1
|
Fukuda S, Wagatsuma K, Miwa K, Yakushiji Y, Kamitaka Y, Yamao T, Miyaji N, Ishii K. Optimization of penalization function in Bayesian penalized likelihood reconstruction algorithm for [ 18F]flutemetamol amyloid PET images. Phys Eng Sci Med 2024; 47:1627-1637. [PMID: 39133373 DOI: 10.1007/s13246-024-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Point-spread-function (PSF) correction is not recommended for amyloid PET images due to Gibbs artifacts. Q.Clear™, a Bayesian Penalized Likelihood (BPL) reconstruction method without incorporating PSF correction reduces these artifacts but degrades image contrast by our previous findings. The present study aimed to recover lost contrast by optimizing reconstruction parameters in time-of-flight (TOF) BPL reconstruction of amyloid PET images without PSF correction. We selected candidate conditions based on a phantom study and then determined which were optimal in a clinical study. Phantom images were reconstructed under conditions of 1‒9 iterations, β 300-1000 and γ factors from 2 to 10 in TOF-BPL without PSF correction. We evaluated the %contrast and the coefficients of variation (CV, %). Standardized uptake value ratios (SUVr) and Centiloid scales (CL) were calculated from PET images acquired from 71 participants after an [18F]flutemetamol injection. Both %contrast and CV were independent of iterations, whereas a trade-off was found between γ factors and β. We selected a γ factors of 5 without PSF correction (iterations, 1; β, 500) and of 10 without PSF correction (iterations, 1; β, 800) as candidates for clinical investigation. The SUVr and CL remained stable across various conditions, and CL scales effectively discriminated amyloid PET using measured values. The optimal reconstruction parameters of TOF-BPL for [18F]flutemetamol PET images were γ factor 10, iterations 1 and β 800, without PSF correction.
Collapse
Affiliation(s)
- Shohei Fukuda
- Medical Engineering, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kei Wagatsuma
- Medical Engineering, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Yu Yakushiji
- Medical Engineering, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima, 960-8516, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
2
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
3
|
Chinnathambi S. Histone deacetylase's regulates Tau function in Alzheimer's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:339-361. [PMID: 39843140 DOI: 10.1016/bs.apcsb.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease associated with dementia and neuronal impairments in brain. AD is characterized histopathologically by two hallmark lesions: abnormally phosphorylated Tau inside neurons as intracellular NFTs and extracellular accumulation of amyloid β peptide (Aβ). Furthermore, it is unable to clarify the distinction between the brief association between the development and build-up of Aβ and the commencement of illness. Additionally, a number of experimental findings suggest that symptoms related to Aβ may only manifest within the framework of anabatic Tauopathies. Tau, a natively unfolded protein, essentially involved in microtubule binding and assembly. Tau protein consists of truncated segment and the purpose of this truncated fragment is to initiate and promote the conversion of soluble Tau into aggregates. The most common aberrant posttranslational change found in Neuro Fibrillary Tangles is hyperphosphorylation, which is essentially composed of aggregated Tau. Tau phosphorylation and acetylation of Tau protein at the locations controlled by histone deacetylase 6 compete, which modulates Tau function. Considering the potential benefits of targeting HDAC6 in AD, we propose focusing on the role of HDAC6 in regulating Tau functions and the other targets are the therapeutic understanding of AD.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Ury-Thiery V, Fichou Y, Alves I, Molinari M, Lecomte S, Feuillie C. Interaction of full-length Tau with negatively charged lipid membranes leads to polymorphic aggregates. NANOSCALE 2024; 16:17141-17153. [PMID: 39189914 DOI: 10.1039/d4nr01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Tau protein is implicated in various diseases collectively known as tauopathies, including Alzheimer's disease and frontotemporal dementia. The precise mechanism underlying Tau pathogenicity remains elusive. Recently, the role of lipids has garnered interest due to their implications in Tau aggregation, secretion, uptake, and pathogenic dysregulation. Previous investigations have highlighted critical aspects: (i) Tau's tendency to aggregate into fibers when interacting with negatively charged lipids, (ii) its ability to form structured species upon contact with anionic membranes, and (iii) the potential disruption of the membrane upon Tau binding. In this study, we examine the disease-associated P301L mutation of the 2N4R isoform of Tau and its effects on membranes composed on phosphatidylserine (PS) lipids. Aggregation studies and liposome leakage assays demonstrate Tau's ability to bind to anionic lipid vesicles, leading to membrane disruption. Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) reveals the accumulation of Tau on the membrane surface without protein insertion, structuration, or lipid removal. Plasmon waveguide resonance (PWR) demonstrates a strong binding of Tau on PS bilayers with an apparent Kd in the micromolar range, indicating the deposition of a thick protein layer. Atomic force microscopy (AFM) real-time imaging allows the observation of partial lipid solubilization and the deposition of polymorphic aggregates in the form of thick patches and fibrillary structures resembling amyloid fibers, which could grow from a combination of extracted anionic phospholipids from the membrane and Tau protein. This study deepens our understanding of full-length Tau's multifaceted interactions with lipids, shedding light on potential mechanisms leading to the formation of pathogenic Tau assemblies.
Collapse
Affiliation(s)
- Vicky Ury-Thiery
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Yann Fichou
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Isabel Alves
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Michael Molinari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Sophie Lecomte
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| | - Cécile Feuillie
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
5
|
Freitas DP, Saavedra J, Cardoso I, Gomes CM. Biophysical Studies of Amyloid-Binding Fluorophores to Tau AD Core Fibrils Formed without Cofactors. Int J Mol Sci 2024; 25:9946. [PMID: 39337433 PMCID: PMC11432123 DOI: 10.3390/ijms25189946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Tau is an intrinsically disordered protein involved in several neurodegenerative diseases where a common hallmark is the appearance of tau aggregates in the brain. One common approach to elucidate the mechanisms behind the aggregation of tau has been to recapitulate in vitro the self-assembly process in a fast and reproducible manner. While the seeding of tau aggregation is prompted by negatively charged cofactors, the obtained fibrils are morphologically distinct from those found in vivo. The Tau AD core fragment (TADC, tau 306-378) has emerged as a new model and potential solution for the cofactor-free in vitro aggregation of tau. Here, we use TADC to further study this process combining multiple amyloid-detecting fluorophores and fibril bioimaging. We confirmed by transmission electron microscopy that this fragment forms fibrils after quiescent incubation at 37 °C. We then employed a panel of eight amyloid-binding fluorophores to query the formed species by acquiring their emission spectra. The results obtained showed that nearly all dyes detect TADC self-assembled species. However, the successful monitoring of TADC aggregation kinetics was limited to three fluorophores (X-34, Bis-ANS, and pFTAA) which yielded sigmoidal curves but different aggregation half-times, hinting to different species being detected. Altogether, this study highlights the potential of using multiple extrinsic fluorescent probes, alone or in combination, as tools to further clarify mechanisms behind the aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Daniela P. Freitas
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Joana Saavedra
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.S.); (I.C.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel Cardoso
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (J.S.); (I.C.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Cláudio M. Gomes
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Wagatsuma K, Miwa K, Yamao T, Kamitaka Y, Akamatsu G, Nakajima K, Miyaji N, Ishibashi K, Ishii K. Development of a novel phantom for tau PET imaging. Phys Med 2024; 123:103399. [PMID: 38852366 DOI: 10.1016/j.ejmp.2024.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
PURPOSE The cortical uptake of tau positron emission tomography (PET) tracers corresponds to the Braak stage and reflects the distribution and progression of tau neurofibrillary tangles. The present study aimed to develop and validate the basic performance of a novel tau PET phantom, as well as to establish standard test procedures and analytical methods. METHODS The tau PET phantom consisted of a brain simulation section simulated medial temporal lobe region and resolution and uniformity sections. The brain simulation section and hot rods and uniformity section contained 4 and 2 kBq/mL of 18F, respectively and images were acquired three times for 20 min with a PET/CT scanner. The resolution section was visually assessed with two sets of hot and cold rods. Recovery coefficients (RCs) as a quantitative value and coefficient of variation (CV) as image noise were determined based on the brain simulation and the uniformity section, respectively. RESULTS Preparation of activity in the phantom was repeatable among three measurements. The quality of images in the brain simulation and uniformity section with the rods was good. The 5- or 6-mm rods were detected separately. The mean RCs calculated based on the VOI template were between 0.75 and 0.83. The CV at the center slice of uniformity section was 5.54%. CONCLUSIONS We developed a novel tau PET phantom to assess quantitative value, image noise, and detectability and resolution from brain simulation section, uniformity section, and rods, respectively. This phantom will contribute to the standardization and harmonization of tau PET imaging.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kanta Nakajima
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
7
|
Masquelier E, Taxon E, Liang SP, Al Sabeh Y, Sepunaru L, Gordon MJ, Morse DE. A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly. J Biol Chem 2023; 299:103011. [PMID: 36781124 PMCID: PMC10024187 DOI: 10.1016/j.jbc.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Tau protein's reversible assembly and binding of microtubules in brain neurons are regulated by charge-neutralizing phosphorylation, while its hyperphosphorylation drives the irreversible formation of cytotoxic filaments associated with neurodegenerative diseases. However, the structural changes that facilitate these diverse functions are unclear. Here, we analyzed K18, a core peptide of tau, using newly developed spectroelectrochemical instrumentation that enables electroreduction as a surrogate for charge neutralization by phosphorylation, with simultaneous, real-time quantitative analyses of the resulting conformational transitions and assembly. We observed a tipping point between behaviors that paralleled the transition between tau's physiologically required, reversible folding and assembly and the irreversibility of assemblies. The resulting rapidly electroassembled structures represent the first fibrillar tangles of K18 that have been formed in vitro at room temperature without using heparin or other charge-complementary anionic partners. These methods make it possible to (i) trigger and analyze in real time the early stages of conformational transitions and assembly without the need for preformed seeds, heterogenous coacervation, or crowding; (ii) kinetically resolve and potentially isolate never-before-seen early intermediates in these processes; and (iii) develop assays for additional factors and mechanisms that can direct the trajectory of assembly from physiologically benign and reversible to potentially pathological and irreversible structures. We anticipate wide applicability of these methods to other amyloidogenic systems and beyond.
