1
|
Niechoda A, Milewska K, Roslan J, Ejsmont K, Holownia A. Cell cycle-specific phosphorylation of p53 protein in A549 cells exposed to cisplatin and standardized air pollutants. Front Physiol 2023; 14:1238150. [PMID: 37645562 PMCID: PMC10460999 DOI: 10.3389/fphys.2023.1238150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Exposure to particulate matter is associated with DNA damage and the risk of lung cancer. Protein p53 is activated by multi-site phosphorylation in the early stages of DNA damage and affects cell outcome. Our study aimed to assess the effect of (100 µg/mL-1/24 h) standardized air pollutants: carbon black (CB), urban dust (UD), and nanoparticle carbon black (NPCB) on cell cycle, DNA damage and 53 phosphorylation at Ser 9, Ser 20, Ser 46, and Ser 392 in proliferating and quiescent A549 cells and in cells that survived cisplatin (CisPT) exposure. Phosphorylated p53 was quantified in cell subpopulations by flow cytometry using specific fluorochrome-tagged monoclonal antibodies and analysis of bivariate fluorescence distribution scatterplots. CisPT, UD and NPCB increased site-specific p53 phosphorylation producing unique patterns. NPCB activated all sites irrespectively on the cell cycle, while the UD was more selective. p53 Ser 9-P and p53 Ser 20-P positively correlated with the numbers of CisPT-treated cells at G0/G1, and NPCB and NPCB + CisPT produced a similar effect. A positive correlation and integrated response were also found between Ser 20-P and Ser 392-P in resting A549 cells treated with NPCB and CisPT but not UD. Interdependence between the expression of p53 phosphorylated at Ser 20, and Ser 392 and cell cycle arrest show that posttranslational alterations are related to functional activation. Our data suggest that p53 protein phosphorylation in response to specific DNA damage is driven by multiple independent and integrated pathways to produce functional activation critical in cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Kubra KT, Barabutis N. P53 in endothelial function and unfolded protein response regulation. Cell Biol Int 2022; 46:2257-2261. [PMID: 35998257 PMCID: PMC9669132 DOI: 10.1002/cbin.11891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 12/16/2022]
Abstract
Vascular barrier dysfunction due to endothelial hyperpermeability has been associated with the pathophysiology of sepsis and severe lung injury, which may inflict acute respiratory distress syndrome (ARDS). Our group is focused on the mechanisms operating towards the regulation of endothelial permeability, to contribute in the development of efficient and targeted countermeasures against ARDS. Unfortunately, the number of ARDS-related deaths in the intensive care units has dramatically increased during the COVID-19 era. The findings described herein inform the corresponding scientific and medical community on the relation of P53 and stress responses in barrier function.
Collapse
Affiliation(s)
- Khadeja -Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
3
|
Leipart V, Halskau Ø, Amdam GV. How Honey Bee Vitellogenin Holds Lipid Cargo: A Role for the C-Terminal. Front Mol Biosci 2022; 9:865194. [PMID: 35755821 PMCID: PMC9219001 DOI: 10.3389/fmolb.2022.865194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Vitellogenin (Vg) is a phylogenetically broad glycolipophosphoprotein. A major function of this protein is holding lipid cargo for storage and transportation. Vg has been extensively studied in honey bees (Apis mellifera) due to additional functions in social traits. Using AlphaFold and EM contour mapping, we recently described the protein structure of honey bee Vg. The full-length protein structure reveals a large hydrophobic lipid binding site and a well-defined fold at the C-terminal region. Now, we outline a shielding mechanism that allows the C-terminal region of Vg to cover a large hydrophobic area exposed in the all-atom model. We propose that this C-terminal movement influences lipid molecules' uptake, transport, and delivery. The mechanism requires elasticity in the Vg lipid core as described for homologous proteins in the large lipid transfer protein (LLTP) superfamily to which Vg belongs. Honey bee Vg has, additionally, several structural arrangements that we interpret as beneficial for the functional flexibility of the C-terminal region. The mechanism proposed here may be relevant for the Vg molecules of many species.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Gro V. Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Papaleo E. Investigating Conformational Dynamics and Allostery in the p53 DNA-Binding Domain Using Molecular Simulations. Methods Mol Biol 2021; 2253:221-244. [PMID: 33315226 DOI: 10.1007/978-1-0716-1154-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The p53 tumor suppressor is a multifaceted context-dependent protein, which is involved in multiple cellular pathways, with the ability to either keep the cells alive or to kill them through mechanisms such as apoptosis. To complicate this picture, cancer cells that express mutant p53 becomes addicted to the mutant activity, so that the mutant variant features a myriad of gain-of-function activities, opening different venues for therapy. This makes essential to think outside the box and apply new approaches to the study of p53 structure-(mis)function relationship to find new critical components of its pathway or to understand how known parts are interconnected, compete, or cooperate. In this context, I will here illustrate how to integrate different computational methods to the identification of possible allosteric effects transmitted from the DNA binding interface of p53 to regions for cofactor recruitment. The protocol can be extended to any other cases of study. Indeed, it does not necessarily apply only to the study of DNA-induced effects, but more broadly to the investigation of long-range effects induced by a biological partner that binds to a biomolecule of interest.
