1
|
Seaton G, Smith H, Brancale A, Westwell AD, Clarkson R. Multifaceted roles for BCL3 in cancer: a proto-oncogene comes of age. Mol Cancer 2024; 23:7. [PMID: 38195591 PMCID: PMC10775530 DOI: 10.1186/s12943-023-01922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
In the early 1990's a group of unrelated genes were identified from the sites of recurring translocations in B-cell lymphomas. Despite sharing the nomenclature 'Bcl', and an association with blood-borne cancer, these genes have unrelated functions. Of these genes, BCL2 is best known as a key cancer target involved in the regulation of caspases and other cell viability mechanisms. BCL3 on the other hand was originally identified as a non-canonical regulator of NF-kB transcription factor pathways - a signaling mechanism associated with important cell outcomes including many of the hallmarks of cancer. Most of the early investigations into BCL3 function have since focused on its role in NF-kB mediated cell proliferation, inflammation/immunity and cancer. However, recent evidence is coming to light that this protein directly interacts with and modulates a number of other signaling pathways including DNA damage repair, WNT/β-catenin, AKT, TGFβ/SMAD3 and STAT3 - all of which have key roles in cancer development, metastatic progression and treatment of solid tumours. Here we review the direct evidence demonstrating BCL3's central role in a transcriptional network of signaling pathways that modulate cancer biology and treatment response in a range of solid tumour types and propose common mechanisms of action of BCL3 which may be exploited in the future to target its oncogenic effects for patient benefit.
Collapse
Affiliation(s)
- Gillian Seaton
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Hannah Smith
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Andrea Brancale
- UCT Prague, Technická 5, 166 28, 6 - Dejvice, IČO: 60461337, Prague, Czech Republic
| | - Andrew D Westwell
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Richard Clarkson
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
2
|
Teng X, Yang T, Yuan B, Yang Y, Liu J, Wang X, Wang Y, Ma T, Yin X, Yu H, Wang S, Huang W. Prognostic analysis of patients with breast cancer based on tumor mutational burden and DNA damage repair genes. Front Oncol 2023; 13:1177133. [PMID: 37350936 PMCID: PMC10282748 DOI: 10.3389/fonc.2023.1177133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Background Breast cancer has a high tumor-specific death rate and poor prognosis. In this study, we aimed to provide a basis for the prognostic risk in patients with breast cancer using significant gene sets selected by analyzing tumor mutational burden (TMB) and DNA damage repair (DDR). Methods Breast cancer genomic and transcriptomic data were obtained from The Cancer Genome Atlas (TCGA). Breast cancer samples were dichotomized into high- and low-TMB groups according to TMB values. Differentially expressed DDR genes between high- and low-TMB groups were incorporated into univariate and multivariate cox regression model to build prognosis model. Performance of the prognosis model was validated in an independently new GEO dataset and evaluated by time-dependent ROC curves. Results Between high- and low-TMB groups, there were 6,424 differentially expressed genes, including 67 DDR genes. Ten genes associated with prognosis were selected by univariate cox regression analysis, among which seven genes constituted a panel to predict breast cancer prognosis. The seven-gene prognostic model, as well as the gene copy numbers are closely associated with tumor-infiltrating immune cells. Conclusion We established a seven-gene prognostic model comprising MDC1, PARP3, PSMB1, PSMB9, PSMD2, PSMD7, and PSMD14 genes, which provides a basis for further exploration of a population-based prediction of prognosis and immunotherapy response in patients with breast cancer.
