1
|
Liu H, Hu Z, Li M, Yang Y, Lu S, Rao X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J Biomed Sci 2023; 30:29. [PMID: 37101261 PMCID: PMC10131408 DOI: 10.1186/s12929-023-00919-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Gram-positive (G+) bacterial infection is a great burden to both healthcare and community medical resources. As a result of the increasing prevalence of multidrug-resistant G+ bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), novel antimicrobial agents must urgently be developed for the treatment of infections caused by G+ bacteria. Endolysins are bacteriophage (phage)-encoded enzymes that can specifically hydrolyze the bacterial cell wall and quickly kill bacteria. Bacterial resistance to endolysins is low. Therefore, endolysins are considered promising alternatives for solving the mounting resistance problem. In this review, endolysins derived from phages targeting G+ bacteria were classified based on their structural characteristics. The active mechanisms, efficacy, and advantages of endolysins as antibacterial drug candidates were summarized. Moreover, the remarkable potential of phage endolysins in the treatment of G+ bacterial infections was described. In addition, the safety of endolysins, challenges, and possible solutions were addressed. Notwithstanding the limitations of endolysins, the trends in development indicate that endolysin-based drugs will be approved in the near future. Overall, this review presents crucial information of the current progress involving endolysins as potential therapeutic agents, and it provides a guideline for biomaterial researchers who are devoting themselves to fighting against bacterial infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Barkova IA, Izhberdeeva MP, Sautkina AA. Endolysins of bacteriophages. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Bacteriophage endolysins are a biologically active substances that play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells.
Aim summarization of the data on the biology, structure, mechanisms of action of bacteriophage endolysins, as well as on preparations based on them, which are at different stages of research.
The results of studies of bacterial endolysins over the past 20 years were searched using the Internet resources PubMed, Web of Science, Scopus in English for the keywords: lysin, bacteriophages, holin, antibiotic resistance.
The analysis of literature data showed that the structure of phage endolysins of Gram-positive and Gram-negative bacteria differs from each other and reflects differences in their architecture due to variation in the cell wall composition of these two major bacterial groups. Depending on the cleavable bond in peptidoglycan, endolysins can be divided into at least five different groups: glycosidases (two groups aminidases and muramidases), endopeptidases, specific amidogyrolases, and lytic transglycosylases. To date, endolysins effective against a number of pathogens have been studied, including Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Staphylococcus aureus, Mycobacterium spp., Pseudomonas aeruginosa, etc. A number of studies have shown the therapeutic potential of endolysins in combating antibiotic-resistant infections.
Collapse
|
3
|
Lysozyme and Its Application as Antibacterial Agent in Food Industry. Molecules 2022; 27:molecules27196305. [PMID: 36234848 PMCID: PMC9572377 DOI: 10.3390/molecules27196305] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lysozymes are hydrolytic enzymes characterized by their ability to cleave the β-(1,4)-glycosidic bonds in peptidoglycan, a major structural component of the bacterial cell wall. This hydrolysis action compromises the integrity of the cell wall, causing the lysis of bacteria. For more than 80 years, its role of antibacterial defense in animals has been renowned, and it is also used as a preservative in foods and pharmaceuticals. In order to improve the antimicrobial efficacy of lysozyme, extensive research has been intended for its modifications. This manuscript reviews the natural antibiotic compound lysozyme with reference to its catalytic and non-catalytic mode of antibacterial action, lysozyme types, susceptibility and resistance of bacteria, modification of lysozyme molecules, and its applications in the food industry.
Collapse
|
4
|
Wong KY, Megat Mazhar Khair MH, Song AAL, Masarudin MJ, Chong CM, In LLA, Teo MYM. Endolysins against Streptococci as an antibiotic alternative. Front Microbiol 2022; 13:935145. [PMID: 35983327 PMCID: PMC9378833 DOI: 10.3389/fmicb.2022.935145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance has called for a race to uncover alternatives to existing antibiotics. Phage therapy is one of the explored alternatives, including the use of endolysins, which are phage-encoded peptidoglycan hydrolases responsible for bacterial lysis. Endolysins have been extensively researched in different fields, including medicine, food, and agricultural applications. While the target specificity of various endolysins varies greatly between species, this current review focuses specifically on streptococcal endolysins. Streptococcus spp. causes numerous infections, from the common strep throat to much more serious life-threatening infections such as pneumonia and meningitis. It is reported as a major crisis in various industries, causing systemic infections associated with high mortality and morbidity, as well as economic losses, especially in the agricultural industry. This review highlights the types of catalytic and cell wall-binding domains found in streptococcal endolysins and gives a comprehensive account of the lytic ability of both native and engineered streptococcal endolysins studied thus far, as well as its potential application across different industries. Finally, it gives an overview of the advantages and limitations of these enzyme-based antibiotics, which has caused the term enzybiotics to be conferred to it.