Collapse
Affiliation(s)
- Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
5
|
Li Y, Chai W, Min J, Ye Z, Tong X, Qi D, Liu W, Luo E, Li J, Ye X. Neddylation of M1 negatively regulates the replication of influenza A virus. J Gen Virol 2020; 101:1242-1250. [PMID: 33016861 DOI: 10.1099/jgv.0.001503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Post-translational modification plays a critical role in viral replication. Previously we reported that neddylation of PB2 of influenza A virus (IAV) can inhibit viral replication. However, we found that NEDD8 overexpression can still inhibit the replication of PB2 K699R mutant viruses, implying that other viral protein(s) can be neddylated. In this study, we revealed that M1 of IAV can also be modified by NEDD8. We found that the E3 ligase HDM2 significantly promotes M1 neddylation. Furthermore, we identified M1 K187 as the major neddylation site. We generated an IAV M1 K187R mutant (WSN-M1 K187R) and compared the growth of wild-type and mutant viruses in Madin-Darby canine kidney (MDCK) cells. The data showed that the replication of WSN-M1 K187R was more efficient than that of wild-type WSN. More importantly, we observed that overexpression of NEDD8 inhibited the replication of the wild-type WSN more effectively than that of WSN-M1 K187R. In addition, we found that the neddylation-deficient M1 mutant (M1 K187R) had a longer half-life than that of wild-type M1, indicating that the neddylation of M1 reduces stability. Then we performed a viral infection assay and found that WSN-M1 K187R exhibited greater virulence in mice than wild-type WSN, suggesting that the neddylation of M1 reduced IAV replication in vivo. In conclusion, we uncovered that neddylation of M1 by HDM2 negatively regulates the stability of M1, which in turn inhibits viral replication.
Collapse
Affiliation(s)
- Yucen Li
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, PR China
| | - Wenjia Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, PR China
| | - Jie Min
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhen Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaomei Tong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dandan Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wenjun Liu
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, PR China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Li GXH, Munro D, Fermin D, Vogel C, Choi H. A protein-centric approach for exome variant aggregation enables sensitive association analysis with clinical outcomes. Hum Mutat 2020; 41:934-945. [PMID: 31930623 DOI: 10.1002/humu.23979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations are early drivers of tumorigenesis and tumor progression. However, the mutations typically occur at variable positions across different individuals, resulting in the data being too sparse to test meaningful associations between variants and phenotypes. To overcome this challenge, we devised a novel approach called Gene-to-Protein-to-Disease (GPD) which accumulates variants into new sequence units as the degree of genetic assault on structural or functional units of each protein. The variant frequencies in the sequence units were highly reproducible between two large cancer cohorts. Survival analysis identified 232 sequence units in which somatic mutations had deleterious effects on overall survival, including consensus driver mutations obtained from multiple calling algorithms. By contrast, around 76% of the survival predictive units had been undetected by conventional gene-level analysis. We demonstrate the ability of these signatures to separate patient groups according to overall survival, therefore, providing novel prognostic tools for various cancers. GPD also identified sequence units with somatic mutations whose impact on survival was modified by the occupancy of germline variants in the surrounding regions. The findings indicate that a patient's genetic predisposition interacts with the effect of somatic mutations on survival outcomes in some cancers.