Collapse
Affiliation(s)
- Eloise Masquelier
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Materials Department, University of California, Santa Barbara, California, USA
| | - Esther Taxon
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Sheng-Ping Liang
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Yahya Al Sabeh
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Michael J Gordon
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Daniel E Morse
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
8
|
Hochmair J, Exner C, Betzel C, Mandelkow E, Wegmann S. Light Microscopy and Dynamic Light Scattering to Study Liquid-Liquid Phase Separation of Tau Proteins In Vitro. Methods Mol Biol 2023; 2551:225-243. [PMID: 36310206 DOI: 10.1007/978-1-0716-2597-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tau is an intrinsically disordered protein that binds and stabilizes axonal microtubules (MTs) in neurons of the central nervous system. The binding of Tau to MTs is mediated by its repeat domain and flanking proline-rich domains. The positively charged (basic) C-terminal half of Tau also mediates the assembly Tau into fibrillar aggregates in Alzheimer's disease (AD) and tauopathy brains. In recent years, another assembly form of Tau has been identified: Tau can undergo liquid-liquid phase separation (LLPS), which leads to its condensation into liquid-dense phases, either by complex coacervation with polyanions like heparin or RNA or through "self-coacervation" at high Tau concentrations. Condensation of Tau in the absence of polyanions can be enhanced by the presence of molecular crowding agents in a dilute Tau solution. In vitro experiments using recombinant purified Tau are helpful to study the physicochemical determinants of Tau LLPS, which can then be extrapolated into the cellular context. Tau condensation is a new aspect of Tau biology that may play a role for the initiation of Tau aggregation, but also for its physiological function(s), for example, the binding to microtubules. Here we describe how to study the condensation of Tau in vitro using light microscopy, including fluorescence recovery after photobleaching (FRAP), to assess the shape and molecular diffusion in the condensates, a proxy for the degree of condensate percolation. We also describe turbidity measurements of condensate-containing solutions to assess the overall amount of LLPS and time-resolved dynamic light scattering (trDLS) to study the formation and size of Tau condensates.
Collapse
Affiliation(s)
- Janine Hochmair
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Christian Exner
- University Hamburg, Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany
| | - Christian Betzel
- University Hamburg, Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Research Center CAESAR, Bonn, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| |
Collapse
|
9
|
Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. J Biol Chem 2022; 298:102498. [PMID: 36116552 PMCID: PMC9587012 DOI: 10.1016/j.jbc.2022.102498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid aggregates of specific proteins constitute important pathological hallmarks in many neurodegenerative diseases, defining neuronal degeneration and disease onset. Recently, increasing numbers of patients show comorbidities and overlaps between multiple neurodegenerative diseases, presenting distinct phenotypes. Such overlaps are often accompanied by colocalizations of more than one amyloid protein, prompting the question of whether direct interactions between different amyloid proteins could generate heterotypic amyloids. To answer this question, we investigated the effect of α-synuclein (αS) on the DNA-binding protein TDP-43 aggregation inspired by their coexistence in pathologies such as Lewy body dementia and limbic predominant age-related TDP-43 encephalopathy. We previously showed αS and prion-like C-terminal domain (PrLD) of TDP-43 synergistically interact to generate toxic heterotypic aggregates. Here, we extend these studies to investigate whether αS induces structurally and functionally distinct polymorphs of PrLD aggregates. Using αS-PrLD heterotypic aggregates generated in two different stoichiometric proportions, we show αS can affect PrLD fibril forms. PrLD fibrils show distinctive residue level signatures determined by solid state NMR, dye-binding capability, proteinase K (PK) stability, and thermal stability toward SDS denaturation. Furthremore, by gold nanoparticle labeling and transmission electron microscopy, we show the presence of both αS and PrLD proteins within the same fibrils, confirming the existence of heterotypic amyloid fibrils. We also observe αS and PrLD colocalize in the cytosol of neuroblastoma cells and show that the heterotypic PrLD fibrils selectively induce synaptic dysfunction in primary neurons. These findings establish the existence of heterotypic amyloid and provide a molecular basis for the observed overlap between synucleinopathies and TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Leiana Fung
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA.
| |
Collapse
|
10
|
Siposova K, Petrenko VI, Garcarova I, Sedlakova D, Almásy L, Kyzyma OA, Kriechbaum M, Musatov A. The intriguing dose-dependent effect of selected amphiphilic compounds on insulin amyloid aggregation: Focus on a cholesterol-based detergent, Chobimalt. Front Mol Biosci 2022; 9:955282. [PMID: 36060240 PMCID: PMC9437268 DOI: 10.3389/fmolb.2022.955282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
The amyloidogenic self-assembly of many peptides and proteins largely depends on external conditions. Among amyloid-prone proteins, insulin attracts attention because of its physiological and therapeutic importance. In the present work, the amyloid aggregation of insulin is studied in the presence of cholesterol-based detergent, Chobimalt. The strategy to elucidate the Chobimalt-induced effect on insulin fibrillogenesis is based on performing the concentration- and time-dependent analysis using a combination of different experimental techniques, such as ThT fluorescence assay, CD, AFM, SANS, and SAXS. While at the lowest Chobimalt concentration (0.1 µM; insulin to Chobimalt molar ratio of 1:0.004) the formation of insulin fibrils was not affected, the gradual increase of Chobimalt concentration (up to 100 µM; molar ratio of 1:4) led to a significant increase in ThT fluorescence, and the maximal ThT fluorescence was 3-4-fold higher than the control insulin fibril's ThT fluorescence intensity. Kinetic studies confirm the dose-dependent experimental results. Depending on the concentration of Chobimalt, either (i) no effect is observed, or (ii) significantly, ∼10-times prolonged lag-phases accompanied by the substantial, ∼ 3-fold higher relative ThT fluorescence intensities at the steady-state phase are recorded. In addition, at certain concentrations of Chobimalt, changes in the elongation-phase are noticed. An increase in the Chobimalt concentrations also triggers the formation of insulin fibrils with sharply altered morphological appearance. The fibrils appear to be more flexible and wavy-like with a tendency to form circles. SANS and SAXS data also revealed the morphology changes of amyloid fibrils in the presence of Chobimalt. Amyloid aggregation requires the formation of unfolded intermediates, which subsequently generate amyloidogenic nuclei. We hypothesize that the different morphology of the formed insulin fibrils is the result of the gradual binding of Chobimalt to different binding sites on unfolded insulin. A similar explanation and the existence of such binding sites with different binding energies was shown previously for the nonionic detergent. Thus, the data also emphasize the importance of a protein partially-unfolded state which undergoes the process of fibrils formation; i.e., certain experimental conditions or the presence of additives may dramatically change not only kinetics but also the morphology of fibrillar aggregates.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Viktor I. Petrenko
- BCMaterials—Basque Center for Materials, Applications and Nanostructures, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ivana Garcarova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - László Almásy
- Neutron Spectroscopy Department, Centre for Energy Research, Budapest, Hungary
| | - Olena A. Kyzyma
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
11
|
Mignon J, Mottet D, Leyder T, Uversky VN, Perpète EA, Michaux C. Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int J Biol Macromol 2022; 218:57-71. [PMID: 35863661 DOI: 10.1016/j.ijbiomac.2022.07.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied. In a previous work, we have demonstrated the first evidence of DPF3a being a disordered protein sensitive to amyloid fibrillation. Intrinsically disordered proteins (IDPs) lack a defined tertiary structure, existing as a dynamic conformational ensemble, allowing them to act as hubs in protein-protein interaction networks. In the present study, we have more thoroughly characterised DPF3a in vitro behaviour, as well as unravelled and compared the structural properties of the DPF3b isoform, using an array of predictors and biophysical techniques. Predictions, spectroscopy, and dynamic light scattering have revealed a high content in disorder: prevalence of random coil, aromatic residues partially to fully exposed to the solvent, and large hydrodynamic diameters. DPF3a appears to be more disordered than DPF3b, and exhibits more expanded conformations. Furthermore, we have shown that they both time-dependently aggregate into amyloid fibrils, as revealed by typical circular dichroism, deep-blue autofluorescence, and amyloid-dye binding assay fingerprints. Although spectroscopic and microscopic analyses have unveiled that they share a similar aggregation pathway, DPF3a fibrillates at a faster rate, likely through reordering of its C-terminal domain.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34, Avenue de l'Hôpital, 4000 Liège, Belgium.