Collapse
Affiliation(s)
- Kuan Yee Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- Lionel Lian Aun In,
| | - Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
- *Correspondence: Michelle Yee Mun Teo,
| |
Collapse
|
5
|
Wang Z, Liu X, Shi Z, Zhao R, Ji Y, Tang F, Guan Y, Feng X, Sun C, Lei L, Han W, Du XD, Gu J. A novel lysin Ply1228 provides efficient protection against Streptococcus suis type 2 infection in a murine bacteremia model. Vet Microbiol 2022; 268:109425. [PMID: 35397385 DOI: 10.1016/j.vetmic.2022.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Streptococcus suis is an important zoonotic pathogen that is difficult to control with antibiotics due to the widespread development of multidrug-resistant strains. Phage lysin is considered a potential therapeutic agent to combat S. suis. In this study, the novel lysin Ply1228 derived from the prophage of S. suis type 12 was identified. Bioinformatics analysis showed that Ply1228 contains a CHAP catalytic domain, which is a binding domain composed of a CW-7 binding motif and an amidase-2 catalytic domain. The CHAP catalytic domain is essential for the bactericidal function of lysin Ply1228 and does not depend on the presence of Ca2+. C34 and H99 of the CHAP domain were identified as the key active sites. The CW-7 binding motif plays a key binding role in Ply1228. Ply1228 can specifically lyse S. suis, including types 2, 3, 7, 9, 10, 12, 14, and 27. Within 10 min, Ply1228 killed 4 log of the S. suis population, which had a starting concentration of approximately 107 CFU/mL. In addition, Ply1228 showed favourable thermal and pH stability. The therapeutic effect of Ply1228 was further investigated in a mouse model of S. suis bacteremia. The administration of the lysin Ply1228 (200 μg/mouse) 1 h after the intraperitoneal injection of 2 × MLD of SS2 strain SC225 was sufficient to protect the mice (P < 0.0001) and significantly reduced the bacterial loads in the blood and organs (livers, spleens, lungs and kidneys). The levels of inflammation and histopathological damage in infected mice were effectively relieved after the Ply1228 treatment. These results indicate that Ply1228 might represent a new enzybiotic candidate for S. suis infection.
Collapse
Affiliation(s)
- Zijing Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xiao Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Zhaoxin Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Rihong Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Yalu Ji
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuan Guan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Xin Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Changjiang Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
Jung D, Gaudreau-Lapierre A, Alnahhas E, Asraoui S. Bacteriophage-Liposomes Complex, a Bi-therapy System to Target Streptococcus pneumonia and Biofilm: A Research Protocol. UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL 2021; 5:1-10. [DOI: 10.26685/urncst.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Introduction: Streptococcus pneumoniae is a gram-positive bacterium, which is the leading cause of death for young children, elderly population, and immunocompromised patients. Its ability to mutate and become resistant to some of the strongest antibiotics makes them difficult to treat and increases the risk of disease spread. Although the development of stronger antibiotics to treat such microbes may be an option, they potentially pose a dangerous threat to the body. As such, a viable treatment option to fight against antimicrobial resistance has yet been found.
Methods: The study focuses on utilizing a bi-therapy system to target S. pneumoniae in biofilm, which is the site of emerging antibiotic resistant mutants, by creating levofloxacin-liposomes carrying phages and testing them both in vitro and in vivo.
Anticipated results: Using bacteriophage therapy and applying bacteriophage-antibiotic synergy, it is hoped to augment the potency of the treatment while lowering its side-effects. The Cp-1 bacteriophage-liposomes complexes are expected to be specific to the S. pneumoniae to carry antibiotics to sites of infection.
Discussion: The therapy could ensure targeted bacterial lysis and site-directed delivery of low-dose drugs to decrease the toxicity effect of the antibiotics. Once the efficacy is established and is proven to be significant, its potency can be tested in BALB/cByJ mice models before bringing this therapy to animal trials then human clinical trials.
Conclusion: Bacteriophages are very attractive therapeutic agents that effectively target pathogenic bacteria, safe for the human body, and highly modifiable to combat newly emerging bacterial threats. In addition to its many benefits, the use of bacteriophages could significantly reduce healthcare costs. The potential use of bacteriophages-liposomes complexes could be translated to treat respiratory infections in humans after confirming its efficacy in vitro and in vivo studies.
Collapse
|
7
|
Fernández L, Cima-Cabal MD, Duarte AC, Rodríguez A, García-Suárez MDM, García P. Gram-Positive Pneumonia: Possibilities Offered by Phage Therapy. Antibiotics (Basel) 2021; 10:antibiotics10081000. [PMID: 34439050 PMCID: PMC8388979 DOI: 10.3390/antibiotics10081000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Pneumonia is an acute pulmonary infection whose high hospitalization and mortality rates can, on occasion, bring healthcare systems to the brink of collapse. Both viral and bacterial pneumonia are uncovering many gaps in our understanding of host–pathogen interactions, and are testing the effectiveness of the currently available antimicrobial strategies. In the case of bacterial pneumonia, the main challenge is antibiotic resistance, which is only expected to increase during the current pandemic due to the widespread use of antibiotics to prevent secondary infections in COVID-19 patients. As a result, alternative therapeutics will be necessary to keep this disease under control. This review evaluates the advantages of phage therapy to treat lung bacterial infections, in particular those caused by the Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus, while also highlighting the regulatory impediments that hamper its clinical use and the difficulties associated with phage research.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; (L.F.); (A.C.D.); (A.R.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - María Dolores Cima-Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de la Rioja (UNIR), Av. de la Paz, 137, 26006 Logroño, La Rioja, Spain;
| | - Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; (L.F.); (A.C.D.); (A.R.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; (L.F.); (A.C.D.); (A.R.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - María del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de la Rioja (UNIR), Av. de la Paz, 137, 26006 Logroño, La Rioja, Spain;
- Correspondence: (M.d.M.G.-S.); (P.G.)