Collapse
Affiliation(s)
- Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuang Wang
- Department of Cardio Surgery Center, Shandong Second Provincial General Hospital, Jinan, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Wu F, Han X, Liu J, Zhang Z, Yan K, Wang B, Yang L, Zou H, Yang C, Huang W, Jin L, Wang J, Qian F, Niu Z. An ankylosing spondylitis risk variant alters osteoclast differentiation. Rheumatology (Oxford) 2022; 62:1980-1987. [PMID: 36124946 DOI: 10.1093/rheumatology/keac542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To explore whether the variants in non-MHC proteasome gene is associated with ankylosing spondylitis and explain the role of the variant in the disease. METHODS Case-control analysis to identify ankylosing spondylitis predisposition genes; dual-luciferase reporter assay, immunoblot analysis and osteoclastogenesis assays to detect the function of the positive variant. Affected individuals was diagnosed according to the modified New York Criteria by at least two experienced rheumatologists, and rechecked by another rheumatologist. RESULTS The study included 1037 AS patients and 1014 no rheumatic and arthritis disease controls. The main age of AS onset is between 16 and 35 years old. HLA-B27-positive subjects comprised 90.0% of patients. A nonsynonymous SNP rs12717 in proteasome gene PSMB1 significantly associated with ankylosing spondylitis. Individuals with CC genotype had a higher onset risk compared with those with GG/GC genotypes (OR = 1.89, p= 0.0047). We also discovered that PSMB1 regulates the receptor activator of nuclear factor-κB (RANK)/RANK ligand (RANKL) signalling pathway and the disease-associated variant PSMB1-Pro11 significantly inhibits RANKL-induced NF-κB pathway in osteoclast differentiation via the degradation of IKK-β compared with PSMB1-Ala11. RANKL induced osteoclast differentiation was significantly lower in primary monocyte osteoclast precursor from individuals with genotype PSMB131C/31C compared with individuals with genotype PSMB131G/31G. CONCLUSIONS These results reveal a novel understanding of the bone formation and reabsorbing imbalance in AS. The new bone formation phenotype can be attributed to the inhibition of osteoclast differentiation by a more functional PSMB1 gene.
Collapse
Affiliation(s)
- Fangyi Wu
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China
| | - Xuling Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China
| | - Zhenghua Zhang
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kexiang Yan
- Division of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Beilan Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies; Shanghai, China
| | - Lin Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies; Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University; Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine; Shanghai, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies; Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenmin Niu
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University; Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies; Shanghai, China
| |
Collapse
|
5
|
Soukupová J, Bordoni C, Turnham DJ, Yang WW, Seaton G, Gruca A, French R, Lee KY, Varnava A, Piggott L, Clarkson RWE, Westwell AD, Brancale A. The Discovery of a Novel Antimetastatic Bcl3 Inhibitor. Mol Cancer Ther 2021; 20:775-786. [PMID: 33649105 DOI: 10.1158/1535-7163.mct-20-0283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
The development of antimetastatic drugs is an urgent healthcare priority for patients with cancer, because metastasis is thought to account for around 90% of cancer deaths. Current antimetastatic treatment options are limited and often associated with poor long-term survival and systemic toxicities. Bcl3, a facilitator protein of the NF-κB family, is associated with poor prognosis in a range of tumor types. Bcl3 has been directly implicated in the metastasis of tumor cells, yet is well tolerated when constitutively deleted in murine models, making it a promising therapeutic target. Here, we describe the identification and characterization of the first small-molecule Bcl3 inhibitor, by using a virtual drug design and screening approach against a computational model of the Bcl3-NF-kB1(p50) protein-protein interaction. From selected virtual screening hits, one compound (JS6) showed potent intracellular Bcl3-inhibitory activity. JS6 treatment led to reductions in Bcl3-NF-kB1 binding, tumor colony formation, and cancer cell migration in vitro; and tumor stasis and antimetastatic activity in vivo, while being devoid of overt systemic toxicity. These results represent a successful application of in silico screening in the identification of protein-protein inhibitors for novel intracellular targets, and confirm Bcl3 as a potential antimetastatic target.