| | - Tanguy Leyder
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Eric A Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| |
Collapse
|
12
|
Limorenko G, Lashuel HA. To target Tau pathologies, we must embrace and reconstruct their complexities. Neurobiol Dis 2021; 161:105536. [PMID: 34718129 DOI: 10.1016/j.nbd.2021.105536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022] Open
Abstract
The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Tauopathy diseases, including Alzheimer's disease. However, the primary events or molecules responsible for initiation of the pathological Tau aggregation and spreading remain unknown. The discovery of heparin as an effective inducer of Tau aggregation in vitro was instrumental to enabling different lines of research into the role of Tau aggregation in the pathogenesis of Tauopathies. However, recent proteomics and cryogenic electron microscopy (cryo-EM) studies have revealed that heparin-induced Tau fibrils generated in vitro do not reproduce the biochemical and ultrastructural properties of disease-associated brain-derived Tau fibrils. These observations demand that we reassess our current approaches for investigating the mechanisms underpinning Tau aggregation and pathology formation. Our review article presents an up-to-date survey and analyses of 1) the evolution of our understanding of the interactions between Tau and heparin, 2) the various structural and mechanistic models of the heparin-induced Tau aggregation, 3) the similarities and differences between brain-derived and heparin-induced Tau fibrils; and 4) emerging concepts on the biochemical and structural determinants underpinning Tau pathological heterogeneity in Tauopathies. Our analyses identify specific knowledge gaps and call for 1) embracing the complexities of Tau pathologies; 2) reassessment of current approaches to investigate, model and reproduce pathological Tau aggregation as it occurs in the brain; 3) more research towards a better understanding of the naturally-occurring cofactor molecules that are associated with Tau brain pathology initiation and propagation; and 4) developing improved approaches for in vitro production of the Tau aggregates and fibrils that recapitulate and/or amplify the biochemical and structural complexity and diversity of pathological Tau in Tauopathies. This will result in better and more relevant tools, assays, and mechanistic models, which could significantly improve translational research and the development of drugs and antibodies that have higher chances for success in the clinic.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
13
|
Ayubcha C, Rigney G, Borja AJ, Werner T, Alavi A. Tau-PET imaging as a molecular modality for Alzheimer's disease. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:374-386. [PMID: 34754608 PMCID: PMC8569333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative condition. The definitive diagnosis of AD remains a post-mortem neuropathological study of the brain. Unfortunately, there are no established diagnostic criteria to achieve an accurate diagnosis of AD in a similarly objective fashion among living patients. Molecular imaging provides one way of enhancing clinical criteria where objective measures of AD correlate to the presence and progression of disease. In this article, the amyloid and tau hypotheses are considered with respect to pathological, imaging, and therapeutic studies. The value of beta-amyloid (Aβ) PET and tau PET are ascertained. Subsequently, the binding characteristics and quality of Aβ and tau tracers are explored. Finally, the value of Aβ and tau imaging in AD can be determined relevant from in-vivo studies of AD patients. Considering the evolving literature in AD and PET imaging, it has become clear that PET can play a role in the diagnosis and prognosis of AD. The use of Aβ imaging has been extensively studied with mixed results suggesting a limited clinical utility. Conversely, tau-PET has shown early success in similar applications as Aβ imaging. Specifically, we find that there is value in FDG-PET and prospective utility in tau-PET. Ultimately, the community must acknowledge that the role of Aβ imaging for diagnosing and managing AD is very limited and that FDG-PET will remain the study of choice at this time. Moreover, research efforts must continue to determine the prospective value of tau imaging to the assessment of this disease.
Collapse
Affiliation(s)
| | - Grant Rigney
- Department of Psychiatry, University of OxfordEngland OX1 2JD, UK
| | - Austin J Borja
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - Thomas Werner
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - Abass Alavi
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| |
Collapse
|
14
|
Lo CH. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng Transl Med 2021; 6:e10231. [PMID: 34589603 PMCID: PMC8459642 DOI: 10.1002/btm2.10231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule binding protein which plays an important role in physiological functions but it is also involved in the pathogenesis of Alzheimer's disease and related tauopathies. While insoluble and β-sheet containing tau neurofibrillary tangles have been the histopathological hallmark of these diseases, recent studies suggest that soluble tau oligomers, which are formed prior to fibrils, are the primary toxic species. Substantial efforts have been made to generate tau oligomers using purified recombinant protein strategies to study oligomer conformations as well as their toxicity. However, no specific toxic tau species has been identified to date, potentially due to the lack of cellular environment. Hence, there is a need for cell-based models for direct monitoring of tau oligomerization and aggregation. This review will summarize the recent advances in the cellular biosensor technology, with a focus on fluorescence resonance energy transfer, bimolecular fluorescence complementation, and split luciferase complementation approaches, to monitor formation of tau oligomers and aggregates in living cells. We will discuss the applications of the cellular biosensors in examining the heterogeneous tau conformational ensembles and factors affecting tau self-assembly, as well as detecting cell-to-cell propagation of tau pathology. We will also compare the advantages and limitations of each type of tau biosensors, and highlight their translational applications in biomarker development and therapeutic discovery.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
15
|
Nanjundaiah S, Chidambaram H, Chandrashekar M, Chinnathambi S. Role of Microglia in Regulating Cholesterol and Tau Pathology in Alzheimer's Disease. Cell Mol Neurobiol 2021; 41:651-668. [PMID: 32468440 PMCID: PMC11448617 DOI: 10.1007/s10571-020-00883-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/19/2020] [Indexed: 01/21/2023]
Abstract
Cholesterol, a principal constituent of the cell membrane, plays a crucial role in the brain by regulating the synaptic transmission, neuronal signaling, as well as neurodegenerative diseases. Defects in the cholesterol trafficking are associated with enhanced generation of hyperphosphorylated Tau and Amyloid-β protein. Tau, a major microtubule-associated protein in the brain, is the key regulator of the mature neuron. Abnormally hyperphosphorylated Tau hampers the major functions related to microtubule assembly by promoting neurofibrillary tangles of paired helical filaments, twisted ribbons, and straight filaments. The observed pathological changes due to impaired cholesterol and Tau protein accumulation cause Alzheimer's disease. Thus, in order to regulate the pathogenesis of Alzheimer's disease, regulation of cholesterol metabolism, as well as Tau phosphorylation, is essential. The current review provides an overview of (1) cholesterol synthesis in the brain, neurons, astrocytes, and microglia; (2) the mechanism involved in modulating cholesterol concentration between the astrocytes and brain; (3) major mechanisms involved in the hyperphosphorylation of Tau and amyloid-β protein; and (4) microglial involvement in its regulation. Thus, the answering key questions will provide an in-depth information on microglia involvement in managing the pathogenesis of cholesterol-modulated hyperphosphorylated Tau protein.