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; (L.F.); (A.C.D.); (A.R.)
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Correspondence: (M.d.M.G.-S.); (P.G.)
| |
Collapse
|
8
|
PhaLP: A Database for the Study of Phage Lytic Proteins and Their Evolution. Viruses 2021; 13:v13071240. [PMID: 34206969 PMCID: PMC8310338 DOI: 10.3390/v13071240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/22/2023] Open
Abstract
Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics, so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP, a database of phage lytic proteins, which serves as an open portal to facilitate the development of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly, datamining and interpretable machine learning approaches were adopted to reveal host-specific design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as a starting point for the broad community of enzybiotic researchers, while the steadily improving evolutionary insights will serve as a natural inspiration for protein engineers.
Collapse
|
9
|
Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, Sanmukh S, El-Shibiny A. Phage-Encoded Endolysins. Antibiotics (Basel) 2021; 10:124. [PMID: 33525684 PMCID: PMC7912344 DOI: 10.3390/antibiotics10020124] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Due to the global emergence of antibiotic resistance, there has been an increase in research surrounding endolysins as an alternative therapeutic. Endolysins are phage-encoded enzymes, utilized by mature phage virions to hydrolyze the cell wall from within. There is significant evidence that proves the ability of endolysins to degrade the peptidoglycan externally without the assistance of phage. Thus, their incorporation in therapeutic strategies has opened new options for therapeutic application against bacterial infections in the human and veterinary sectors, as well as within the agricultural and biotechnology sectors. While endolysins show promising results within the laboratory, it is important to document their resistance, safety, and immunogenicity for in-vivo application. This review aims to provide new insights into the synergy between endolysins and antibiotics, as well as the formulation of endolysins. Thus, it provides crucial information for clinical trials involving endolysins.
Collapse
Affiliation(s)
- Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Tamil Nadu 626115, India
| | - Oluwasegun I Daramola
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Samar Ragab
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Stephanie Lynch
- School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tolulope J Oduselu
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Mehmood Khan
- Center for Biosafety Mega-Science, Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Akomolafe Ayobami
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 24090, Pakistan
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Swapnil Sanmukh
- Bacterial Infections: Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza 12578, Egypt
| |
Collapse
|
10
|
van der Kamp I, Draper LA, Smith MK, Buttimer C, Ross RP, Hill C. A New Phage Lysin Isolated from the Oral Microbiome Targeting Streptococcus pneumoniae. Pharmaceuticals (Basel) 2020; 13:ph13120478. [PMID: 33352708 PMCID: PMC7767030 DOI: 10.3390/ph13120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae is highly pathogenic and causes several mucosal and invasive infections. Due to the rising number of multidrug-resistant (MDR) strains of S. pneumoniae, new antimicrobials with alternative mechanisms of action are urgently needed. In this study, we identified two new Streptococcal phages from the oral microbiome, 23TH and SA01. Their lysins, 23TH_48 and SA01_53, were recombinantly expressed, characterized and tested for their lethality. SA01_53 was found to only lyse its host strain of S. anginosus, while 23TH_48 was found to possess a broader lytic activity beyond its host strain of S. infantis, with several S. pneumoniae isolates sensitive to its lytic activity. 23TH_48 at a concentration of five activity units per mL (U/mL) was found to reduce cell counts of S. pneumoniae DSM 24048 by 4 log10 colony forming units per mL (CFU/mL) within 1 h and effectively prevented and destroyed biofilms of S. pneumoniae R6 at concentrations of 228.8 ng/µL and 14.3 ng/µL, respectively. Given its high lytic activity, 23TH_48 could prove to be a promising candidate to help combat pneumococcal infections.
Collapse
Affiliation(s)
- Imme van der Kamp
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (I.v.d.K.); (L.A.D.); (M.K.S.); (C.B.); (R.P.R.)
| | - Lorraine A. Draper
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (I.v.d.K.); (L.A.D.); (M.K.S.); (C.B.); (R.P.R.)
| | - Muireann K. Smith
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (I.v.d.K.); (L.A.D.); (M.K.S.); (C.B.); (R.P.R.)
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (I.v.d.K.); (L.A.D.); (M.K.S.); (C.B.); (R.P.R.)
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (I.v.d.K.); (L.A.D.); (M.K.S.); (C.B.); (R.P.R.)
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; (I.v.d.K.); (L.A.D.); (M.K.S.); (C.B.); (R.P.R.)