Collapse
Affiliation(s)
- Ginny X H Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Dan Munro
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Damian Fermin
- Department of Pediatric Nephrology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| |
Collapse
|
7
|
Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res 2019; 47:1637-1652. [PMID: 30649466 PMCID: PMC6393305 DOI: 10.1093/nar/gky1314] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/25/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic β-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.
Collapse
Affiliation(s)
- Mohan R Pradhan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Wei Siau
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Minh N Nguyen
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Zohra Ouaray
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
| | - Chee Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Farid Ghadessy
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,School of Biological sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| |
Collapse
|
8
|
Wawrzynow B, Zylicz A, Zylicz M. Chaperoning the guardian of the genome. The two-faced role of molecular chaperones in p53 tumor suppressor action. Biochim Biophys Acta Rev Cancer 2018; 1869:161-174. [DOI: 10.1016/j.bbcan.2017.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022]
|
9
|
Perez JM, Chen Y, Xiao TS, Abbott DW. Phosphorylation of the E3 ubiquitin protein ligase ITCH diminishes binding to its cognate E2 ubiquitin ligase. J Biol Chem 2017; 293:1100-1105. [PMID: 29212706 DOI: 10.1074/jbc.ra117.000408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Heightened and extended inflammation underlies the pathogenesis of many disorders, including inflammatory bowel disease, sepsis, and inflammatory arthritis. Ubiquitin networks help dictate the strength and duration of inflammatory signaling. In innate immunity, the itchy E3 ubiquitin protein ligase (ITCH)-A20 ubiquitin-editing complex inhibits receptor-interacting Ser/Thr kinase (RIPK) activation by removing Lys-63-linked polyubiquitinated chains from key proteins in the nuclear factor kappa B (NF-κB) signaling pathway. The complex then attaches polyubiquitinated chains to these proteins to target them for lysosomal or proteasomal destruction. ITCH is phosphorylated and thereby inhibited by inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) to fine-tune the inflammatory response to the strength of the offending signal. However, the biochemical mechanism by which E3 ubiquitination is impaired by IKK-driven phosphorylation remains unclear. Here, we report that this phosphorylation impedes ITCH binding to its cognate E2 ubiquitin ligase, UbcH7. Using CRISPR-Cas9 genetic knockout to mimic the ITCH-UbcH7-inhibited state, we further show that genetic UbcH7 deficiency phenocopies ITCH phosphorylation in regulating RIPK2 ubiquitination. We conclude that phosphorylation can disrupt the binding of an E3 ubiquitin ligase to an E2-conjugating enzyme, leading to prolonged inflammatory signaling. To our knowledge, this is the first report of E3 ubiquitin ligase phosphorylation inhibiting E3 ligase activity by impairing E2-E3 complex formation.
Collapse
Affiliation(s)
| | - Yinghua Chen
- Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | |
Collapse
|
10
|
Lambrughi M, De Gioia L, Gervasio FL, Lindorff-Larsen K, Nussinov R, Urani C, Bruschi M, Papaleo E. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions. Nucleic Acids Res 2016; 44:9096-9109. [PMID: 27604871 PMCID: PMC5100575 DOI: 10.1093/nar/gkw770] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Francesco Luigi Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1H 0AJ, UK
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Maurizio Bruschi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
He E, Yan G, Zhang J, Wang J, Li W. Effects of phosphorylation on the intrinsic propensity of backbone conformations of serine/threonine. J Biol Phys 2016; 42:247-58. [PMID: 26759163 DOI: 10.1007/s10867-015-9405-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022] Open
Abstract
Each amino acid has its intrinsic propensity for certain local backbone conformations, which can be further modulated by the physicochemical environment and post-translational modifications. In this work, we study the effects of phosphorylation on the intrinsic propensity for different local backbone conformations of serine/threonine by molecular dynamics simulations. We showed that phosphorylation has very different effects on the intrinsic propensity for certain local backbone conformations for the serine and threonine. The phosphorylation of serine increases the propensity of forming polyproline II, whereas that of threonine has the opposite effect. Detailed analysis showed that such different responses to phosphorylation mainly arise from their different perturbations to the backbone hydration and the geometrical constraints by forming side-chain-backbone hydrogen bonds due to phosphorylation. Such an effect of phosphorylation on backbone conformations can be crucial for understanding the molecular mechanism of phosphorylation-regulated protein structures/dynamics and functions.