Collapse
Affiliation(s)
- Jitka Soukupová
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom.,European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Cinzia Bordoni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Daniel J Turnham
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - William W Yang
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Gillian Seaton
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Aleksandra Gruca
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Rhiannon French
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kok Yung Lee
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Athina Varnava
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Luke Piggott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Richard W E Clarkson
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, United Kingdom.
| |
Collapse
|
6
|
Legge DN, Chambers AC, Parker CT, Timms P, Collard TJ, Williams AC. The role of B-Cell Lymphoma-3 (BCL-3) in enabling the hallmarks of cancer: implications for the treatment of colorectal carcinogenesis. Carcinogenesis 2020; 41:249-256. [PMID: 31930327 PMCID: PMC7221501 DOI: 10.1093/carcin/bgaa003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
With its identification as a proto-oncogene in chronic lymphocytic leukaemia and central role in regulating NF-κB signalling, it is perhaps not surprising that there have been an increasing number of studies in recent years investigating the role of BCL-3 (B-Cell Chronic Lymphocytic Leukaemia/Lymphoma-3) in a wide range of human cancers. Importantly, this work has begun to shed light on our mechanistic understanding of the function of BCL-3 in tumour promotion and progression. Here, we summarize the current understanding of BCL-3 function in relation to the characteristics or traits associated with tumourigenesis, termed ‘Hallmarks of Cancer’. With the focus on colorectal cancer, a major cause of cancer related mortality in the UK, we describe the evidence that potentially explains why increased BCL-3 expression is associated with poor prognosis in colorectal cancer. As well as promoting tumour cell proliferation, survival, invasion and metastasis, a key emerging function of this proto-oncogene is the regulation of the tumour response to inflammation. We suggest that BCL-3 represents an exciting new route for targeting the Hallmarks of Cancer; in particular by limiting the impact of the enabling hallmarks of tumour promoting inflammation and cell plasticity. As BCL-3 has been reported to promote the stem-like potential of cancer cells, we suggest that targeting BCL-3 could increase the tumour response to conventional treatment, reduce the chance of relapse and hence improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Danny N Legge
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Adam C Chambers
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Christopher T Parker
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Penny Timms
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Tracey J Collard
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Wu F, Niu Z, Zhou B, Li P, Qian F. PSMB1 Negatively Regulates the Innate Antiviral Immunity by Facilitating Degradation of IKK-ε. Viruses 2019; 11:E99. [PMID: 30682859 PMCID: PMC6409894 DOI: 10.3390/v11020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/13/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Proteasome is a large protein complex, which degrades most intracellular proteins. It regulates numerous cellular processes, including the removal of misfolded or unfolded proteins, cell cycle control, and regulation of apoptosis. However, the function of proteasome subunits in viral immunity has not been well characterized. In this study, we identified PSMB1, a member of the proteasome β subunits (PSMB) family, as a negative regulator of innate immune responses during viral infection. Knockdown of PSMB1 enhanced the RNA virus-induced cytokine and chemokine production. Overexpression of PSMB1 abolished virus-induced activation of the interferon-stimulated response element (ISRE) and interferon beta (IFNβ) promoters. Mechanistically, PSMB1 inhibited the activation of RIG-I-like receptor (RLR) and Toll-like receptor 3 (TLR3) signaling pathways. PSMB1 was induced after viral infection and its interaction with IKK-ε promoted degradation of IKK-ε through the ubiquitin-proteasome system. Collectively, our study demonstrates PSMB1 is an important regulator of innate immune signaling.
Collapse
Affiliation(s)
- Fangyi Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhenmin Niu
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai Academy of Science and Technology, Shanghai 201203, China.