Collapse
Affiliation(s)
- Shwetha Nanjundaiah
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Hariharakrishnan Chidambaram
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Madhura Chandrashekar
- School of Biomedical Engineering and Sciences, MIT University, Loni Kalbhor, Pune, 412201, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| |
Collapse
|
16
|
Abstract
The molecular architecture of α-Synuclein (α-Syn) inclusions, pathognomonic of various neurodegenerative disorders, remains unclear. α-Syn inclusions were long thought to consist mainly of α-Syn fibrils, but recent reports pointed to intracellular membranes as the major inclusion component. Here, we use cryo-electron tomography (cryo-ET) to image neuronal α-Syn inclusions in situ at molecular resolution. We show that inclusions seeded by α-Syn aggregates produced recombinantly or purified from patient brain consist of α-Syn fibrils crisscrossing a variety of cellular organelles. Using gold-labeled seeds, we find that aggregate seeding is predominantly mediated by small α-Syn fibrils, from which cytoplasmic fibrils grow unidirectionally. Detailed analysis of membrane interactions revealed that α-Syn fibrils do not contact membranes directly, and that α-Syn does not drive membrane clustering. Altogether, we conclusively demonstrate that neuronal α-Syn inclusions consist of α-Syn fibrils intermixed with membranous organelles, and illuminate the mechanism of aggregate seeding and cellular interaction.
Collapse
|
17
|
Gaudreault R, Hervé V, van de Ven TGM, Mousseau N, Ramassamy C. Polyphenol-Peptide Interactions in Mitigation of Alzheimer's Disease: Role of Biosurface-Induced Aggregation. J Alzheimers Dis 2021; 81:33-55. [PMID: 33749653 DOI: 10.3233/jad-201549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of amyloid-β (Aβ) and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as "confinement stability". Here, on the contrary, the adsorption of Aβ and tau on biosurfaces other than Aβ- and tau-fibrils, e.g., red blood cells, can lead to confinement stability that minimizes the aggregation of Aβ and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Normand Mousseau
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
18
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
19
|
Bengoa-Vergniory N, Velentza-Almpani E, Silva AM, Scott C, Vargas-Caballero M, Sastre M, Wade-Martins R, Alegre-Abarrategui J. Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathol Commun 2021; 9:18. [PMID: 33509301 PMCID: PMC7844979 DOI: 10.1186/s40478-020-01117-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multimerization is a key process in prion-like disorders such as Alzheimer's disease (AD), since it is a requirement for self-templating tau and beta-amyloid amyloidogenesis. AT8-immunohistochemistry for hyperphosphorylated tau is currently used for the diagnosis and staging of tau pathology. Given that tau-tau interactions can occur in the absence of hyperphosphorylation or other post-translational modifications (PTMs), the direct visualization of tau multimerization could uncover early pathological tau multimers. METHODS Here, we used bimolecular fluorescent complementation, rapamycin-dependent FKBP/FRB-tau interaction and transmission electron microscopy to prove the in vitro specificity of tau-proximity ligation assay (tau-PLA). We then analyzed MAPT KO and P301S transgenic mice, and human hippocampus and temporal isocortex of all Braak stages with tau-PLA and compared it with immunohistochemistry for the diagnostic antibody AT8, the early phosphorylation-dependent AT180, and the conformational-dependent antibody MC1. Finally, we performed proteinase-K treatment to infer the content of amyloidogenic beta-sheet fold. RESULTS Our novel tau-proximity ligation assay (tau-PLA) directly visualized tau-tau interactions in situ, and exclusively recognized tau multimers but not monomers. It elicited no signal in MAPT KO mouse brains, but extensively labelled P301S transgenic mice and AD brain. Two groups of structures were detected, a previously unreported widespread small-sized diffuse pathology and large, neurofibrillary-like lesions. Tau-PLA-labelled diffuse pathology appeared from the earliest Braak stages, mostly unaccompanied by tangle-like tau-immunohistochemistry, being significantly more sensitive than any small-sized dot-/thread-like pathology labelled by AT180-, AT8- and MC1-immunohistochemistry in most regions quantified at stages 0-II. Tau-PLA-labelled diffuse pathology was extremely sensitive to Proteinase-K, in contrast to large lesions. CONCLUSIONS Tau-PLA is the first method to directly visualize tau multimers both in vitro and in situ with high specificity. We find that tau multimerization appears extensively from the earliest presymptomatic Braak stages as a previously unreported type of diffuse pathology. Importantly, in our study multimerization is the earliest detectable molecular event of AD tau pathology. Our findings open a new window to the study of early tau pathology, with potential implications in early diagnosis and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | | | - Ana Maria Silva
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Armstrong Road, London, SW7 2AZ UK
| | - Connor Scott
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 1, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | | |
Collapse
|
20
|
Du L, Zhao Z, Xu B, Gao W, Liu X, Chen Y, Wang Y, Liu J, Liu B, Sun S, Ma G, Gao J. Anisotropy of Anomalous Diffusion Improves the Accuracy of Differentiating and Grading Alzheimer's Disease Using Novel Fractional Motion Model. Front Aging Neurosci 2020; 12:602510. [PMID: 33328977 PMCID: PMC7710869 DOI: 10.3389/fnagi.2020.602510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Recent evidence shows that the fractional motion (FM) model may be a more appropriate model for describing the complex diffusion process of water in brain tissue and has shown to be beneficial in clinical applications of Alzheimer's disease (AD). However, the FM model averaged the anomalous diffusion parameter values, which omitted the impacts of anisotropy. This study aimed to investigate the potential feasibility of anisotropy of anomalous diffusion using the FM model for distinguishing and grading AD patients. Methods: Twenty-four patients with AD and 11 matched healthy controls were recruited, diffusion MRI was obtained from all participants and analyzed using the FM model. Generalized fractional anisotropy (gFA), an anisotropy metric, was introduced and the gFA values of FM-related parameters, Noah exponent (α) and the Hurst exponent (H), were calculated and compared between the healthy group and AD group and between the mild AD group and moderate AD group. The receiver-operating characteristic (ROC) analysis and the multivariate logistic regression analysis were used to assess the diagnostic performances of the anisotropy values and the directionally averaged values. Results: The gFA(α) and gFA(H) values of the moderate AD group were higher than those of the mild AD group in left hippocampus. The gFA(α) value of the moderate AD group was significantly higher than that of the healthy control group in both the left and right hippocampus. The gFA(ADC) values of the moderate AD group were significantly lower than those of the mild AD group and healthy control group in the right hippocampus. Compared with the gFA(α), gFA(H), α, and H, the ROC analysis showed larger areas under the curves for combination of α + gFA(α) and the combination of H + gFA(H) in differentiating the mild AD and moderate AD groups, and larger area under the curves for combination of α + gFA(α) in differentiating the healthy controls and AD groups. Conclusion: The anisotropy of anomalous diffusion could significantly differentiate and grade patients with AD, and the diagnostic performance was improved when the anisotropy metric was combined with commonly used directionally averaged values. The utility of anisotropic anomalous diffusion may provide novel insights to profoundly understand the neuropathology of AD.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Peking University, Beijing, China
| | - Boyan Xu
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
21
|
Atomic Force Microscopy Imaging and Nanomechanical Properties of Six Tau Isoform Assemblies. Biophys J 2020; 119:2497-2507. [PMID: 33217380 DOI: 10.1016/j.bpj.2020.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022] Open
Abstract
The amyloid fibrillar form of the protein Tau is involved in a number of neurodegenerative diseases, also known as tauopathies. In this work, six different fibrillar Tau isoforms were assembled in vitro. The morphological and nanomechanical properties of these isoforms were studied using atomic force microscopy at high resolution in air and buffer. Our results demonstrate that all Tau isoform fibrils exhibit paired-helical-filament-like structures consisting of two protofibrils separated by a shallow groove. Interestingly, whereas the N-terminal inserts do not contribute to any morphological or mechanical difference between the isoforms with the same carboxyl-terminal microtubule-binding domain repeats, isoforms with four microtubule repeats (4R) exhibited a persistence length ranging from 2.0 to 2.8 μm, almost twofold higher than those with three repeats (3R). In addition, the axial Young's modulus values derived from the persistence lengths, as well as their radial ones determined via nanoindentation experiments, were very low compared to amyloid fibrils made of other proteins. This sheds light on the weak intermolecular interaction acting between the paired β-sheets within Tau fibrils. This may play an important role in their association into high molecular weight assemblies, their dynamics, their persistence, their clearance in cells, and their propagation.