Collapse
Affiliation(s)
- Erbin He
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Guanghui Yan
- Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, People's Republic of China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, People's Republic of China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
12
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
13
|
Valimberti I, Tiberti M, Lambrughi M, Sarcevic B, Papaleo E. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft. Sci Rep 2015; 5:14849. [PMID: 26463729 PMCID: PMC4604453 DOI: 10.1038/srep14849] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation.
Collapse
Affiliation(s)
- Ilaria Valimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| | - Matteo Tiberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| | - Matteo Lambrughi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| | - Boris Sarcevic
- Cell Cycle and Cancer Unit, St. Vincent's Institute of Medical Research and The Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, Victoria 3065, Australia
| | - Elena Papaleo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy)
| |
Collapse
|
14
|
Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53. J Virol 2015; 89:3209-20. [PMID: 25568206 DOI: 10.1128/jvi.03072-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.
Collapse
|
15
|
Saha T, Kar RK, Sa G. Structural and sequential context of p53: A review of experimental and theoretical evidence. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:250-263. [PMID: 25550083 DOI: 10.1016/j.pbiomolbio.2014.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Approximately 27 million people are suffering from cancer that contains either an inactivating missense mutation of TP53 gene or partially abrogated p53 signaling pathway. Concerted action of folded and intrinsically disordered domains accounts for multi-faceted role of p53. The intricacy of dynamic p53 structure is believed to shed light on its cellular activity for developing new cancer therapies. In this review, insights into structural details of p53, diverse single point mutations affecting its core domain, thermodynamic understanding and therapeutic strategies for pharmacological rescue of p53 function has been illustrated. An effort has been made here to bridge the structural and sequential evidence of p53 from experimental to computational studies. First, we focused on the individual domains and the crucial protein-protein or DNA-protein contacts that determine conformation and dynamic behavior of p53. Next, the oncogenic mutations associated with cancer and its contribution to thermodynamic fluctuation has been discussed. Thus the emerging anti-cancer strategies include targeting of destabilized cancer mutants with selective inhibition of its negative regulators. Recent advances in development of small molecule inhibitors and peptides exploiting p53-MDM2 interaction has been included. In a nutshell, this review attempts to describe structural biology of p53 which provide new openings for structure-guided rescue.
Collapse
Affiliation(s)
- Taniya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Rajiv K Kar
- Division of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
16
|
Phosphomimetic mutation of the N-terminal lid of MDM2 enhances the polyubiquitination of p53 through stimulation of E2-ubiquitin thioester hydrolysis. J Mol Biol 2014; 427:1728-47. [PMID: 25543083 DOI: 10.1016/j.jmb.2014.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Mouse double minute 2 (MDM2) has a phosphorylation site within a lid motif at Ser17 whose phosphomimetic mutation to Asp17 stimulates MDM2-mediated polyubiquitination of p53. MDM2 lid deletion, but not Asp17 mutation, induced a blue shift in the λ(max) of intrinsic fluorescence derived from residues in the central domain including Trp235, Trp303, Trp323, and Trp329. This indicates that the Asp17 mutation does not alter the conformation of MDM2 surrounding the tryptophan residues. In addition, Phe235 mutation enhanced MDM2 binding to p53 but did not stimulate its ubiquitination function, thus uncoupling increases in p53 binding from its E3 ubiquitin ligase function. However, the Asp17 mutation in MDM2 stimulated its discharge of the UBCH5a-ubiquitin thioester adduct (UBCH5a is a ubiquitin-conjugating enzyme E2D 1 UBC4/5 homolog yeast). This stimulation of ubiquitin discharge from E2 was independent of the p53 substrate. There are now four known effects of the Asp17 mutation on MDM2: (i) it alters the conformation of the isolated N-terminus as defined by NMR; (ii) it induces increased thermostability of the isolated N-terminal domain; (iii) it stimulates the allosteric interaction of MDM2 with the DNA-binding domain of p53; and (iv) it stimulates a novel protein-protein interaction with the E2-ubiquitin complex in the absence of substrate p53 that, in turn, increases hydrolysis of the E2-ubiquitin thioester bond. These data also suggest a new strategy to disrupt MDM2 function by targeting the E2-ubiquitin discharge reaction.