| | - Bin Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Pengcheng Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
Wang Y, Guo Z, Liu M, Zhao K, Feng X, Zheng X, Wang X, Hao H, Guo X, Wang Z. Proteasome subunit beta type 1 interacts directly with Rheb and regulates the cell cycle in Cashmere goat fetal fibroblasts. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1371072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yanfeng Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Zhixin Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Mingtao Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Keyu Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Xue Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Xu Zheng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
- Department of Clinical Laboratory, Hulunbeir Municipal People’s Hospital, Hailar, People’s Republic of China
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
- Department of Clinical Laboratory, Chifeng Municipal Hospital, Chifeng, People’s Republic of China
| | - Huifang Hao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Xudong Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Zhigang Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Rapidly accumulating data indicate that F-box/WD repeat-containing protein 7 (Fbxw7) is one of the most frequently mutated genes in human cancers and regulates a network of crucial oncoproteins. These studies have generated important new insights into tumorigenesis and may soon enable therapies targeting the Fbxw7 pathway. We searched PubMed, Embase, and ISI Web of Science databases (1973-2015, especially recent 5 years) for articles published in the English language using the key words "Fbxw7," "Fbw7," "hCDC4," and "Sel-10," and we reviewed recent developments in the search for Fbxw7. Fbxw7 coordinates the ubiquitin-dependent proteolysis of several critical cellular regulators, thereby controlling essential processes, such as cell cycle, differentiation, and apoptosis. Fbxw7 contains 3 isoforms (Fbxw7α, Fbxw7β, and Fbxw7γ), and they are differently regulated in subtract recognition. Besides those, Fbxw7 activity is controlled at different levels, resulting in specific and tunable regulation of the abundance and activity of its substrates in a variety of human solid tumor types, including glioma malignancy, nasopharyngeal carcinoma, osteosarcoma, melanoma as well as colorectal, lung, breast, gastric, liver, pancreatic, renal, prostate, endometrial, and esophageal cancers. Fbxw7 is strongly associated with tumorigenesis, and the mechanisms and consequences of Fbxw7 deregulation in cancers may soon enable the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Jun Cao
- From the Zhejiang Cancer Research Institute (JC, Z-QL); and Department of Surgical Oncology, Zhejiang Province Cancer Hospital, Zhejiang Cancer Center, Hangzhou, China (JC, M-HG)
| | | | | |
Collapse
|
10
|
Identification of New Hub Genes Associated with Bladder Carcinoma via Bioinformatics Analysis. TUMORI JOURNAL 2015; 101:117-22. [PMID: 25702669 DOI: 10.5301/tj.5000196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2014] [Indexed: 11/20/2022]
Abstract
Aims and Background Bladder carcinoma (BC) is one of the most common malignant cancers worldwide. Several genes related to the mechanism of BC have been studied in recent years, but the current understanding of BC is still rather limited. This study aimed to find new differentially expressed genes (DEGs) associated with the occurrence and development of BC. Methods In this work, we downloaded gene expression data from Gene Expression Omnibus under accession number GSE27448, which included 10 GeneChips from urinary BC tissues and 5 from normal tissues. DEGs were identified by the LIMMA package in R. Then the protein-protein interactions (PPIs) networks were analyzed with the database of Search Tool for the Retrieval of Interacting Genes, and gene ontology (GO) was applied to explore the underlying function of the DEGs using the Database for Annotation, Visualization and Integrated Discovery. Results A total of 2,068 DEGs were found between BC and normal tissues. These genes were involved in 49 functional clusters. The top 10 highest degree nodes, such as POLR2F/2H (DNA directed RNA polymerase II polypeptide F/polypeptide H) and RPS14/15 (ribosomal protein S14/S15), were proven to be hub nodes in the PPIs network. ITGA7 (integrin, alpha 7), GRB14 (growth factor receptor-bound protein 14), CDC20 (cell division cycle 20) and PSMB1 (proteasome subunit, beta type, 1) were significant DEGs identified in the functional clusters. Conclusions Genes such as POLR2F/2H, RPS14/15, ITGA7, GRB14, CDC20 and PSMB1 were forecast to play important roles in the occurrence and progression of BC.