Collapse
|
22
|
Du L, Xu B, Zhao Z, Han X, Gao W, Shi S, Liu X, Chen Y, Wang Y, Sun S, Zhang L, Gao J, Ma G. Identification and Classification of Alzheimer's Disease Patients Using Novel Fractional Motion Model. Front Neurosci 2020; 14:767. [PMID: 33071719 PMCID: PMC7533574 DOI: 10.3389/fnins.2020.00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 01/06/2023] Open
Abstract
Most diffusion magnetic resonance imaging (dMRI) techniques use the mono-exponential model to describe the diffusion process of water in the brain. However, the observed dMRI signal decay curve deviates from the mono-exponential form. To solve this problem, the fractional motion (FM) model has been developed, which is regarded as a more appropriate model for describing the complex diffusion process in brain tissue. It is still unclear in the identification and classification of Alzheimer's disease (AD) patients using the FM model. The purpose of this study was to investigate the potential feasibility of FM model for differentiating AD patients from healthy controls and grading patients with AD. Twenty-four patients with AD and 11 healthy controls were included. The left and right hippocampus were selected as regions of interest (ROIs). The apparent diffusion coefficient (ADC) values and FM-related parameters, including the Noah exponent (α), the Hurst exponent (H), and the memory parameter (μ=H-1/α), were calculated and compared between AD patients and healthy controls and between mild AD and moderate AD patients using a two-sample t-test. The correlations between FM-related parameters α, H, μ, and ADC values and the cognitive functions assessed by mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scales were investigated using Pearson partial correlation analysis in patients with AD. The receiver-operating characteristic analysis was used to assess the differential performance. We found that the FM-related parameter α could be used to distinguish AD patients from healthy controls (P < 0.05) with greater sensitivity and specificity (left ROI, 0.917 and 0.636; right ROI, 0.917 and 0.727) and grade AD patients (P < 0.05) showed higher sensitivity and specificity (right ROI, 0.917, 0.75). The α was found to be positively correlated with MMSE (P < 0.05) and MoCA (P < 0.05) scores in patients with AD, indicating that the α values in the bilateral hippocampus were a potential MRI-based biomarker of disease severity in AD patients. This novel diffusion model may be useful for further understanding neuropathologic changes in patients with AD.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boyan Xu
- Beijing Intelligent Brain Cloud Inc., Beijing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Peking University, Beijing, China
| | - Xiaowei Han
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Sumin Shi
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhang
- Department of Science and Education, Shangluo Central Hospital, Shangluo, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Investigating the Structure of Neurotoxic Protein Aggregates Inside Cells. Trends Cell Biol 2020; 30:951-966. [PMID: 32981805 DOI: 10.1016/j.tcb.2020.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of people across the world, being particularly prevalent in the aging population. Despite huge research efforts, conclusive insights into the disease mechanisms are still lacking. Therefore, therapeutic strategies are limited to symptomatic treatments. A common histopathological hallmark of many neurodegenerative diseases is the presence of large pathognomonic protein aggregates, but their role in the disease pathology is unclear and subject to controversy. Here, we discuss imaging methods allowing investigation of these structures within their cellular environment: conventional electron microscopy (EM), super-resolution light microscopy (SR-LM), and cryo-electron tomography (cryo-ET). Multidisciplinary approaches are key for understanding neurodegenerative diseases and may contribute to the development of effective treatments. For simplicity, we focus on huntingtin aggregates, characteristic of Huntington's disease.
Collapse
|
24
|
Chibhabha F, Yaqi Y, Li F. Retinal involvement in Alzheimer's disease (AD): evidence and current progress on the non-invasive diagnosis and monitoring of AD-related pathology using the eye. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2019-0119/revneuro-2019-0119.xml. [PMID: 32804680 DOI: 10.1515/revneuro-2019-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a common form of age-related dementia that mostly affects the aging population. Clinically, it is a disease characterized by impaired memory and progressive cognitive decline. Although the pathological hallmarks of AD have been traditionally described with a general confinement in the brain, recent studies have shown similar pathological changes in the retina, which is a developmental outgrowth of the forebrain. These AD-related neurodegenerative changes in the retina have been implicated to cause early visual problems in AD even before cognitive impairment becomes apparent. With recent advances in research, the commonly held view that AD-related cerebral pathology causes visual dysfunction through disruption of central visual pathways has been re-examined. Currently, several studies have already explored how AD manifests in the retina and the possibility of using the same retina as a window to non-invasively examine AD-related pathology in the brain. Non-invasive screening of AD through the retina has the potential to improve on early detection and management of the disease since the majority of AD cases are usually diagnosed very late. The purpose of this review is to provide evidence on the involvement of the retina in AD and to suggest a possible direction for future research into the non-invasive screening, diagnosis, and monitoring of AD using the retina.
Collapse
Affiliation(s)
- Fidelis Chibhabha
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- Department of Anatomy, Faculty of Medicine, Midlands State University, P. Bag 9055, Senga, Gweru, Zimbabwe
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Yang Yaqi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| | - Feng Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510080,China
- and Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080,China
| |
Collapse
|
25
|
Kaniyappan S, Tepper K, Biernat J, Chandupatla RR, Hübschmann S, Irsen S, Bicher S, Klatt C, Mandelkow EM, Mandelkow E. FRET-based Tau seeding assay does not represent prion-like templated assembly of Tau filaments. Mol Neurodegener 2020; 15:39. [PMID: 32677995 PMCID: PMC7364478 DOI: 10.1186/s13024-020-00389-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
Tau aggregation into amyloid fibers based on the cross-beta structure is a hallmark of several Tauopathies, including Alzheimer Disease (AD). Trans-cellular propagation of Tau with pathological conformation has been suggested as a key disease mechanism. This is thought to cause the spreading of Tau pathology in AD by templated conversion of naive Tau in recipient cells into a pathological state, followed by assembly of pathological Tau fibers, similar to the mechanism of nucleated polymerization proposed for prion pathogenesis. In cell cultures, the process is often monitored by a FRET assay where the recipient cell expresses the Tau repeat domain (TauRD) with a pro-aggregant mutation, fused to GFP-based FRET pairs. Since the size of the reporter GFP (barrel of ~ 3 nm × 4 nm) is ~ 7 times larger than the β-strand distance (0.47 nm), this points to a potential steric clash. Hence, we investigated the influence of the GFP tag on TauFL or TauRD aggregation. Using biophysical methods (light scattering, atomic force microscopy (AFM), and scanning-transmission electron microscopy (STEM)), we found that the assembly of TauRD-GFP was severely inhibited and incompatible with that of Alzheimer filaments. These observations argue against the hypothesis that the propagation of Tau pathology in AD is caused by the prion-like templated aggregation of Tau protein, transmitted via cell-to-cell spreading of Tau. Thus, even though the observed local increase of FRET in recipient cells may be a valid hallmark of a pathological reaction, our data argue that it is caused by a process distinct from assembly of TauRD filaments.
Collapse
Affiliation(s)
- Senthilvelrajan Kaniyappan
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany. .,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany.
| | - Katharina Tepper
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Jacek Biernat
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | | | | | | | | | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.,CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany. .,CAESAR Research Center, Bonn, Germany.
| |
Collapse
|
26
|
Daude N, Kim C, Kang SG, Eskandari-Sedighi G, Haldiman T, Yang J, Fleck SC, Gomez-Cardona E, Han ZZ, Borrego-Ecija S, Wohlgemuth S, Julien O, Wille H, Molina-Porcel L, Gelpi E, Safar JG, Westaway D. Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation. Acta Neuropathol 2020; 139:1045-1070. [PMID: 32219515 PMCID: PMC7244472 DOI: 10.1007/s00401-020-02148-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/29/2023]
Abstract
Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Shelaine C Fleck
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sergi Borrego-Ecija
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
- Department of Neurology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:molecules25061267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer’s pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
- Correspondence: or (M.S.U.); (P.J.); Tel.: +880-1710220110 (M.S.U.); +33-3-26913-341 (P.J.)
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
- Correspondence: or (M.S.U.); (P.J.); Tel.: +880-1710220110 (M.S.U.); +33-3-26913-341 (P.J.)