Collapse
|
17
|
Huart AS, Saxty B, Merritt A, Nekulova M, Lewis S, Huang Y, Vojtesek B, Kettleborough C, Hupp TR. A Casein kinase 1/Checkpoint kinase 1 pyrazolo-pyridine protein kinase inhibitor as novel activator of the p53 pathway. Bioorg Med Chem Lett 2013; 23:5578-85. [PMID: 24007918 DOI: 10.1016/j.bmcl.2013.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Reactivation of the wild-type p53 pathway is one key goal aimed at developing targeted therapeutics in the cancer research field. Although most p53 protein kinases form 'p53-activating' signals, there are few kinases whose action can contribute to the inhibition of p53, as Casein kinase 1 (CK1) and Checkpoint kinase 1 (CHK1). Here we report on a pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3. These data demonstrate the emerging potential utility of multivalent kinase inhibitors.
Collapse
Affiliation(s)
- Anne-Sophie Huart
- p53 Signal Transduction Group, University of Edinburgh Cancer Research Centre in the Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
DeHart CJ, Chahal JS, Flint SJ, Perlman DH. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol Cell Proteomics 2013; 13:1-17. [PMID: 24056736 DOI: 10.1074/mcp.m113.030254] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The p53 tumor suppressor protein accumulates to very high concentrations in normal human fibroblasts infected by adenovirus type 5 mutants that cannot direct assembly of the viral E1B 55-kDa protein-containing E3 ubiquitin ligase that targets p53 for degradation. Despite high concentrations of nuclear p53, the p53 transcriptional program is not induced in these infected cells. We exploited this system to examine select post-translational modifications (PTMs) present on a transcriptionally inert population of endogenous human p53, as well as on p53 activated in response to etoposide treatment of normal human fibroblasts. These forms of p53 were purified from whole cell lysates by means of immunoaffinity chromatography and SDS-PAGE, and peptides derived from them were subjected to nano-ultra-high-performance LC-MS and MS/MS analyses on a high-resolution accurate-mass MS platform (data available via ProteomeXchange, PXD000464). We identified an unexpectedly large number of PTMs, comprising phosphorylation of Ser and Thr residues, methylation of Arg residues, and acetylation, ubiquitinylation, and methylation of Lys residues-for example, some 150 previously undescribed modifications of p53 isolated from infected cells. These modifications were distributed across all functional domains of both forms of the endogenous human p53 protein, as well as those of an orthologous population of p53 isolated from COS-1 cells. Despite the differences in activity, including greater in vitro sequence-specific DNA binding activity exhibited by p53 isolated from etoposide-treated cells, few differences were observed in the location, nature, or relative frequencies of PTMs on the two populations of human p53. Indeed, the wealth of PTMs that we have identified is consistent with a far greater degree of complex, combinatorial regulation of p53 by PTM than previously anticipated.