Collapse
|
11
|
Shostak K, Zhang X, Hubert P, Göktuna SI, Jiang Z, Klevernic I, Hildebrand J, Roncarati P, Hennuy B, Ladang A, Somja J, Gothot A, Close P, Delvenne P, Chariot A. NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nat Commun 2014; 5:5232. [PMID: 25366117 PMCID: PMC4241993 DOI: 10.1038/ncomms6232] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
Constitutive activation of EGFR- and NF-κB-dependent pathways is a hallmark of cancer, yet signalling proteins that connect both oncogenic cascades are poorly characterized. Here we define KIAA1199 as a BCL-3- and p65-dependent gene in transformed keratinocytes. KIAA1199 expression is enhanced on human papillomavirus (HPV) infection and is aberrantly expressed in clinical cases of cervical (pre)neoplastic lesions. Mechanistically, KIAA1199 binds Plexin A2 and protects from Semaphorin 3A-mediated cell death by promoting EGFR stability and signalling. Moreover, KIAA1199 is an EGFR-binding protein and KIAA1199 deficiency impairs EGF-dependent Src, MEK1 and ERK1/2 phosphorylations. Therefore, EGFR stability and signalling to downstream kinases requires KIAA1199. As such, KIAA1199 promotes EGF-mediated epithelial-mesenchymal transition (EMT). Taken together, our data define KIAA1199 as an oncogenic protein induced by HPV infection and constitutive NF-κB activity that transmits pro-survival and invasive signals through EGFR signalling.
Collapse
Affiliation(s)
- Kateryna Shostak
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Xin Zhang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Pascale Hubert
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Serkan Ismail Göktuna
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Zheshen Jiang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Iva Klevernic
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Julien Hildebrand
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Patrick Roncarati
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Benoit Hennuy
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] GIGA Transcriptomics Facility, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Aurélie Ladang
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Joan Somja
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - André Gothot
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] GIGA-Infection, Immunity and Inflammation, Department of Medicine/Hematology, University of Liege, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Pierre Close
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Philippe Delvenne
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Experimental Pathology, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Cancer, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| | - Alain Chariot
- 1] Interdisciplinary Cluster for Applied Genoproteomics (GIGA-Research) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [2] Laboratory of Medical Chemistry, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [3] GIGA-Signal Transduction, University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium [4] Walloon Excellence in Life Sciences and Biotechnology (WELBIO) , University of Liege, 1, Avenue de l'ho^pital, CHU, Sart-Tilman, Liege 4000, Belgium
| |
Collapse
|
12
|
Shostak K, Patrascu F, Göktuna SI, Close P, Borgs L, Nguyen L, Olivier F, Rammal A, Brinkhaus H, Bentires-Alj M, Marine JC, Chariot A. MDM2 restrains estrogen-mediated AKT activation by promoting TBK1-dependent HPIP degradation. Cell Death Differ 2014; 21:811-24. [PMID: 24488098 DOI: 10.1038/cdd.2014.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 12/25/2022] Open
Abstract
Restoration of p53 tumor suppressor function through inhibition of its interaction and/or enzymatic activity of its E3 ligase, MDM2, is a promising therapeutic approach to treat cancer. However, because the MDM2 targetome extends beyond p53, MDM2 inhibition may also cause unwanted activation of oncogenic pathways. Accordingly, we identified the microtubule-associated HPIP, a positive regulator of oncogenic AKT signaling, as a novel MDM2 substrate. MDM2-dependent HPIP degradation occurs in breast cancer cells on its phosphorylation by the estrogen-activated kinase TBK1. Importantly, decreasing Mdm2 gene dosage in mouse mammary epithelial cells potentiates estrogen-dependent AKT activation owing to HPIP stabilization. In addition, we identified HPIP as a novel p53 transcriptional target, and pharmacological inhibition of MDM2 causes p53-dependent increase in HPIP transcription and also prevents HPIP degradation by turning off TBK1 activity. Our data indicate that p53 reactivation through MDM2 inhibition may result in ectopic AKT oncogenic activity by maintaining HPIP protein levels.