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
28
|
Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat Commun 2020; 11:571. [PMID: 31996674 PMCID: PMC6989696 DOI: 10.1038/s41467-019-13745-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of the Tau protein into fibrils defines progression of neurodegenerative diseases, including Alzheimer’s Disease. The molecular basis for potentially toxic reactions of Tau aggregates is poorly understood. Here we show that π-stacking by Arginine side-chains drives protein binding to Tau fibrils. We mapped an aggregation-dependent interaction pattern of Tau. Fibrils recruit specifically aberrant interactors characterised by intrinsically disordered regions of atypical sequence features. Arginine residues are key to initiate these aberrant interactions. Crucial for scavenging is the guanidinium group of its side chain, not its charge, indicating a key role of π-stacking chemistry for driving aberrant fibril interactions. Remarkably, despite the non-hydrophobic interaction mode, the molecular chaperone Hsp90 can modulate aberrant fibril binding. Together, our data present a molecular mode of action for derailment of protein-protein interaction by neurotoxic fibrils. Tau fibril formation is a hallmark of Alzheimer’s disease. Here the authors reveal an aggregation-dependent protein interaction pattern of Tau and further show that π-stacking of the arginine side-chains drives aberrant protein binding to Tau fibrils.
Collapse
|
29
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Xue Y, Zhang Z, Wen C, Liu H, Wang S, Li J, Zhuge Q, Chen W, Ye Q. Characterization of Alzheimer's Disease Using Ultra-high b-values Apparent Diffusion Coefficient and Diffusion Kurtosis Imaging. Aging Dis 2019; 10:1026-1036. [PMID: 31595200 PMCID: PMC6764724 DOI: 10.14336/ad.2018.1129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the study is to investigate the diffusion characteristics of Alzheimer’s disease (AD) patients using an ultra-high b-values apparent diffusion coefficient (ADC_uh) and diffusion kurtosis imaging (DKI). A total of 31 AD patients and 20 healthy controls (HC) who underwent both MRI examination and clinical assessment were included in this study. Diffusion weighted imaging (DWI) was acquired with 14 b-values in the range of 0 and 5000 s/mm2. Diffusivity was analyzed in selected regions, including the amygdala (AMY), hippocampus (HIP), thalamus (THA), caudate (CAU), globus pallidus (GPA), lateral ventricles (LVe), white matter (WM) of the frontal lobe (FL), WM of the temporal lobe (TL), WM of the parietal lobe (PL) and centrum semiovale (CS). The mean, median, skewness and kurtosis of the conventional apparent diffusion coefficient (ADC), DKI (including two variables, Dapp and Kapp) and ADC_uh values were calculated for these selected regions. Compared to the HC group, the ADC values of AD group were significantly higher in the right HIP and right PL (WM), while the ADC_uh values of the AD group increased significantly in the WM of the bilateral TL and right CS. In the AD group, the Kapp values in the bilateral LVe, bilateral PL/left TL (WM) and right CS were lower than those in the HC group, while the Dapp value of the right PL (WM) increased. The ADC_uh value of the right TL was negatively correlated with MMSE (mean, r=-0.420, p=0.019). The ADC value and Dapp value have the same regions correlated with MMSE. Compared with the ADC_uh, combining ADC_uh and ADC parameters will result in a higher AUC (0.894, 95%CI=0.803-0.984, p=0.022). Comparing to ADC or DKI, ADC_uh has no significant difference in the detectability of AD, but ADC_uh can better reflect characteristic alternation in unconventional brain regions of AD patients.
Collapse
Affiliation(s)
- Yingnan Xue
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenhua Zhang
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caiyun Wen
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiru Liu
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suyuan Wang
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiance Li
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- 2Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Chen
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiong Ye
- 1Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
32
|
Zheng Q, Kebede MT, Kemeh MM, Islam S, Lee B, Bleck SD, Wurfl LA, Lazo ND. Inhibition of the Self-Assembly of Aβ and of Tau by Polyphenols: Mechanistic Studies. Molecules 2019; 24:E2316. [PMID: 31234523 PMCID: PMC6630797 DOI: 10.3390/molecules24122316] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
The amyloid-β (Aβ) peptide and tau protein are thought to play key neuropathogenic roles in Alzheimer's disease (AD). Both Aβ and tau self-assemble to form the two major pathological hallmarks of AD: amyloid plaques and neurofibrillary tangles, respectively. In this review, we show that naturally occurring polyphenols abundant in fruits, vegetables, red wine, and tea possess the ability to target pathways associated with the formation of assemblies of Aβ and tau. Polyphenols modulate the enzymatic processing of the amyloid-β precursor protein and inhibit toxic Aβ oligomerization by enhancing the clearance of Aβ42 monomer, modulating monomer-monomer interactions and remodeling oligomers to non-toxic forms. Additionally, polyphenols modulate tau hyperphosphorylation and inhibit tau β-sheet formation. The anti-Aβ-self-assembly and anti-tau-self-assembly effects of polyphenols increase their potential as preventive or therapeutic agents against AD, a complex disease that involves many pathological mechanisms.
Collapse
Affiliation(s)
- Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Micheal T Kebede
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Merc M Kemeh
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Saadman Islam
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Bethany Lee
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Stuart D Bleck
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Liliana A Wurfl
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Noel D Lazo
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| |
Collapse
|
33
|
Kumar H, Udgaonkar JB. Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:922-932. [PMID: 30986567 DOI: 10.1016/j.bbapap.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
The dynamic nature of the tau protein under physiological conditions is likely to be critical for it to perform its diverse functions inside a cell. Under some conditions, this intrinsically disordered protein assembles into pathogenic aggregates that are self-perpetuating, toxic and infectious in nature. The role of liquid-liquid phase separation in the initiation of the aggregation reaction remains to be delineated. Depending on the nature of the aggregate, its structure, and its localization, neurodegenerative disorders with diverse clinical features are manifested. The prion-like mechanism by which these aggregates propagate and spread across the brain is not well understood. Various factors (PTMs, mutations) have been strongly associated with the pathological aggregates of tau. However, little is known about how these factors modulate the pathological properties linked to aggregation. This review describes the current progress towards understanding the mechanism of propagation of tau aggregates.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
34
|
Huseby CJ, Bundschuh R, Kuret J. The role of annealing and fragmentation in human tau aggregation dynamics. J Biol Chem 2019; 294:4728-4737. [PMID: 30745358 DOI: 10.1074/jbc.ra118.006943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/25/2019] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease pathogenesis is associated with the conversion of monomeric tau protein into filamentous aggregates. Because both toxicity and prion-like spread of pathogenic tau depend in part on aggregate size, the processes that underlie filament formation and size distribution are of special importance. Here, using a combination of biophysical and computational approaches, we investigated the fibrillation dynamics of the human tau isoform 2N4R. We found that tau filaments engage in a previously uncharacterized secondary process involving end-to-end annealing and that rationalization of empirical aggregation data composed of total protomer concentrations and fibril length distributions requires inclusion of this process along with filament fragmentation. We noted that annealing of 2N4R tau filaments is robust, with an intrinsic association rate constant of a magnitude similar to that mediating monomer addition and consistent with diffusion-mediated protein-protein interactions in the absence of long-range attractive forces. In contrast, secondary nucleation on the surface of tau filaments did not detectably contribute to tau aggregation dynamics. These results indicate that tau filament ends engage in a range of homotypic interactions involving monomers, oligomers, and filaments. They further indicate that, in the case of tau protein, fibril annealing and fragmentation along with primary nucleation and elongation are the major processes controlling filament size distribution.
Collapse
Affiliation(s)
| | - Ralf Bundschuh
- From the Interdisciplinary Biophysics Graduate Program.,Departments of Physics, Internal Medicine, and Chemistry and Biochemistry, and
| | - Jeff Kuret
- From the Interdisciplinary Biophysics Graduate Program, .,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
35
|
Liquid-Liquid Phase Separation of Tau Protein in Neurobiology and Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:341-357. [PMID: 32096048 DOI: 10.1007/978-981-32-9358-8_25] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is an intrinsically unfolded protein that, aside from its important role in the regulation of microtubule stability, harbors an emerging number of other functions. In order to find explanations for some longtime unsolved aspects of neuronal tau biology in the brain, we may have to step aside from observing tau molecules in dilute solutions, and from assuming a mono-molecular physicochemical behavior of molecules in the cell. Liquid condensed phases of tau proteins, which form through the biophysical process of liquid-liquid phase separation (LLPS), behave like liquids and thereby offer a new regime of interactions in the cell. So far, there is evidence that tau condensates (i) play a role for neurodegenerative diseases by transitioning into aggregated forms of tau, (ii) are involved in microtubule binding, nucleation, and bundling, and (iii) are interacting with RNA molecules, which could impact RNA homeostasis and transcription. Likewise the functions of monomeric tau, also tau condensation is regulated by post-translational modifications and can be influenced by the local environment, for example in neuronal sub-compartments. However, we are just beginning to understand the physicochemistry of tau LLPS, and the biological role of tau condensation has to be explored in the next years.
