free energy landscape). This explains why both RIα CBDs exhibit a higher cAMP-affinity than other cAMP receptors. Once cAMP has bound, the degeneracy is lost and dissociation of the kinase subunit is promoted through a combination of intra-domain conformational selection and changes in inter-CBD orientation. The proposed model—a double-conformational selection model—provides a general framework to interpret the effect of PKA mutations that have been reported in rare human disorders such as Carney complex and Acrodysostosis.
Collapse
|
10
|
Krishnamurthy S, Moorthy BS, Xin Xiang L, Xin Shan L, Bharatham K, Tulsian NK, Mihalek I, Anand GS. Active site coupling in PDE:PKA complexes promotes resetting of mammalian cAMP signaling. Biophys J 2015; 107:1426-40. [PMID: 25229150 DOI: 10.1016/j.bpj.2014.07.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/03/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022] Open
Abstract
Cyclic 3'5' adenosine monophosphate (cAMP)-dependent-protein kinase (PKA) signaling is a fundamental regulatory pathway for mediating cellular responses to hormonal stimuli. The pathway is activated by high-affinity association of cAMP with the regulatory subunit of PKA and signal termination is achieved upon cAMP dissociation from PKA. Although steps in the activation phase are well understood, little is known on how signal termination/resetting occurs. Due to the high affinity of cAMP to PKA (KD ∼ low nM), bound cAMP does not readily dissociate from PKA, thus begging the question of how tightly bound cAMP is released from PKA to reset its signaling state to respond to subsequent stimuli. It has been recently shown that phosphodiesterases (PDEs) can catalyze dissociation of bound cAMP and thereby play an active role in cAMP signal desensitization/termination. This is achieved through direct interactions with the regulatory subunit of PKA, thereby facilitating cAMP dissociation and hydrolysis. In this study, we have mapped direct interactions between a specific cyclic nucleotide phosphodiesterase (PDE8A) and a PKA regulatory subunit (RIα isoform) in mammalian cAMP signaling, by a combination of amide hydrogen/deuterium exchange mass spectrometry, peptide array, and computational docking. The interaction interface of the PDE8A:RIα complex, probed by peptide array and hydrogen/deuterium exchange mass spectrometry, brings together regions spanning the phosphodiesterase active site and cAMP-binding sites of RIα. Computational docking combined with amide hydrogen/deuterium exchange mass spectrometry provided a model for parallel dissociation of bound cAMP from the two tandem cAMP-binding domains of RIα. Active site coupling suggests a role for substrate channeling in the PDE-dependent dissociation and hydrolysis of cAMP bound to PKA. This is the first instance, to our knowledge, of PDEs directly interacting with a cAMP-receptor protein in a mammalian system, and highlights an entirely new class of binding partners for RIα. This study also highlights applications of structural mass spectrometry combined with computational docking for mapping dynamics in transient signaling protein complexes. Together, these results present a novel and critical role for phosphodiesterases in moderating local concentrations of cAMP in microdomains and signal resetting.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore
| | | | - Lim Xin Xiang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lim Xin Shan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore; Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Boras BW, Kornev A, Taylor SS, McCulloch AD. Using Markov state models to develop a mechanistic understanding of protein kinase A regulatory subunit RIα activation in response to cAMP binding. J Biol Chem 2014; 289:30040-51. [PMID: 25202018 DOI: 10.1074/jbc.m114.568907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein kinase A (PKA) holoenzyme consists of two catalytic (C) subunits and a regulatory (R) subunit dimer (R(2)C(2)). The kinase is activated by the binding of cAMPs to the two cyclic nucleotide binding domains (CBDs), A and B, on each R-subunit. Despite extensive study, details of the allosteric mechanisms underlying the cooperativity of holoenzyme activation remain unclear. Several Markov state models of PKA-RIα were developed to test competing theories of activation for the R(2)C(2) complex. We found that CBD-B plays an essential role in R-C interaction and promotes the release of the first C-subunit prior to the binding to CBD-A. This favors a conformational selection mechanism for release of the first C-subunit of PKA. However, the release of the second C-subunit requires all four cAMP sites to be occupied. These analyses elucidate R-C heterodimer interactions in the cooperative activation of PKA and cAMP binding and represent a new mechanistic model of R(2)C(2) PKA-RIα activation.
Collapse
Affiliation(s)
| | | | | | - Andrew D McCulloch
- From the Departments of Bioengineering, Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
12
|
Kovermann M, Zierold R, Haupt C, Löw C, Balbach J. NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:873-81. [DOI: 10.1016/j.bbapap.2011.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/18/2011] [Accepted: 03/25/2011] [Indexed: 11/26/2022]
|
13
|
Dao KK, Pey AL, Gjerde AU, Teigen K, Byeon IJL, Døskeland SO, Gronenborn AM, Martinez A. The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation. PLoS One 2011; 6:e17602. [PMID: 21394209 PMCID: PMC3048872 DOI: 10.1371/journal.pone.0017602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/30/2011] [Indexed: 11/18/2022] Open
Abstract
Background The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212–216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation.
Collapse
Affiliation(s)
- Khanh K. Dao
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Angel L. Pey
- Facultad de Ciencias, Departamento de Quimica Fisica, Universidad de Granada, Granada, Spain
| | | | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - In-Ja L. Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Angela M. Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|