Collapse
Affiliation(s)
- K Shostak
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - F Patrascu
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - S I Göktuna
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - P Close
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - L Borgs
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Developmental Neurobiology Unit, GIGA-Neurosciences, GIGA-R, University of Liège, Liège, Belgium
| | - L Nguyen
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Developmental Neurobiology Unit, GIGA-Neurosciences, GIGA-R, University of Liège, Liège, Belgium [3] Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - F Olivier
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Animal Facility, University of Liege, CHU, Sart-Tilman, Liège 4000, Belgium
| | - A Rammal
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium
| | - H Brinkhaus
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - M Bentires-Alj
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - J-C Marine
- 1] Center for Human Genetics, KU Leuven, Leuven, Belgium [2] Center for the biology of disease, VIB, KU Leuven, Leuven, Belgium
| | - A Chariot
- 1] Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, University of Liège, Liège, Belgium [2] Unit of Medical Chemistry, GIGA-Signal Transduction, GIGA-R, University of Liège, Liège, Belgium [3] Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| |
Collapse
|
13
|
Zhang X, Paun A, Claudio E, Wang H, Siebenlist U. The tumor promoter and NF-κB modulator Bcl-3 regulates splenic B cell development. THE JOURNAL OF IMMUNOLOGY 2013; 191:5984-92. [PMID: 24244019 DOI: 10.4049/jimmunol.1300611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bcl-3 is an atypical member of the family of IκB proteins. Unlike the classic members, Bcl-3 functions as a nuclear transcriptional cofactor that may, depending on context, promote or suppress genes via association with p50/NF-κB1 or p52/NF-κB2 homodimers. Bcl-3 is also an oncogene, because it is a partner in recurrent translocations in B cell tumors, resulting in deregulated expression. Bcl-3 functions, however, remain poorly understood. We have investigated the role of Bcl-3 in B cells and discovered a previously unknown involvement in the splenic development of these cells. Loss of Bcl-3 in B cells resulted in significantly more marginal zone (MZ) and fewer follicular (FO) B cells. Conversely, transgenic expression of Bcl-3 in B cells generated fewer MZ and more FO B cells. Both Bcl-3(-/-) FO and MZ B cells were more responsive to LPS stimulation compared with their wild-type counterparts, including increased proliferation. By contrast, Bcl-3(-/-) FO B cells were more prone to apoptosis upon BCR stimulation, also limiting their expansion. The data reveal Bcl-3 as a regulator of B cell fate determination, restricting the MZ path and favoring the FO pathway, at least in part, via increased signal-specific survival of the latter, a finding of relevance to its tumorigenic activity.
Collapse
Affiliation(s)
- Xiaoren Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
14
|
Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel) 2013; 4:499-521. [PMID: 24705215 PMCID: PMC3924830 DOI: 10.3390/genes4030499] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic multifactorial disease with a strong genetic component, which, through interactions with specific environmental factors, triggers disease onset. T1D typically manifests in early to mid childhood through the autoimmune destruction of pancreatic β cells resulting in a lack of insulin production. Historically, prior to genome-wide association studies (GWAS), six loci in the genome were fully established to be associated with T1D. With the advent of high-throughput single nucleotide polymorphism (SNP) genotyping array technologies, enabling investigators to perform high-density GWAS, many additional T1D susceptibility genes have been discovered. Indeed, recent meta-analyses of multiple datasets from independent investigators have brought the tally of well-validated T1D disease genes to almost 60. In this mini-review, we address recent advances in the genetics of T1D and provide an update on the latest susceptibility loci added to the list of genes involved in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Chen Y, Yang LN, Cheng L, Tu S, Guo SJ, Le HY, Xiong Q, Mo R, Li CY, Jeong JS, Jiang L, Blackshaw S, Bi LJ, Zhu H, Tao SC, Ge F. Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 2013; 12:2804-19. [PMID: 23824909 DOI: 10.1074/mcp.m112.025882] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marcant A, Denys A, Melchior A, Martinez P, Deligny A, Carpentier M, Allain F. Cyclophilin B Attenuates the Expression of TNF-α in Lipopolysaccharide-Stimulated Macrophages through the Induction of B Cell Lymphoma-3. THE JOURNAL OF IMMUNOLOGY 2012; 189:2023-32. [DOI: 10.4049/jimmunol.1102803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
