1
|
Nlp promotes autophagy through facilitating the interaction of Rab7 and FYCO1. Signal Transduct Target Ther 2021; 6:152. [PMID: 33859171 PMCID: PMC8050283 DOI: 10.1038/s41392-021-00543-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is the main degradation pathway to eliminate long-lived and aggregated proteins, aged or malfunctioning organelles, which is essential for the intracellular homeostasis and prevention of malignant transformation. Although the processes of autophagosome biogenesis have been well illuminated, the mechanism of autophagosome transport remains largely unclear. In this study, we demonstrated that the ninein-like protein (Nlp), a well-characterized centrosomal associated protein, was able to modulate autophagosome transport and facilitate autophagy. During autophagy, Nlp colocalized with autophagosomes and physically interacted with autophagosome marker LC3, autophagosome sorting protein Rab7 and its downstream effector FYCO1. Interestingly, Nlp enhanced the interaction between Rab7 and FYCO1, thus accelerated autophagic flux and the formation of autophagolysosomes. Furthermore, compared to the wild-type mice, NLP deficient mice treated with chemical agent DMBA were prone to increased incidence of hepatomegaly and liver cancer, which were tight associated with the hepatic autophagic defect. Taken together, our findings provide a new insight for the first time that the well-known centrosomal protein Nlp is also a new regulator of autophagy, which promotes the interaction of Rab7 and FYCO1 and facilitates the formation of autophagolysosome.
Collapse
|
2
|
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, Zong B, Liu S. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132:110924. [PMID: 33128942 DOI: 10.1016/j.biopha.2020.110924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumors, but it is not clear whether this is a cause or a consequence of cancer. The centrosome amplification observed in tumor cells may be explained by a series of events, such as failure of cell division, dysregulation of centrosome cycle checkpoints, and de novo centriole biogenesis disorder. The formation and progression of breast cancer are characterized by genomic abnormality. The centrosomes in breast cancer cells show characteristic structural aberrations, caused by centrosome amplification, which include: an increase in the number and volume of centrosomes, excessive increase of pericentriolar material (PCM), inappropriate phosphorylation of centrosomal molecular, and centrosome clustering formation induced by the dysregulation of important genes. The mechanism of intracellular centrosome amplification, the impact of which on breast cancer and the latest breast cancer target treatment options for centrosome amplification are exhaustively elaborated in this review.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jiao Tian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Chi Qu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Yang Peng
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jinwei Lei
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Lu Sun
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Beige Zong
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Hsu WH, Wang WJ, Lin WY, Huang YM, Lai CC, Liao JC, Chen HC. Adducin-1 is essential for spindle pole integrity through its interaction with TPX2. EMBO Rep 2018; 19:embr.201745607. [PMID: 29925526 PMCID: PMC6073210 DOI: 10.15252/embr.201745607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
Bipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin‐binding protein adducin‐1 (ADD1) is phosphorylated at S726 during mitosis. S726‐phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette‐like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re‐expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.
Collapse
Affiliation(s)
- Wen-Hsin Hsu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Min Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Hong-Chen Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
4
|
Li J, Chen J, Xue L, Zhan Q. Transcriptional activation of Nlp by estrogen-ERα in breast cancer. Sci Bull (Beijing) 2017; 62:1445-1454. [PMID: 36659394 DOI: 10.1016/j.scib.2017.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/03/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Estrogen Receptor-α (ERα) is the key transcription factor that regulates cell proliferation and homeostasis. In this pathway, estrogen plays an important role in genomic instability and cell cycle regulation processes and the mechanisms of its action are multifaceted. In this study, we showed that estrogen regulates genomic instability through promoting the expression of Nlp, a BRCA1-associated centrosomal protein which is involved in microtubule nucleation, spindle formation, chromosomal missegregation and abnormal cytokinesis. We demonstrated that the expression of Nlp is strongly associated with ERα and FOXA1 level in clinical breast cancer samples with poor clinical outcomes to breast cancer patients. Addition of estrogen in the ER-positive breast cancer cells resulted in elevation of NLP mRNA. Significantly, we identified that estrogen-ERα is capable of regulating Nlp expression through specifically binding ERα to the proximal region and the Estrogen Responsive Elements (ERE) enhancer in the distal region of NLP gene. Reporter assays demonstrated that estrogen directly activated Nlp promoter. ChIP assay results showed that E2-ERα directly bound to the EREs of Nlp. Therefore, overexpression of Nlp in breast cancer exhibits a hormone-dependent pattern, and estrogen participates in the regulation of genome instability and cell cycle in breast cancer cells partially through transcriptional activation of NLP gene. Overexpression of Nlp enhances the malignant progression of ERα-positive breast cancer cells in vitro, whereas knockdown of Nlp suppresses this biological effects in ERα-positive breast cancer cells. ERα/Nlp axis may serve as a promising target against breast cancer.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China
| | - Liyan Xue
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China; Laboratory of Molecular Oncology, Peking University Cancer Hospital, Beijing 100142, China.
