1
|
Delgado M, Gallegos Z, Stippec S, McGlynn K, Cobb MH, Whitehurst AW. Testis-specific serine kinase 6 (TSSK6) is abnormally expressed in colorectal cancer and promotes oncogenic behaviors. J Biol Chem 2024; 300:107380. [PMID: 38762178 PMCID: PMC11214309 DOI: 10.1016/j.jbc.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.
Collapse
Affiliation(s)
- Magdalena Delgado
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zachary Gallegos
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Steve Stippec
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen McGlynn
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
2
|
Delgado M, Gallegos Z, McGlynn K, Stippec S, Cobb MH, Whitehurst A. The Cancer Testis Antigen Testis Specific Serine Kinase 6 (TSSK6) is abnormally expressed in colorectal cancer and promotes oncogenic behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574658. [PMID: 38260312 PMCID: PMC10802504 DOI: 10.1101/2024.01.08.574658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete, but abnormally activated in a wide variety of tumors. The CTA, Testis specific serine kinase 6 (TSSK6), is essential for male fertility in mice. Functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage independent growth, invasion and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.
Collapse
|
3
|
Indrischek H, Hammer J, Machate A, Hecker N, Kirilenko B, Roscito J, Hans S, Norden C, Brand M, Hiller M. Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye. eLife 2022; 11:77999. [PMID: 35727138 PMCID: PMC9355568 DOI: 10.7554/elife.77999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.
Collapse
Affiliation(s)
- Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Juliana Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | | |
Collapse
|
4
|
Ureña I, González C, Ramón M, Gòdia M, Clop A, Calvo JH, Carabaño MJ, Serrano M. Exploring the ovine sperm transcriptome by RNAseq techniques. I Effect of seasonal conditions on transcripts abundance. PLoS One 2022; 17:e0264978. [PMID: 35286314 PMCID: PMC8920283 DOI: 10.1371/journal.pone.0264978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding the cell molecular changes occurring as a results of climatic circumstances is crucial in the current days in which climate change and global warming are one of the most serious challenges that living organisms have to face. Sperm are one of the mammals’ cells most sensitive to heat, therefore evaluating the impact of seasonal changes in terms of its transcriptional activity can contribute to elucidate how these cells cope with heat stress events. We sequenced the total sperm RNA from 64 ejaculates, 28 collected in summer and 36 collected in autumn, from 40 Manchega rams. A highly rich transcriptome (11,896 different transcripts) with 90 protein coding genes that exceed an average number of 5000 counts were found. Comparing transcriptome in the summer and autumn ejaculates, 236 significant differential abundance genes were assessed, most of them (228) downregulated. The main functions that these genes are related to sexual reproduction and negative regulation of protein metabolic processes and kinase activity. Sperm response to heat stress supposes a drastic decrease of the transcriptional activity, and the upregulation of only a few genes related with the basic functions to maintain the organisms’ homeostasis and surviving. Rams’ spermatozoids carry remnant mRNAs which are retrospectively indicators of events occurring along the spermatogenesis process, including abiotic factors such as environmental temperature.
Collapse
Affiliation(s)
- Irene Ureña
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | | | - Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, Zaragoza, Spain
| | | | - Magdalena Serrano
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Kortleve D, Coelho RM, Hammerl D, Debets R. Cancer germline antigens and tumor-agnostic CD8+ T cell evasion. Trends Immunol 2022; 43:391-403. [DOI: 10.1016/j.it.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022]
|
6
|
He H, Yu F, Shen W, Chen K, Zhang L, Lou S, Zhang Q, Chen S, Yuan X, Jia X, Zhou Y. The Novel Key Genes of Non-obstructive Azoospermia Affect Spermatogenesis: Transcriptomic Analysis Based on RNA-Seq and scRNA-Seq Data. Front Genet 2021; 12:608629. [PMID: 33732283 PMCID: PMC7959792 DOI: 10.3389/fgene.2021.608629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is one of the most important causes of male infertility. It is mainly characterized by the absence of sperm in semen repeatedly or the number of sperm is small and not fully developed. At present, its pathogenesis remains largely unknown. The goal of this study is to identify hub genes that might affect biomarkers related to spermatogenesis. Using the clinically significant transcriptome and single-cell sequencing data sets on the Gene Expression Omnibus (GEO) database, we identified candidate hub genes related to spermatogenesis. Based on them, we performed Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses, protein-protein interaction (PPI) network analysis, principal component analysis (PCA), cell cluster analysis, and pseudo-chronological analysis. We identified a total of 430 differentially expressed genes, of which three have not been reported related to spermatogenesis (C22orf23, TSACC, and TTC25), and the expression of these three hub genes was different in each type of sperm cells. The results of the pseudo-chronological analysis of the three hub genes indicated that TTC25 was in a low expression state during the whole process of sperm development, while the expression of C22orf23 had two fluctuations in the differentiating spermatogonia and late primary spermatocyte stages, and TSACC showed an upward trend from the spermatogonial stem cell stage to the spermatogenesis stage. Our research found that the three hub genes were different in the trajectory of sperm development, indicating that they might play important roles in different sperm cells. This result is of great significance for revealing the pathogenic mechanism of NOA and further research.