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
- Correspondence:
| |
Collapse
|
11
|
A Choline-Recognizing Monomeric Lysin, ClyJ-3m, Shows Elevated Activity against Streptococcus pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00311-20. [PMID: 32958710 DOI: 10.1128/aac.00311-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022] Open
Abstract
Streptococcus pneumoniae is a leading pathogen for bacterial pneumonia, which can be treated with bacteriophage lysins harboring a conserved choline binding module (CBM). Such lysins regularly function as choline-recognizing dimers. Previously, we reported a pneumococcus-specific lysin ClyJ comprising the binding domain from the putative endolysin gp20 from the Streptococcus phage SPSL1 and the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain from the PlyC lysin. A variant of ClyJ with a shortened linker, i.e., ClyJ-3, shows improved activity and reduced cytotoxicity. Resembling typical CBM-containing lysins, ClyJ-3 dimerized upon binding with choline. Herein, we further report a choline-recognizing variant of ClyJ-3, i.e., ClyJ-3m, constructed by deleting its C-terminal tail. Biochemical characterization showed that ClyJ-3m remains a monomer after it binds to choline yet exhibits improved bactericidal activity against multiple pneumococcal strains with different serotypes. In an S. pneumoniae-infected bacteremia model, a single intraperitoneal administration of 2.32 μg/mouse of ClyJ-3m showed 70% protection, while only 20% of mice survived in the group receiving an equal dose of ClyJ-3 (P < 0.05). A pharmacokinetic analysis following single intravenously doses of 0.29 and 1.16 mg/kg of ClyJ-3 or ClyJ-3m in BALB/c mice revealed that ClyJ-3m shows a similar half-life but less clearance and a greater area under curve than ClyJ-3. Taken together, the choline-recognizing monomer ClyJ-3m exhibited enhanced bactericidal activity and improved pharmacokinetic proprieties compared to those of its parental ClyJ-3 lysin. Our study also provides a new way for rational design and programmed engineering of lysins targeting S. pneumoniae.
Collapse
|
12
|
Silva MD, Oliveira H, Faustino A, Sillankorva S. Characterization of MSlys, the endolysin of Streptococcus pneumoniae phage MS1. ACTA ACUST UNITED AC 2020; 28:e00547. [PMID: 33204659 PMCID: PMC7648177 DOI: 10.1016/j.btre.2020.e00547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
MSlys is a choline binding protein from pneumococcal MS1 phage. Planktonic and biofilm S. pneumoniae cells are affected by MSlys treatment. MSlys is active against isolates from otitis media infections and works in the conditions commonly found in this environment.
Despite the use of pneumococcal conjugate vaccines, the number of infections related to Streptococcus pneumoniae continues to be alarming. Herein, we identified, characterized the MSlys endolysin encoded in the phage MS1. We further tested its antimicrobial efficacy against planktonic and biofilm cells, assessing the culturability of cells and biofilm structure by scanning electron microscopy, and confocal laser scanning microscopy. The modular MSlys endolysin consists of an amidase catalytic domain and a choline-binding domain. MSlys is active against isolates of children with otitis media, and conditions close to those found in the middle ear. Treatment with MSlys (2 h, 4 μM) reduced planktonic cultures by 3.5 log10 CFU/mL, and 24- and 48-h-old biofilms by 1.5 and 1.8 log10 CFU/mL, respectively. Imaging of the biofilms showed thinner and damaged structures compared to control samples. The recombinantly expressed MSlys may be a suitable candidate for treating pneumococcal infections, including otitis media.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Alberta Faustino
- Clinical Pathology Department, Hospital de Braga, 4710-243 Braga, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
13
|
Linker Editing of Pneumococcal Lysin ClyJ Conveys Improved Bactericidal Activity. Antimicrob Agents Chemother 2020; 64:AAC.01610-19. [PMID: 31767724 DOI: 10.1128/aac.01610-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae is a leading human pathogen uniquely characterized by choline moieties on the bacterial surface. Our previous work reported a pneumococcus-specific chimeric lysin, ClyJ, which combines the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) enzymatically active domain (EAD) from the PlyC lysin and the cell wall binding domain (CBD) from the phage SPSL1 lysin, which imparts choline binding specificity. Here, we demonstrate that the lytic activity of ClyJ can be further improved by editing the linker sequence adjoining the EAD and CBD. Keeping the net charge of the linker constant, we constructed three ClyJ variants containing different lengths of linker sequence. Circular dichroism showed that linker editing has only minor effects on the folding of the EAD and CBD. However, thermodynamic examination combined with biochemical analysis demonstrated that one variant, ClyJ-3, with the shortest linker, displayed improved thermal stability and bactericidal activity, as well as reduced cytotoxicity. In a pneumococcal mouse infection model, ClyJ-3 showed significant protective efficacy compared to that of the ClyJ parental lysin or the Cpl-1 lysin, with 100% survival at a single ClyJ-3 intraperitoneal dose of 100 μg/mouse. Moreover, a ClyJ-3 dose of 2 μg/mouse had the same efficacy as a ClyJ dose of 40 μg/mouse, suggesting a 20-fold improvement in vivo Taking these results together, the present study not only describes a promising pneumococcal lysin with improved potency, i.e., ClyJ-3, but also implies for the first time that the linker sequence plays an important role in determining the activity of a chimeric lysin, providing insight for future lysin engineering studies.