González-Fernández R, Morales M, Avila J, Martín-Vasallo P. Changes in leukocyte gene expression profiles induced by antineoplastic chemotherapy. Oncol Lett 2012; 3:1341-1349. [PMID: 22783446 DOI: 10.3892/ol.2012.669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/28/2012] [Indexed: 11/06/2022] Open
Abstract
In the present study, we studied changes in gene expression induced by chemotherapy (CT) on normal peripheral blood leukocytes (PBLs), at baseline and following three CT cycles, in order to identify which genes were specifically affected and were potentially useful as biomarkers for a personalised prognosis and follow-up. A PBL subtraction cDNA library was constructed from four patients undergoing CT with paclitaxel and carboplatin (PC). mRNA from the PBLs was isolated prior to the patients receiving the first cycle and following the completion of the third cycle. The library was screened and the expression of the identified genes was studied in PBLs obtained from patients suffering from cancer prior to and following three cycles of PC and a reference group of patients undergoing treatment with Adriamycin-cyclophosphamide (AC). From the 1,200 screened colonies, 65 positive clones showed varied expression intensity and were sequenced; 27 of these were mitochondrial DNA and 38 clones (27 different) were coded for cytosolic and nuclear proteins. The genes that were studied in patients undergoing CT were ATM (ataxia-telangiectasia mutated gene), eIF4B (translation initiation factor 4B), MATR3 (Matrin 3), MORC3 (microrchidia 3), PCMTD2 (protein-L-isoaspartate O-methyltransferase), PDCD10 (programmed cell death gene 10), PSMB1 (proteasome subunit type β), RMND5A (required for meiotic nuclear division 5 homologue A), RUNX2 (runt-related transcription factor 2), SACM1L (suppressor of actin mutations 1-like), TMEM66 (transmembrane protein 66) and ZNF644 (zinc finger protein 644). Certain variations were observed in the expression of the genes that are involved in drug resistance mechanisms, some of which may be secondary to non-desirable effects and others of which may cause the undesired effects of CT. The expression of genes with a dynamic cellular role showed a marked positive correlation, indicating that their upregulation may be involved in a specific pattern of cell survival versus apoptosis in response to the cell damage induced by CT. Whether these CT-induced changes are random or directed in a specific selection-evolution manner needs to be elucidated.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratory of Developmental Biology, Department of Biochemistry and Molecular Biology, University of La Laguna, La Laguna 38201
| | | | | | | |
Collapse
|
18
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
19
|
Maldonado V, Melendez-Zajgla J. Role of Bcl-3 in solid tumors. Mol Cancer 2011; 10:152. [PMID: 22195643 PMCID: PMC3258214 DOI: 10.1186/1476-4598-10-152] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022] Open
Abstract
Bcl-3 is an established oncogene in hematologic malignancies, such as B-cell chronic lymphocytic leukemias. Nevertheless, recent research has shown that it also participates in progression of diverse solid tumors. The present review summarizes the current knowledge of Bcl3 role in solid tumors progression, including some new insights in its possible molecular mechanisms of action.
Collapse
|
20
|
Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. JOURNAL OF AMINO ACIDS 2011; 2011:207691. [PMID: 22312457 PMCID: PMC3268018 DOI: 10.4061/2011/207691] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 01/08/2023]
Abstract
Posttranslational modifications (PTMs) modulate protein function in most eukaryotes and have a ubiquitous role in diverse range of cellular functions. Identification, characterization, and mapping of these modifications to specific amino acid residues on proteins are critical towards understanding their functional significance in a biological context. The interpretation of proteome data obtained from the high-throughput methods cannot be deciphered unambiguously without a priori knowledge of protein modifications. An in-depth understanding of protein PTMs is important not only for gaining a perception of a wide array of cellular functions but also towards developing drug therapies for many life-threatening diseases like cancer and neurodegenerative disorders. Many of the protein modifications like ubiquitination play a decisive role in various drug response(s) and eventually in disease prognosis. Thus, many commonly observed PTMs are routinely tracked as disease markers while many others are used as molecular targets for developing target-specific therapies. In this paper, we summarize some of the major, well-studied protein alterations and highlight their importance in various chronic diseases and normal development. In addition, other promising minor modifications such as SUMOylation, observed to impact cellular dynamics as well as disease pathology, are mentioned briefly.