Collapse
Affiliation(s)
- Haihong He
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fan Yu
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wang Shen
- Department of Clinical Laboratory, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Keyan Chen
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lijun Zhang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuang Lou
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qiaomin Zhang
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Siping Chen
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xinhua Yuan
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xingwang Jia
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yiwen Zhou
- Department of Emergency Laboratory, Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
7
|
Salicioni AM, Gervasi MG, Sosnik J, Tourzani DA, Nayyab S, Caraballo DA, Visconti PE. Testis-specific serine kinase protein family in male fertility and as targets for non-hormonal male contraception†. Biol Reprod 2020; 103:264-274. [PMID: 32337545 PMCID: PMC7401350 DOI: 10.1093/biolre/ioaa064] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 11/14/2022] Open
Abstract
Male contraception is a very active area of research. Several hormonal agents have entered clinical trials, while potential non-hormonal targets have been brought to light more recently and are at earlier stages of development. The general strategy is to target genes along the molecular pathways of sperm production, maturation, or function, and it is predicted that these novel approaches will hopefully lead to more selective male contraceptive compounds with a decreased side effect burden. Protein kinases are known to play a major role in signaling events associated with sperm differentiation and function. In this review, we focus our analysis on the testis-specific serine kinase (TSSK) protein family. We have previously shown that members of the family of TSSKs are postmeiotically expressed in male germ cells and in mature mammalian sperm. The restricted postmeiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggests that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the Tssk6 knockout (KO) mice and of the double Tssk1 and Tssk2 KO mice and by the male subfertile phenotype observed in a Tssk4 KO mouse model.
Collapse
Affiliation(s)
- Ana M Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - María G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
| | - Julian Sosnik
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Darya A Tourzani
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Biotechnology Training Program, University of Massachusetts, Amherst, MA, USA
| | - Saman Nayyab
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Diego A Caraballo
- IFIBYNE-CONICET, Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Integrated Sciences Building 427S, 661 North Pleasant Street, Amherst MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
8
|
Jha KN, Tripurani SK, Johnson GR. TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci 2017; 130:1835-1844. [PMID: 28389581 DOI: 10.1242/jcs.202721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022] Open
Abstract
Spermiogenesis includes transcriptional silencing, chromatin condensation and extensive morphological changes as spermatids transform into sperm. Chromatin condensation involves histone hyperacetylation, transitory DNA breaks, histone H2AX (also known as H2AFX) phosphorylation at Ser139 (γH2AX), and replacement of histones by protamines. Previously, we have reported that the spermatid protein kinase TSSK6 is essential for fertility in mice, but its specific role in spermiogenesis is unknown. Here, we show that TSSK6 expression is spatiotemporally coincident with γH2AX formation in the nuclei of developing mouse spermatids. RNA-sequencing analysis demonstrates that genetic ablation of Tssk6 does not impact gene expression or silencing in spermatids. However, loss of TSSK6 blocks γH2AX formation, even though the timing and level of the transient DNA breaks is unaltered. Further, Tssk6-knockout sperm contained increased levels of histones H3 and H4, and protamine 2 precursor and intermediate(s) indicative of a defective histone-to-protamine transition. These results demonstrate that TSSK6 is required for γH2AX formation during spermiogenesis, and also link γH2AX to the histone-to-protamine transition and male fertility.
Collapse
Affiliation(s)
- Kula N Jha
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Swamy K Tripurani
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Gibbes R Johnson
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
9
|
Xue Z, Wu X, Chen X, Luo Q. MT3-MMP down-regulation promotes tumorigenesis and correlates to poor prognosis in esophageal squamous cell carcinoma. Cancer Med 2016; 5:2459-68. [PMID: 27292876 PMCID: PMC5055189 DOI: 10.1002/cam4.790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 01/13/2023] Open
Abstract
The membrane‐type matrix metalloproteinases (MT‐MMPs) play an important role in degrading the extracellular matrix (ECM) and facilitating protease‐dependent tumor progression and invasion. Here, we report that unlike MT1‐MMP, MT3‐MMP was down‐regulated in esophageal squamous cell carcinoma (ESCC) as detected by real‐time PCR (qPCR), Western blot analysis, and immunohistochemistry (IHC). Down‐regulation of MT3‐MMP was observed at protein level in 66.3% of ESCC specimens (by IHC, n = 86) for routine pathologic diagnosis, as well as at mRNA level in 63.3% of surgically resected ESCC tumors paired with surrounding nontumor tissues (by qPCR, n = 30). Notably, MT3‐MMP down‐regulation significantly correlated with lymph node metastasis and poor overall survival of patients with ESCC (median 5‐year survival = 50.69 vs. 30.77 months for patients with MT3‐MMP‐negative and ‐positive ESCC, respectively). Mechanistically, MT3‐MMP negatively regulated proliferation, colony formation, and migration of ESCC cells, in association with cell cycle arrest at G1, due to up‐regulation of p21Cip1 and p27Kip1. Together, as a tumor suppressor in ESCC, MT3‐MMP down‐regulation represents an unfavorable factor for prognosis of patients with ESCC.