Collapse
|
36
|
Ghag G, Bhatt N, Cantu DV, Guerrero‐Munoz MJ, Ellsworth A, Sengupta U, Kayed R. Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci 2018; 27:1901-1909. [PMID: 30125425 PMCID: PMC6201727 DOI: 10.1002/pro.3499] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022]
Abstract
Several studies have proposed that fibrillary aggregates of tau and other amyloidogenic proteins are neurotoxic and result in numerous neurodegenerative diseases. However, these studies usually involve sonication or extrusion through needles before experimentation. As a consequence, these methods may fragment large aggregates producing a mixture of aggregated species rather than intact fibrils. Therefore, the results of these experiments may be reflective of other amyloidogenic species, such as oligomers and/or protofibrils/short fibrils. To investigate the effects of sonication on the aggregation of tau and other amyloidogenic proteins, fibrils were prepared and well characterized, then sonicated and evaluated by various biochemical and biophysical methods to identify the aggregated species present. We found that indeed a mixture of aggregated species was present along with short fibrils indicating that sonication leads to impure fibril samples and should be analyzed with caution. Our results corroborate the previous studies showing that sonication of prion and Aβ fibrils leads to the formation of toxic, soluble aggregates. We also show that the oligomeric forms are the most toxic species although it is unclear how sonication causes oligomer formation. Recent results suggest that these small toxic oligomers produced by sonication, rather than the stable fibrillar structures, are prion-like in nature displaying seeding and cross-seeding behavior.
Collapse
Affiliation(s)
- Gaurav Ghag
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Daniel V. Cantu
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Marcos J. Guerrero‐Munoz
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas 77555
- Department of NeurologyUniversity of Texas Medical BranchGalvestonTexas 77555
| |
Collapse
|
37
|
Mari SA, Wegmann S, Tepper K, Hyman BT, Mandelkow EM, Mandelkow E, Müller DJ. Reversible Cation-Selective Attachment and Self-Assembly of Human Tau on Supported Brain Lipid Membranes. NANO LETTERS 2018; 18:3271-3281. [PMID: 29644863 PMCID: PMC6588182 DOI: 10.1021/acs.nanolett.8b01085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Misfolding and aggregation of the neuronal, microtubule-associated protein tau is involved in the pathogenesis of Alzheimer's disease and tauopathies. It has been proposed that neuronal membranes could play a role in tau release, internalization, and aggregation and that tau aggregates could exert toxicity via membrane permeabilization. Whether and how tau interacts with lipid membranes remains a matter of discussion. Here, we characterize the interaction of full-length human tau (htau40) with supported lipid membranes (SLMs) made from brain total lipid extract by time-lapse high-resolution atomic force microscopy (AFM). We observe that tau attaches to brain lipid membranes where it self-assembles in a cation-dependent manner. Sodium triggers the attachment, self-assembly, and growth, whereas potassium inhibits these processes. Moreover, tau assemblies are stable in the presence of sodium and lithium but disassemble in the presence of potassium and rubidium. Whereas the pseudorepeat domains (R1-R4) of htau40 promote the sodium-dependent attachment to the membrane and stabilize the tau assemblies, the N-terminal region promotes tau self-assembly and growth.
Collapse
Affiliation(s)
- Stefania A. Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Susanne Wegmann
- Department of Neurology, Alzheimer’s Disease Research Laboratory, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Katharina Tepper
- Department of Neurology, Alzheimer’s Disease Research Laboratory, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, United States
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Bradley T. Hyman
- Department of Neurology, Alzheimer’s Disease Research Laboratory, Harvard Medical School, Massachusetts General Hospital, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Max-Planck-Institute for Neurological Research Cologne, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Max-Planck-Institute for Neurological Research Cologne, Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- Corresponding Author. Phone: 0041-61-387-3307
| |
Collapse
|
38
|
Kundel F, Tosatto L, Whiten DR, Wirthensohn DC, Horrocks MH, Klenerman D. Shedding light on aberrant interactions - a review of modern tools for studying protein aggregates. FEBS J 2018; 285:3604-3630. [PMID: 29453901 DOI: 10.1111/febs.14409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/27/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The link between protein aggregation and neurodegenerative disease is well established. However, given the heterogeneity of species formed during the aggregation process, it is difficult to delineate details of the molecular events involved in generating pathological aggregates from those producing soluble monomers. As aberrant aggregates are possible pharmacological targets for the treatment of neurodegenerative diseases, the need to observe and characterise soluble oligomers has pushed traditional biophysical techniques to their limits, leading to the development of a plethora of new tools capable of detecting soluble oligomers with high precision and specificity. In this review, we discuss a range of modern biophysical techniques that have been developed to study protein aggregation, and give an overview of how they have been used to understand, in detail, the aberrant aggregation of amyloidogenic proteins associated with the two most common neurodegenerative disorders, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | - Laura Tosatto
- Centre for Integrative Biology, Università degli Studi di Trento, Italy
| | | | | | | | - David Klenerman
- Department of Chemistry, University of Cambridge, UK.,UK Dementia Research Institute, University of Cambridge, UK
| |
Collapse
|
39
|
Delguste M, Koehler M, Alsteens D. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM. Methods Mol Biol 2018; 1814:483-514. [PMID: 29956251 DOI: 10.1007/978-1-4939-8591-3_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool that allows biological samples ranging from single receptors to membranes and tissues to be probed. Force-distance curve-based AFM (FD-based AFM) nowadays enables to image living cells at high resolution and simultaneously localize and characterize specific ligand-receptor binding events. In this chapter, we present how FD-based AFM permits to investigate virus binding to living mammalian cells and quantify the kinetic and thermodynamic parameters that describe the free-energy landscape of the single virus-receptor-mediated binding. Using a model virus, we probed the specific interaction with cells expressing its cognate receptor and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthens the attachment of the virus to the cell.
Collapse
Affiliation(s)
- Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
40
|
Donhauser ZJ, Saunders JT, D'Urso DS, Garrett TA. Dimerization and Long-Range Repulsion Established by Both Termini of the Microtubule-Associated Protein Tau. Biochemistry 2017; 56:5900-5909. [PMID: 29039655 DOI: 10.1021/acs.biochem.7b00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tau is a microtubule-associated protein found in neuronal axons that has several well-known functions, such as promoting microtubule polymerization, stabilizing microtubules against depolymerization, and spatially organizing microtubules in axons. Two contrasting models have been previously described to explain tau's ability to organize the spacing between microtubules: complementary dimerization of the projection domains of taus on adjacent microtubules or tau's projection domain acting as a polyelectrolyte brush. In this study, atomic force microscopy was used to interrogate intermolecular interactions between layers of tau protein immobilized on mica substrates and on silicon nitride atomic force microscope tips. On these surfaces, tau adopts an orientation comparable to that when bound to microtubules, with the basic microtubule binding domain immobilized and the acidic domains extending into solution. Force-distance curves collected via atomic force microscopy reveal that full length human tau, when assembled into dense surface-bound layers, can participate in attractive electrostatic interactions consistent with the previously reported dimerization model. However, modulating the ionic strength of the surrounding solution can change the structure of these layers to produce purely repulsive interactions consistent with a polyelectrolyte brush structure, thus providing biophysical evidence to support both the zipper and brush models. In addition, a pair of projection domain deletion mutants were examined to investigate whether the projection domain of the protein is essential for the dimerization and brush models. Force-distance curves collected on layers of these proteins demonstrate that the C-terminus can play a role analogous to that of the projection domain.