| |
Collapse
|
5
|
Mitotic regulator Nlp interacts with XPA/ERCC1 complexes and regulates nucleotide excision repair (NER) in response to UV radiation. Cancer Lett 2016; 373:214-21. [PMID: 26805762 DOI: 10.1016/j.canlet.2016.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Cellular response to DNA damage, including ionizing radiation (IR) and UV radiation, is critical for the maintenance of genomic fidelity. Defects of DNA repair often result in genomic instability and malignant cell transformation. Centrosomal protein Nlp (ninein-like protein) has been characterized as an important cell cycle regulator that is required for proper mitotic progression. In this study, we demonstrate that Nlp is able to improve nucleotide excision repair (NER) activity and protects cells against UV radiation. Upon exposure of cells to UVC, Nlp is translocated into the nucleus. The C-terminus (1030-1382) of Nlp is necessary and sufficient for its nuclear import. Upon UVC radiation, Nlp interacts with XPA and ERCC1, and enhances their association. Interestingly, down-regulated expression of Nlp is found to be associated with human skin cancers, indicating that dysregulated Nlp might be related to the development of human skin cancers. Taken together, this study identifies mitotic protein Nlp as a new and important member of NER pathway and thus provides novel insights into understanding of regulatory machinery involved in NER.
Collapse
|
6
|
Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene 2015; 35:2711-22. [PMID: 26364601 PMCID: PMC4893635 DOI: 10.1038/onc.2015.332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022]
Abstract
Structural centrosome aberrations are frequently observed in early stage carcinomas, but their role in malignant transformation is poorly understood. Here, we examined the impact of overexpression of Ninein-like protein (Nlp) on the architecture of polarized epithelia in three-dimensional mammospheres. When Nlp was overexpressed to levels resembling those seen in human tumors, it formed striking centrosome-related bodies (CRBs), which sequestered Ninein and affected the kinetics of microtubule (MT) nucleation and release. In turn, the profound reorganization of the MT cytoskeleton resulted in mislocalization of several adhesion and junction proteins as well as the tumor suppressor Scribble, resulting in the disruption of epithelial polarity, cell-cell interactions and mammosphere architecture. Remarkably, cells harboring Nlp-CRBs displayed an enhanced proliferative response to epidermal growth factor. These results demonstrate that structural centrosome aberrations cause not only the disruption of epithelial polarity but also favor overproliferation, two phenotypes typically associated with human carcinomas.
Collapse
|
7
|
Sun DAQ, Wang Y, Liu DG. Overexpression of hnRNPC2 induces multinucleation by repression of Aurora B in hepatocellular carcinoma cells. Oncol Lett 2013; 5:1243-1249. [PMID: 23599772 PMCID: PMC3629224 DOI: 10.3892/ol.2013.1167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/26/2012] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous ribonuclear protein C2 (hnRNPC2), an RNA binding protein, is a component of hnRNPC which is upregulated in many tumors. Multinucleation exists in many tumors and is positively correlated with tumor grade. To uncover the correlation between hnRNPC2 and multi-nucleation in hepatocellular carcinoma SMMC-7721 cells, we constructed a pEGFP-hnRNPC2 vector and transfected it into cancer cells. Our results revealed that overexpression of hnRNPC2 induced multinucleation in SMMC-7721 cells. Tracking tests indicated that the induced multinucleated cells were unable to recover to mononuclear cells and finally died as a result of defects in cell division. Furthermore, Aurora B, which was localized at the midbody and plays a role in cytokinesis, was repressed in hnRNPC2-overexpressing cells, whose knockdown by RNA interference also induced multinucleation in SMMC-7721 cells. Quantitative polymerase chain reaction (qPCR) and mRNA-protein co-immunoprecipitation results revealed that Aurora B mRNA did not decrease in hnRNPC2-overexpressing cells, instead it bound more hnRNPC2 and less eIF4E, an mRNA cap binding protein and translational initiation factor. Moreover, hnRNPC2 bound more eIF4E in hnRNPC2-overexpressing cells. These results indicate that hnRNPC2 repressed Aurora B binding with eIF4F, which must bind with Aurora B mRNA in order to initiate its translation. This induced multinucleation in hepatocellular carcinoma cells. In addition, hnRNPC2 accelerated hepatocellular carcinoma cell proliferation. Collectively, these data suggest that hnRNPC2 may be a potential target for hepatocellular carcinoma cell diagnosis and treatment.