Collapse
|
14
|
Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2019; 55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Endolysins are the lytic products of bacteriophages which play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are being considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells when applied externally. Endolysins have been studied against a number of drug-resistant pathogens to assess their therapeutic ability. This review focuses on the structure of endolysins in terms of cell binding and catalytic domains, lytic ability, resistance, safety, immunogenicity and future applications. It primarily reviews recent advancements made in evaluation of the therapeutic potential of endolysins, including their origin, host range, applications, and synergy with conventional and non-conventional antimicrobial agents.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
15
|
Vázquez R, García P. Synergy Between Two Chimeric Lysins to Kill Streptococcus pneumoniae. Front Microbiol 2019; 10:1251. [PMID: 31231338 PMCID: PMC6560164 DOI: 10.3389/fmicb.2019.01251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 01/02/2023] Open
Abstract
Phage lysins constitute a new generation of antimicrobials that are becoming a promising alternative and complementation to current antibiotic therapies, which are nowadays called into question by the increasing numbers of multiresistant bacteria. Streptococcus pneumoniae is a leading human pathogen causing serious infectious diseases in children and adults. Within the host-parasite interplay system of pneumococcus and its phages, several antipneumococcal lysins have been described and, among them, chimeric lysins Cpl-711 and PL3 stand out for their potent bactericidal activities. Here, evidence is presented on the synergistic cooperation of the catalytically diverse lysins Cpl-711 and PL3 in different assays, like purified cell wall enzymatic degradation, in vitro bacterial cell growth inhibition, and killing of both planktonic and biofilm grown cells. Synergy between Cpl-711 and PL3 has been shown to reduce the amount of enzyme necessary to inhibit growth in checkerboard assays with a sum of fractional inhibitory concentrations ≤0.5 for all pneumococcal strains tested, while also significatively increasing bactericidal effect by ≥2 logs with respect to the sum of activities of Cpl-711 and PL3 individual treatments. Moreover, the combination of these two lysins showed synergy in an adult zebrafish model of pneumococcal infection. This study consolidates the possibility of formulating highly efficient and synergistic antibacterial enzymes that could improve our ability to fight multiresistant bacterial infections.
Collapse
Affiliation(s)
- Roberto Vázquez
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Pedro García
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
16
|
Bacteriophage gene products as potential antimicrobials against tuberculosis. Biochem Soc Trans 2019; 47:847-860. [PMID: 31085613 DOI: 10.1042/bst20180506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
Tuberculosis (TB) is recognised as one of the most pressing global health threats among infectious diseases. Bacteriophages are adapted for killing of their host, and they were exploited in antibacterial therapy already before the discovery of antibiotics. Antibiotics as broadly active drugs overshadowed phage therapy for a long time. However, owing to the rapid spread of antibiotic resistance and the increasing complexity of treatment of drug-resistant TB, mycobacteriophages are being studied for their antimicrobial potential. Besides phage therapy, which is the administration of live phages to infected patients, the development of drugs of phage origin is gaining interest. This path of medical research might provide us with a new pool of previously undiscovered inhibition mechanisms and molecular interactions which are also of interest in basic research of cellular processes, such as transcription. The current state of research on mycobacteriophage-derived anti-TB treatment is reviewed in comparison with inhibitors from other phages, and with focus on transcription as the host target process.
Collapse
|
17
|
ClyJ Is a Novel Pneumococcal Chimeric Lysin with a Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase Catalytic Domain. Antimicrob Agents Chemother 2019; 63:AAC.02043-18. [PMID: 30642930 DOI: 10.1128/aac.02043-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/05/2019] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is one of the leading pathogens that cause a variety of mucosal and invasive infections. With the increased emergence of multidrug-resistant S. pneumoniae, new antimicrobials with mechanisms of action different from conventional antibiotics are urgently needed. In this study, we identified a putative lysin (gp20) encoded by the Streptococcus phage SPSL1 using the LytA autolysin as a template. Molecular dissection of gp20 revealed a binding domain (GPB) containing choline-binding repeats (CBRs) that are high specificity for S. pneumoniae By fusing GPB to the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain of the PlyC lysin, we constructed a novel chimeric lysin, ClyJ, with improved activity to the pneumococcal Cpl-1 lysin. No resistance was observed in S. pneumoniae strains after exposure to incrementally doubling concentrations of ClyJ for 8 continuous days in vitro In a mouse bacteremia model using penicillin G as a control, a single intraperitoneal injection of ClyJ improved the survival rate of lethal S. pneumoniae-infected mice in a dose-dependent manner. Given its high lytic activity and safety profile, ClyJ may represent a promising alternative to combat pneumococcal infections.
Collapse
|
18
|
Vázquez R, García E, García P. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Front Immunol 2018; 9:2252. [PMID: 30459750 PMCID: PMC6232686 DOI: 10.3389/fimmu.2018.02252] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Lower respiratory tract infections and tuberculosis are responsible for the death of about 4.5 million people each year and are the main causes of mortality in children under 5 years of age. Streptococcus pneumoniae is the most common bacterial pathogen associated with severe pneumonia, although other Gram-positive and Gram-negative bacteria are involved in respiratory infections as well. The ability of these pathogens to persist and produce infection under the appropriate conditions is also associated with their capacity to form biofilms in the respiratory mucous membranes. Adding to the difficulty of treating biofilm-forming bacteria with antibiotics, many of these strains are becoming multidrug resistant, and thus the alternative therapeutics available for combating this kind of infections are rapidly depleting. Given these concerns, it is urgent to consider other unconventional strategies and, in this regard, phage lysins represent an attractive resource to circumvent some of the current issues in infection treatment. When added exogenously, lysins break specific bonds of the peptidoglycan and have potent bactericidal effects against susceptible bacteria. These enzymes possess interesting features, including that they do not trigger an adverse immune response and raise of resistance is very unlikely. Although Gram-negative bacteria had been considered refractory to these compounds, strategies to overcome this drawback have been developed recently. In this review we describe the most relevant in vitro and in vivo results obtained to date with lysins against bacterial respiratory pathogens.