Collapse
Affiliation(s)
- Tejaswita M Karve
- Department of Biochemistry, Cellular & Molecular Biology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington DC 20057, USA
| | | |
Collapse
|
21
|
Oustwani CS, Tsihlis ND, Vavra AK, Jiang Q, Martinez J, Kibbe MR. Nitric oxide increases lysine 48-linked ubiquitination following arterial injury. J Surg Res 2011; 170:e169-77. [PMID: 21737094 DOI: 10.1016/j.jss.2011.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/01/2011] [Accepted: 05/19/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Proteins are targeted for degradation by the addition of a polyubiquitin chain. Chains of ubiquitin linked via lysine 48 (K48) are associated with protein degradation while chains linked via lysine 63 (K63) are associated with intracellular signaling. We have previously shown that nitric oxide (NO) inhibits neointimal hyperplasia in association with increasing the ubiquitination and degradation of UbcH10. The aim of this study is to characterize the effect of arterial injury and NO on K48- or K63-linked ubiquitination of cellular proteins. METHODS The rat carotid artery balloon injury model was performed. Treatment groups included uninjured, injury alone, injury + proline NONOate (PROLI/NO), and PROLI/NO alone. Arteries were harvested at designated time points and sectioned for immunohistochemical analysis of K48- and K63-linked ubiquitination or homogenized for protein analysis. Vascular smooth muscle cells (VSMC) harvested from rat aortae were exposed to the NO donor diethylenetriamine NONOate (DETA/NO). Protein expression was determined by Western blot analysis, or immunoprecipitation and Western blot analysis. RESULTS Arterial injury increased K48-linked ubiquitination in vivo. The addition of PROLI/NO following injury caused a further increase in K48-linked ubiquitination at 1 and 3 d, however, levels returned to that of injury alone by 2 wk. Interestingly, treatment with PROLI/NO alone increased K48-linked ubiquitination in vivo to levels similar to injury alone. There were lesser or opposite changes in K63-linked ubiquitination in all three treatment groups. DETA/NO increased K48-linked ubiquitination in VSMC in vitro but had minimal effects on K63-linked ubiquitination. Low doses of DETA/NO decreased K48-linked ubiquitination of cyclin A and B, while high doses of DETA/NO increased K48-linked ubiquitination of cyclin A and B. Minimal changes were seen in K63-linked ubiquitination of cyclin A and B in vitro. CONCLUSIONS Arterial injury and NO increased K48-linked ubiquitination in vivo and in vitro. Remarkably, minimal changes were seen in K63-linked ubiquitination. These novel findings provide important insights into the vascular biology of arterial injury and suggest that one mechanism by which NO may prevent neointimal hyperplasia is through regulation of protein ubiquitination.
Collapse
Affiliation(s)
- Chris S Oustwani
- Division of Vascular Surgery and Institute for BioNanotechnology in Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
22
|
Espinosa L, Bigas A, Mulero MC. Alternative nuclear functions for NF-κB family members. Am J Cancer Res 2011; 1:446-59. [PMID: 21984965 PMCID: PMC3186045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 05/31/2023] Open
Abstract
The NF-κB signalling pathway regulates many different biological processes from the cellular level to the whole organism. The majority of these functions are completely dependent on the activation of the cytoplasmic IKK kinase complex that leads to IκB degradation and results in the nuclear translocation of specific NF-κB dimers, which, in general, act as transcription factors. Although this is a well-established mechanism of action, several publications have now demonstrated that some members of this pathway display additional functions in the nucleus as regulators of NF-κB-dependent and independent gene expression. In this review, we compiled and put in context most of the data concerning specific nuclear roles for IKK and IκB proteins.
Collapse
Affiliation(s)
- Lluís Espinosa
- Program in Cancer Research, IMIM-Hospital del Mar Barcelona, Spain
| | | | | |
Collapse
|