Collapse
Affiliation(s)
- Caroline J DeHart
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544
| | | | | | | |
Collapse
|
19
|
Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 2012; 32:2499-509. [PMID: 22945652 DOI: 10.1038/onc.2012.346] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical studies have defined the core 'genetic blueprint' of a cancer cell, but this information does not necessarily predict the cancer phenotype. Signalling hubs that mediate such phenotype have been identified largely using OMICS platforms that measure dynamic molecular changes within the cancer cell landscape. The pro-oncogenic protein anterior gradient 2 (AGR2) is a case in point; AGR2 has been shown using a range of expression platforms to be involved in asthma, inflammatory bowel disease, cell transformation, cancer drug resistance and metastatic growth. AGR2 protein is also highly overexpressed in a diverse range of human cancers and can be secreted and detected in extracellular fluids, thus representing a compelling pro-oncogenic signalling intermediate in human cancer. AGR2 belongs to the protein disulphide isomerase family with all the key features of an endoplasmic reticulum-resident protein-this gives clues into how it might function as an oncoprotein through the regulation of protein folding, maturation and secretion that can drive metastatic cell growth. In this review, we will describe the known aspects of AGR2 molecular biology, including gene structure and regulation, emerging protein interaction networks and how its subcellular localization mediates its biological functions. We will finally review the cases of AGR2 expression in human cancers, the pathophysiological consequences of AGR2 overexpression, its potential role as a tumour biomarker that predicts the response to therapy and how the AGR2 pathway might form the basis for drug discovery programmes aimed at targeting protein folding/maturation pathways that mediate secretion and metastasis.
Collapse
|
20
|
Abstract
Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.
Collapse
|
21
|
Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling. Arch Pharm Res 2012; 35:397-407. [DOI: 10.1007/s12272-012-0301-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
|
22
|
Fraser JA, Madhumalar A, Blackburn E, Bramham J, Walkinshaw MD, Verma C, Hupp TR. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: II. a model in which phosphorylation at SER269 induces a mutant conformation to p53. J Biol Chem 2010; 285:37773-86. [PMID: 20847049 PMCID: PMC2988382 DOI: 10.1074/jbc.m110.143107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/15/2010] [Indexed: 12/11/2022] Open
Abstract
The p53 DNA-binding domain harbors a conformationally flexible multiprotein binding site that regulates p53 ubiquitination. A novel phosphorylation site exists within this region at Ser(269), whose phosphomimetic mutation inactivates p53. The phosphomimetic p53 (S269D) exhibits characteristics of mutant p53: stable binding to Hsp70 in vivo, elevated ubiquitination in vivo, inactivity in DNA binding and transcription, increased thermoinstability using thermal shift assays, and λ(max) of intrinsic tryptophan fluorescence at 403 nm rather than 346 nm, characteristic of wild type p53. These data indicate that p53 conformational stability is regulated by a phosphoacceptor site within an exposed flexible surface loop and that this can be destabilized by phosphorylation. To test whether other motifs within p53 have similarly evolved, we analyzed the effect of Ser(215) mutation on p53 function because Ser(215) is another inactivating phosphorylation site in the conformationally flexible PAb240 epitope. The p53(S215D) protein is inactive like p53(S269D), whereas p53(S215A) is as active as p53(S269A). However, the double mutant p53(S215A/S269A) was transcriptionally inactive and more thermally unstable than either individual Ser-Ala loop mutant. Molecular dynamics simulations suggest that (i) solvation of phospho-Ser(215) and phospho-Ser(269) by positive charged residues or solvent water leads to local unfolding, which is accompanied by local destabilization of the N-terminal loop and global destabilization of p53, and (ii) the double alanine 215/269 mutation disrupts hydrogen bonding normally stabilized by both Ser(215) and Ser(269). These data indicate that p53 has evolved two serine phosphoacceptor residues within conformationally flexible epitopes that normally stabilize the p53 DNA-binding domain but whose phosphorylation induces a mutant conformation to wild type p53.
Collapse
Affiliation(s)
- Jennifer A. Fraser
- From the CRUK p53 Signal Transduction Group, Cell Signaling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, Scotland, United Kingdom
| | - Arumugam Madhumalar
- the Bioinformatics Institute (A-STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore
| | - Elizabeth Blackburn
- the Institute of Structural and Molecular Biology, Kings Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom, and
| | - Janice Bramham
- the Institute of Structural and Molecular Biology, Kings Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom, and
| | - Malcolm D. Walkinshaw
- the Institute of Structural and Molecular Biology, Kings Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom, and
| | - Chandra Verma
- the Bioinformatics Institute (A-STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore
| | - Ted R. Hupp
- From the CRUK p53 Signal Transduction Group, Cell Signaling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, Scotland, United Kingdom
| |
Collapse
|