Collapse
Affiliation(s)
- Zengfu Xue
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Xiumin Wu
- Department of Pharmacy, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiong Chen
- Department of Medical Oncology, The Affiliated Dongfang Hospital of Xiamen University, Fuzhou, Fujian, China
| | - Qi Luo
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Jha KN, Coleman AR, Wong L, Salicioni AM, Howcroft E, Johnson GR. Heat shock protein 90 functions to stabilize and activate the testis-specific serine/threonine kinases, a family of kinases essential for male fertility. J Biol Chem 2013; 288:16308-16320. [PMID: 23599433 DOI: 10.1074/jbc.m112.400978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spermiogenesis is characterized by a profound morphological differentiation of the haploid spermatid into spermatozoa. The testis-specific serine/threonine kinases (TSSKs) comprise a family of post-meiotic kinases expressed in spermatids, are critical to spermiogenesis, and are required for male fertility in mammals. To explore the role of heat shock protein 90 (HSP90) in regulation of TSSKs, the stability and catalytic activity of epitope-tagged murine TSSKs were assessed in 293T and COS-7 cells. TSSK1, -2, -4, and -6 (small serine/threonine kinase) were all found to associate with HSP90, and pharmacological inhibition of HSP90 function using the highly specific drugs 17-AAG, SNX-5422, or NVP-AUY922 reduced TSSK protein levels in cells. The attenuation of HSP90 function abolished the catalytic activities of TSSK4 and -6 but did not significantly alter the specific activities of TSSK1 and -2. Inhibition of HSP90 resulted in increased TSSK ubiquitination and proteasomal degradation, indicating that HSP90 acts to control ubiquitin-mediated catabolism of the TSSKs. To study HSP90 and TSSKs in germ cells, a mouse primary spermatid culture model was developed and characterized. Using specific antibodies against murine TSSK2 and -6, it was demonstrated that HSP90 inhibition resulted in a marked decrease of the endogenous kinases in spermatids. Together, our findings demonstrate that HSP90 plays a broad and critical role in stabilization and activation of the TSSK family of protein kinases.
Collapse
Affiliation(s)
- Kula N Jha
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892.
| | - Alyssa R Coleman
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Lily Wong
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Ana M Salicioni
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Elizabeth Howcroft
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892
| | - Gibbes R Johnson
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892.
| |
Collapse
|
11
|
Bao J, Wang L, Lei J, Hu Y, Liu Y, Shen H, Yan W, Xu C. STK31(TDRD8) is dynamically regulated throughout mouse spermatogenesis and interacts with MIWI protein. Histochem Cell Biol 2011; 137:377-89. [PMID: 22205278 DOI: 10.1007/s00418-011-0897-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2011] [Indexed: 01/01/2023]
Abstract
Tudor-domain-containing proteins (TDRDs) are suggested to be critical regulators of germinal granules assembly involved in Piwi-interacting RNAs (piRNAs)-mediated pathways, of which associated components and the underlying functional mechanisms, however, remain to be elucidated. We herein characterized the expression pattern of STK31, a member of TDRDs subfamily (also termed as TDRD8), throughout spermatogenesis during mouse postnatal development. RT-PCR and Western blot verified its preferential expression in testis, but not in any other somatic tissues, in addition to embryonic stem cells. Immunofluorescent staining demonstrated that STK31 was confined to granules-like structures in mid-to-late spermatocyte cytoplasm and to acrosomal cap starting at steps 7-8 of spermatids. Furthermore, STK31 retained its localization to equatorial segment of acrosome during epididymal maturation, capacitation, and acrosome reaction. Co-immunoprecipitation assay in vivo and in vitro confirmed MIWI is a bona fide partner of STK31 in mice testes, in combination with LC/MS identification. We also discovered a group of heat shock proteins specifically associated with STK31 in vivo. Our findings suggest mouse STK31 could be a potential nuage-associated protein in the cytoplasm of mid-to-late spermatocytes and play pivotal roles related to fertilization.
Collapse
Affiliation(s)
- Jianqiang Bao
- Shanghai Key Laboratory for Reproductive Medicine, Department of Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|