Collapse
Affiliation(s)
- Roberto Vázquez
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
19
|
Letrado P, Corsini B, Díez-Martínez R, Bustamante N, Yuste JE, García P. Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus. Future Microbiol 2018; 13:1215-1223. [PMID: 30238774 PMCID: PMC6190277 DOI: 10.2217/fmb-2018-0077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To test the synergistic effect of Cpl-711 endolysin and antibiotics for antipneumococcal activity. Materials & methods: A combination of Cpl-711 and different antibiotics (amoxicillin, cefotaxime, levofloxacin and vancomycin) was tested in a checkerboard assay against several multidrug-resistant Streptococcus pneumoniae strains. Mouse and zebrafish models of pneumococcal sepsis were used to confirm the in vitro data. Results: The activity of Cpl-711 combined with amoxicillin or cefotaxime was synergistic in the bactericidal effect against a serotype 23F multiresistant clinical isolate of S. pneumoniae. Synergy between Cpl-711 and cefotaxime was validated using both mouse and zebrafish models. Conclusion: Combination of Cpl-711 and cefotaxime may help in the treatment of diseases caused by multiresistant pneumococcal strains.
Collapse
Affiliation(s)
- Patricia Letrado
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Ikan Biotech SL, Noáin, Navarra, Spain
| | - Bruno Corsini
- Centro de Investigaciones Biológicas, Departamento de Biotecnología Microbiana y de Plantas, CSIC, 28048 Madrid, Spain
| | - Roberto Díez-Martínez
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Ikan Biotech SL, Noáin, Navarra, Spain
| | - Noemí Bustamante
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain.,Instituto Química-Física Rocasolano, Departamento de Química-Física Biológica, CSIC, 28006 Madrid, Spain
| | - José E Yuste
- Centro de Investigaciones Biológicas, Departamento de Biotecnología Microbiana y de Plantas, CSIC, 28048 Madrid, Spain.,Instituto Química-Física Rocasolano, Departamento de Química-Física Biológica, CSIC, 28006 Madrid, Spain
| | - Pedro García
- Instituto Química-Física Rocasolano, Departamento de Química-Física Biológica, CSIC, 28006 Madrid, Spain.,Ikan Biotech SL, Noáin, Navarra, Spain
| |
Collapse
|
20
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
21
|
Bustamante N, Iglesias-Bexiga M, Bernardo-García N, Silva-Martín N, García G, Campanero-Rhodes MA, García E, Usón I, Buey RM, García P, Hermoso JA, Bruix M, Menéndez M. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep 2017; 7:16494. [PMID: 29184076 PMCID: PMC5705596 DOI: 10.1038/s41598-017-16392-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Endolysins, the cell wall lytic enzymes encoded by bacteriophages to release the phage progeny, are among the top alternatives to fight against multiresistant pathogenic bacteria; one of the current biggest challenges to global health. Their narrow range of susceptible bacteria relies, primarily, on targeting specific cell-wall receptors through specialized modules. The cell wall-binding domain of Cpl-7 endolysin, made of three CW_7 repeats, accounts for its extended-range of substrates. Using as model system the cell wall-binding domain of Cpl-7, here we describe the molecular basis for the bacterial cell wall recognition by the CW_7 motif, which is widely represented in sequences of cell wall hydrolases. We report the crystal and solution structure of the full-length domain, identify N-acetyl-D-glucosaminyl-(β1,4)-N-acetylmuramyl-L-alanyl-D-isoglutamine (GMDP) as the peptidoglycan (PG) target recognized by the CW_7 motifs, and characterize feasible GMDP-CW_7 contacts. Our data suggest that Cpl-7 cell wall-binding domain might simultaneously bind to three PG chains, and also highlight the potential use of CW_7-containing lysins as novel anti-infectives.