Collapse
Affiliation(s)
- Zachary J Donhauser
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| | - Jared T Saunders
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| | - Dennis S D'Urso
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| | - Teresa A Garrett
- Department of Chemistry, Vassar College , Poughkeepsie, New York 12601, United States
| |
Collapse
|
41
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
42
|
Bäuerlein FJB, Saha I, Mishra A, Kalemanov M, Martínez-Sánchez A, Klein R, Dudanova I, Hipp MS, Hartl FU, Baumeister W, Fernández-Busnadiego R. In Situ Architecture and Cellular Interactions of PolyQ Inclusions. Cell 2017; 171:179-187.e10. [PMID: 28890085 DOI: 10.1016/j.cell.2017.08.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023]
Abstract
Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Felix J B Bäuerlein
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Itika Saha
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Archana Mishra
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Maria Kalemanov
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Graduate School of Quantitative Biosciences Munich, 81337 Munich, Germany
| | - Antonio Martínez-Sánchez
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Irina Dudanova
- Department of Molecules, Signaling, and Development, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany.
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
43
|
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the most common cause of dementia among the elderly population. The good correlation between the density and neocortical spread of neurofibrillary tangles (NFTs) and the severity of cognitive impairment offers an opportunity to use a noninvasive imaging technique such as positron emission tomography (PET) for early diagnosis and staging of the disease. PET imaging of NFTs holds promise not only as a diagnostic tool but also because it may enable the development of disease-modifying therapeutics for AD. In this review, we focus on the structural diversity of tau PET tracers, the challenges related to identifying high-affinity and highly selective NFT ligands, and recent progress in the clinical development of tau PET radioligands.
Collapse
Affiliation(s)
- Hartmuth C Kolb
- Janssen Research and Development, Neuroscience Biomarkers, San Diego, California 92121
| | - José Ignacio Andrés
- Janssen Research and Development, Discovery Sciences, Janssen-Cilag S.A., 45007 Toledo, Spain
| |
Collapse
|
44
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 510] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
45
|
Ramachandran G. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils. Methods Mol Biol 2017; 1523:113-128. [PMID: 27975247 DOI: 10.1007/978-1-4939-6598-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL, 60208, USA.
| |
Collapse
|
46
|
Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman BT. Formation, release, and internalization of stable tau oligomers in cells. J Neurochem 2016; 139:1163-1174. [PMID: 27731899 DOI: 10.1111/jnc.13866] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
Tau is a neuronal microtubule-binding protein that, in Alzheimer's disease and other neurodegenerative diseases, can form oligomeric and large fibrillar aggregates, which deposit in neurofibrillary tangles. Tau's physiological state of multimerization appears to vary across conditions, and a stable dimeric form of soluble tau has been suggested from experiments using recombinant tau in vitro. We tested if tau dimerization or oligomerization, also occurs in cells, and if soluble tau oligomers are relevant for the release and internalization of tau. We developed a sensitive tau split-luciferase assay to show the rapid intracellular formation of stable tau dimers that are released and taken up by cells. Our data further suggest that tau dimerization can be accelerated slightly by aggregation catalysts. We conclude that tau oligomers are a stable physiological form of tau, and that tau oligomerization does not necessarily lead to tau aggregation.
Collapse
Affiliation(s)
- Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Nicholls
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuko Takeda
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, MassGeneral Institute of Neurodegenerative Diseases (MIND), Charlestown, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Abstract
In vivo imaging of tau deposits is providing a better understanding of the temporal and spatial tau deposition in the brain, allowing a more comprehensive insight into the causes, diagnoses, and potentially treatment of tauopathies such as Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, chronic traumatic encephalopathy, and some variants of frontotemporal lobar degeneration. The assessment of tau deposition in the brain over time will allow a deeper understanding of the relationship between tau and other variables such as cognition, genotype, and neurodegeneration, as well as assessing the role tau plays in ageing. Preliminary human studies suggest that tau imaging could also be used as a diagnostic, prognostic, and theranostic biomarker, as well as a surrogate marker for target engagement, patient recruitment, and efficacy monitoring for disease-specific therapeutic trials.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Medicine, The University of Melbourne, Melbourne, Australia
| | | | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Melbourne, Australia; Department of Medicine, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
48
|
STED imaging of tau filaments in Alzheimer's disease cortical grey matter. J Struct Biol 2016; 195:345-352. [PMID: 27402534 DOI: 10.1016/j.jsb.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) involves the propagation of filaments of tau protein throughout the cerebral cortex. Imaging tau filaments and oligomers in human brain at high resolution would help contribute insight into the mechanism and progression of tauopathic diseases. STED microscopy is a nano-scale imaging technique and we aimed to test the abilities of this method for resolving tau structures within human brain. Using autopsied 50μm AD brain sections, we demonstrate that STED microscopy can resolve immunolabelled tau filaments at 77nm resolution. Ribbon-like tau filaments imaged by STED appeared smooth along their axis with limited axial undulations. STED also resolved 70-80nm wide tau puncta. Of the fluorophores tested, STAR635p was optimal for STED imaging in this tissue. This was in part due to brain tissue autofluorescence within the lower wavelength ranges (488-590nm). Further, the stability and minimal photobleaching of STAR635p allowed STED z-stacks of neurons packed with tau filaments (neurofibrillary tangles) to be collated. There was no loss of x-y image resolution of individual tau filaments through the 20μm z-stack. This demonstrates that STED can contribute to nano-scale analysis and characterisation of pathologies within banked human autopsied brain tissue. Resolving tau structures at this level of resolution provides promising avenues for understanding mechanisms of pathology propagation in the different tauopathies as well as illuminating what contributes to disease heterogeneity.
Collapse
|
49
|
Xu L, Zheng J, Margittai M, Nussinov R, Ma B. How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability? ACS Chem Neurosci 2016; 7:565-75. [PMID: 26854860 PMCID: PMC7831686 DOI: 10.1021/acschemneuro.5b00294] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tau proteins are hyperphosphorylated at common sites in their N- and C-terminal domains in at least three neurodegenerative diseases, Parkinson, dementia with Lewy bodies, and Alzheimer's, suggesting specific pathology but general mechanism. Full-length human tau filament comprises a rigid core and a two-layered fuzzy coat. Tau is categorized into two groups of isoforms, with either four repeats (R1-R4) or three repeats (R1, R3, and R4); their truncated constructs are respectively called K18 and K19. Using multiscale molecular dynamics simulations, we explored the conformational consequences of hyperhposphorylation on tau's repeats. Our lower conformational energy filament models suggest a rigid filament core with a radius of ∼30 to 40 Å and an outer layer with a thickness of ∼140 Å consisting of a double-layered polyelectrolyte. The presence of the phosphorylated terminal domains alters the relative stabilities in the K18 ensemble, thus shifting the populations of the full-length filaments. However, the structure with the straight repeats in the core region is still the most stable, similar to the truncated K18 peptide species without the N- and C-terminus. Our simulations across different scales of resolution consistently reveal that hyperphosphorylation of the two terminal domains decreases the attractive interactions among the N- and C-terminus and repeat domain. To date, the relationship on the conformational level between phosphorylation and aggregation has not been understood. Our results suggest that the exposure of the repeat domain upon hyperphosphorylation could enhance tau filament aggregation. Thus, we discovered that even though these neurodegenerative diseases vary and their associated tau filaments are phosphorylated to different extents, remarkably, the three pathologies appear to share a common tau aggregation mechanism.
Collapse
Affiliation(s)
- Liang Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States
| | - Ruth Nussinov
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Basic Research Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702, United States
| | - Buyong Ma
- Basic Research Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland 21702, United States
| |
Collapse
|
50
|
Eftekharzadeh B, Hyman BT, Wegmann S. Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mech Ageing Dev 2016; 156:1-13. [PMID: 27005270 DOI: 10.1016/j.mad.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/12/2016] [Accepted: 03/03/2016] [Indexed: 01/09/2023]
Abstract
The progression of many neurodegenerative diseases is assumed to be caused by misfolding of specific characteristic diseases related proteins, resulting in aggregation and fibril formation of these proteins. Protein misfolding associated age related diseases, although different in disease manifestations, share striking similarities. In all cases, one disease protein aggregates and loses its function or additionally shows a toxic gain of function. However, the clear link between these individual amyloid-like protein aggregates and cellular toxicity is often still uncertain. The similar features of protein misfolding and aggregation in this group of proteins, all involved in age related neurodegenerative diseases, results in high interest in characterization of their structural properties. We review here recent findings on structural properties of some age related disease proteins, in the context of their biological importance in disease.
Collapse
Affiliation(s)
- Bahareh Eftekharzadeh
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA.
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital and Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
| |
Collapse
|