Collapse
Affiliation(s)
- DA-Quan Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | | | | |
Collapse
|
8
|
Kersten FF, van Wijk E, Hetterschijt L, Bauβ K, Peters TA, Aslanyan MG, van der Zwaag B, Wolfrum U, Keunen JE, Roepman R, Kremer H. The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically. Cilia 2012; 1:2. [PMID: 23351521 PMCID: PMC3541543 DOI: 10.1186/2046-2530-1-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 04/25/2012] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED BACKGROUND Mutations in the gene for Usher syndrome 2A (USH2A) are causative for non-syndromic retinitis pigmentosa and Usher syndrome, a condition that is the most common cause of combined deaf-blindness. To gain insight into the molecular pathology underlying USH2A-associated retinal degeneration, we aimed to identify interacting proteins of USH2A isoform B (USH2AisoB) in the retina. RESULTS We identified the centrosomal and microtubule-associated protein sperm-associated antigen (SPAG)5 in the retina. SPAG5 was also found to interact with another previously described USH2AisoB interaction partner: the centrosomal ninein-like protein NINLisoB. Using In situ hybridization, we found that Spag5 was widely expressed during murine embryonic development, with prominent signals in the eye, cochlea, brain, kidney and liver. SPAG5 expression in adult human tissues was detected by quantitative PCR, which identified expression in the retina, brain, intestine, kidney and testis. In the retina, Spag5, Ush2aisoB and NinlisoB were present at several subcellular structures of photoreceptor cells, and colocalized at the basal bodies. CONCLUSIONS Based on these results and on the suggested roles for USH proteins in vesicle transport and providing structural support to both the inner ear and the retina, we hypothesize that SPAG5, USH2AisoB and NINLisoB may function together in microtubule-based cytoplasmic trafficking of proteins that are essential for cilium formation, maintenance and/or function.
Collapse
Affiliation(s)
- Ferry Fj Kersten
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Komlodi-Pasztor E, Sackett DL, Fojo AT. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale. Clin Cancer Res 2012; 18:51-63. [PMID: 22215906 DOI: 10.1158/1078-0432.ccr-11-0999] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although they have been advocated with an understandable enthusiasm, mitosis-specific agents such as inhibitors of mitotic kinases and kinesin spindle protein have not been successful clinically. These drugs were developed as agents that would build on the success of microtubule-targeting agents while avoiding the neurotoxicity that encumbers drugs such as taxanes and vinca alkaloids. The rationale for using mitosis-specific agents was based on the thesis that the clinical efficacy of microtubule-targeting agents could be ascribed to the induction of mitotic arrest. However, the latter concept, which has long been accepted as dogma, is likely important only in cell culture and rapidly growing preclinical models, and irrelevant in patient tumors, where interference with intracellular trafficking on microtubules is likely the principal mechanism of action. Here we review the preclinical and clinical data for a diverse group of inhibitors that target mitosis and identify the reasons why these highly specific, myelosuppressive compounds have failed to deliver on their promise.
Collapse
Affiliation(s)
- Edina Komlodi-Pasztor
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1906, USA
| | | | | |
Collapse
|
10
|
van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA. Cell division control by the Chromosomal Passenger Complex. Exp Cell Res 2012; 318:1407-20. [PMID: 22472345 DOI: 10.1016/j.yexcr.2012.03.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.
Collapse
Affiliation(s)
- Maike S van der Waal
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
11
|
Kim DS, Hahn Y. Identification of novel phosphorylation modification sites in human proteins that originated after the human-chimpanzee divergence. ACTA ACUST UNITED AC 2011; 27:2494-501. [PMID: 21775310 DOI: 10.1093/bioinformatics/btr426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MOTIVATION Phosphorylation modifications of specific protein residues are involved in a wide range of biological processes such as modulation of intracellular signal networks. Here, we present the development and application of a bioinformatics procedure for systematic identification of human-specific phosphorylation sites in proteins that may have occurred after the human-chimpanzee divergence. RESULTS We collected annotated human phosphorylation sites and compared each site to orthologous mammalian proteins across taxa including chimpanzee, orangutan, rhesus macaque, marmoset, mouse, dog, cow, elephant, opossum and platypus. We identified 37 human-specific gains of annotated phosphorylation sites in 35 proteins: 22 serines, 12 threonines and 3 tyrosines. The novel phosphorylation sites are situated in highly conserved segments of the protein. Proteins with novel phosphorylation sites are involved in crucial biological processes such as cell division (AURKB, CASC5, MKI67 and PDCD4) and chromatin remodeling (HIRA, HIRIP3, HIST1H1T, NAP1L4 and LRWD1). Modified phosphorylatable residues produce novel target sites for protein kinases such as cyclin-dependent kinases and casein kinases, possibly resulting in rewiring and fine-tuning of phosphorylation regulatory networks. The potential human-specific phosphorylation sites identified in this study are useful as candidates for functional analysis to identify novel phenotypes in humans. CONTACT hahny@cau.ac.kr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dong Seon Kim
- School of Biological Sciences (BK21 Program) and Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|
12
|
Li J, Zhan Q. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis. Br J Cancer 2011; 104:1523-8. [PMID: 21505454 PMCID: PMC3101908 DOI: 10.1038/bjc.2011.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.
Collapse
Affiliation(s)
- J Li
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | |
Collapse
|