Collapse
Affiliation(s)
- Noemí Bustamante
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Noelia Bernardo-García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Noella Silva-Martín
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Guadalupe García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María A Campanero-Rhodes
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Esther García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona, CSIC, Baldiri Reixach 13, 08028, Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Rubén M Buey
- Metabolic Engineering Group. Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Pedro García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Hermoso
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
22
|
Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen. Sci Rep 2017; 7:16506. [PMID: 29184097 PMCID: PMC5705598 DOI: 10.1038/s41598-017-16736-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium that infects humans and various animals, causing human mortality rates ranging from 5 to 20%, as well as important losses for the swine industry. In addition, there is no effective vaccine for S. suis and isolates with increasing antibiotic multiresistance are emerging worldwide. Facing this situation, wild type or engineered bacteriophage lysins constitute a promising alternative to conventional antibiotics. In this study, we have constructed a new chimeric lysin, Csl2, by fusing the catalytic domain of Cpl-7 lysozyme to the CW_7 repeats of LySMP lysin from an S. suis phage. Csl2 efficiently kills different S. suis strains and shows noticeable activity against a few streptococci of the mitis group. Specifically, 15 µg/ml Csl2 killed 4.3 logs of S. suis serotype 2 S735 strain in 60 min, in a buffer containing 150 mM NaCl and 10 mM CaCl2, at pH 6.0. We have set up a protocol to form a good biofilm with the non-encapsulated S. suis mutant strain BD101, and the use of 30 µg/ml Csl2 was enough for dispersing such biofilms and reducing 1–2 logs the number of planktonic bacteria. In vitro results have been validated in an adult zebrafish model of infection.
Collapse
|
23
|
Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species. Front Microbiol 2016; 7:1156. [PMID: 27516758 PMCID: PMC4963390 DOI: 10.3389/fmicb.2016.01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5–5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate that the structure/function-based domain shuffling approach is a successful method to construct tailor-made endolysins with higher bactericidal activities than their parental enzymes.
Collapse
Affiliation(s)
- Blas Blázquez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Alba Fresco-Taboada
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Margarita Menéndez
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
24
|
Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep 2015; 5:17257. [PMID: 26607832 PMCID: PMC4660466 DOI: 10.1038/srep17257] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022] Open
Abstract
The increasing emergence of multi-drug resistant streptococci poses a serious threat to public health worldwide. Bacteriophage lysins are promising alternatives to antibiotics; however, their narrow lytic spectrum restricted to closely related species is a central shortcoming to their translational development. Here, we describe an efficient method for rapid screening of engineered chimeric lysins and report a unique “chimeolysin”, ClyR, with robust activity and an extended-spectrum streptococcal host range against most streptococcal species, including S. pyogenes, S. agalactiae, S. dysgalactiae, S. equi, S. mutans, S. pneumoniae, S. suis and S. uberis, as well as representative enterococcal and staphylococcal species (including MRSA and VISA). ClyR is the first lysin that demonstrates activity against the dominant dental caries-causing pathogen as well as the first lysin that kills all four of the bovine mastitis-causing pathogens. This study demonstrates the success of the screening method resulting in a powerful lysin with potential for treating most streptococcal associated infections.
Collapse
Affiliation(s)
- Hang Yang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sara B Linden
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Jing Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Junping Yu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.,Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
25
|
Díez-Martínez R, De Paz HD, García-Fernández E, Bustamante N, Euler CW, Fischetti VA, Menendez M, García P. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother 2015; 70:1763-73. [PMID: 25733585 DOI: 10.1093/jac/dkv038] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide and new antimicrobials are urgently needed. Our aim was new chimeric phage endolysins, or lysins, with improved bactericidal activity by swapping the structural components of two pneumococcal phage lysozymes: Cpl-1 (the best lysin tested to date) and Cpl-7S. METHODS The bactericidal effects of four new chimeric lysins were checked against several bacteria. The purified enzymes were added at different concentrations to resuspended bacteria and viable cells were measured after 1 h. Killing capacity of the most active lysin, Cpl-711, was tested in a mouse bacteraemia model, following mouse survival after injecting different amounts (25-500 μg) of enzyme. The capacity of Cpl-711 to reduce pneumococcal biofilm formation was also studied. RESULTS The chimera Cpl-711 substantially improved the killing activity of the parental phage lysozymes, Cpl-1 and Cpl-7S, against pneumococcal bacteria, including multiresistant strains. Specifically, 5 μg/mL Cpl-711 killed ≥7.5 log of pneumococcal R6 strain. Cpl-711 also reduced pneumococcal biofilm formation and killed 4 log of the bacterial population at 1 μg/mL. Mice challenged intraperitoneally with D39_IU pneumococcal strain were protected by treatment with a single intraperitoneal injection of Cpl-711 1 h later, resulting in about 50% greater protection than with Cpl-1. CONCLUSIONS Domain swapping among phage lysins allows the construction of new chimeric enzymes with high bactericidal activity and a different substrate range. Cpl-711, the most powerful endolysin against pneumococci, offers a promising therapeutic perspective for the treatment of multiresistant pneumococcal infections.
Collapse
Affiliation(s)
- Roberto Díez-Martínez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Héctor D De Paz
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Esther García-Fernández
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Noemí Bustamante
- CIBER de Enfermedades Respiratorias, Madrid, Spain Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Chad W Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, NY, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Margarita Menendez
- CIBER de Enfermedades Respiratorias, Madrid, Spain Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
26
|
Proença D, Velours C, Leandro C, Garcia M, Pimentel M, São-José C. A two-component, multimeric endolysin encoded by a single gene. Mol Microbiol 2014; 95:739-53. [PMID: 25388025 DOI: 10.1111/mmi.12857] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 01/11/2023]
Abstract
Bacteriophage endolysins are bacterial cell wall degrading enzymes whose potential to fight bacterial infections has been intensively studied. Endolysins from Gram-positive systems are typically described as monomeric and as having a modular structure consisting of one or two N-terminal catalytic domains (CDs) linked to a C-terminal region responsible for cell wall binding (CWB). We show here that expression of the endolysin gene lys170 of the enterococcal phage F170/08 results in two products, the expected full length endolysin (Lys170FL) and a C-terminal fragment corresponding to the CWB domain (CWB170). The latter is produced from an in-frame, alternative translation start site. Both polypeptides interact to form the fully active endolysin. Biochemical data strongly support a model where Lys170 is made of one monomer of Lys170FL associated with up to three CWB170 subunits, which are responsible for efficient endolysin binding to its substrate. Bioinformatics analysis indicates that similar secondary translation start signals may be used to produce and add independent CWB170-like subunits to different enzymatic specificities. The particular configuration of endolysin Lys170 uncovers a new mode of increasing the number of CWB motifs associated to CD modules, as an alternative to the tandem repetition typically found in monomeric cell wall hydrolases.
Collapse
Affiliation(s)
- Daniela Proença
- Technophage, SA, Av. Professor Egas Moniz, Ed. Egas Moniz, piso 2, 1649-028, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/382539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The application of bacteriophages for the elimination of pathogenic bacteria has received significantly increased attention world-wide in the past decade. This is borne out by the increasing prevalence of bacteriophage-specific conferences highlighting significant and diverse advances in the exploitation of bacteriophages. While bacteriophage therapy has been associated with the Former Soviet Union historically, since the 1990s, it has been widely and enthusiastically adopted as a research topic in Western countries. This has been justified by the increasing prevalence of antibiotic resistance in many prominent human pathogenic bacteria. Discussion of the therapeutic aspects of bacteriophages in this review will include the uses of whole phages as antibacterials and will also describe studies on the applications of purified phage-derived peptidoglycan hydrolases, which do not have the constraint of limited bacterial host-range often observed with whole phages.
Collapse
|
29
|
A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother 2014; 58:3073-84. [PMID: 24637688 DOI: 10.1128/aac.00115-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC.
Collapse
|
30
|
Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother 2013; 57:5355-65. [PMID: 23959317 DOI: 10.1128/aac.01372-13] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phage endolysins are murein hydrolases that break the bacterial cell wall to provoke lysis and release of phage progeny. Recently, these enzymes have also been recognized as powerful and specific antibacterial agents when added exogenously. In the pneumococcal system, most cell wall associated murein hydrolases reported so far depend on choline for activity, and Cpl-7 lysozyme constitutes a remarkable exception. Here, we report the improvement of the killing activity of the Cpl-7 endolysin by inversion of the sign of the charge of the cell wall-binding module (from -14.93 to +3.0 at neutral pH). The engineered variant, Cpl-7S, has 15 amino acid substitutions and an improved lytic activity against Streptococcus pneumoniae (including multiresistant strains), Streptococcus pyogenes, and other pathogens. Moreover, we have demonstrated that a single 25-μg dose of Cpl-7S significantly increased the survival rate of zebrafish embryos infected with S. pneumoniae or S. pyogenes, confirming the killing effect of Cpl-7S in vivo. Interestingly, Cpl-7S, in combination with 0.01% carvacrol (an essential oil), was also found to efficiently kill Gram-negative bacteria such as Escherichia coli and Pseudomonas putida, an effect not described previously. Our findings provide a strategy to improve the lytic activity of phage endolysins based on facilitating their pass through the negatively charged bacterial envelope, and thereby their interaction with the cell wall target, by modulating the net charge of the cell wall-binding modules.
Collapse
|
31
|
Regulski K, Courtin P, Kulakauskas S, Chapot-Chartier MP. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins. J Biol Chem 2013; 288:20416-26. [PMID: 23733182 DOI: 10.1074/jbc.m112.446344] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.
Collapse
|
32
|
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2013; 7:1147-71. [PMID: 23030422 DOI: 10.2217/fmb.12.97] [Citation(s) in RCA: 513] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology.
Collapse
Affiliation(s)
- Mathias Schmelcher
- Institute of Food, Nutrition & Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Yuan Y, Peng Q, Gao M. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis. BMC Microbiol 2012; 12:297. [PMID: 23249212 PMCID: PMC3534610 DOI: 10.1186/1471-2180-12-297] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/10/2012] [Indexed: 12/19/2022] Open
Abstract
Background Endolysins produced by bacteriophages lyse bacteria, and are thus considered a novel type of antimicrobial agent. Several endolysins from Bacillus phages or prophages have previously been characterized and used to target Bacillus strains that cause disease in animals and humans. B. thuringiensis phage BtCS33 is a Siphoviridae family phage and its genome has been sequenced and analyzed. In the BtCS33 genome, orf18 was found to encode an endolysin protein (PlyBt33). Results Bioinformatic analyses showed that endolysin PlyBt33 was composed of two functional domains, the N-terminal catalytic domain and the C-terminal cell wall binding domain. In this study, the entire endolysin PlyBt33, and both the N- and C-termini,were expressed in Escherichia coli and then purified. The lytic activities of PlyBt33 and its N-terminus were tested on bacteria. Both regions exhibited lytic activity, although PlyBt33 showed a higher lytic activity than the N-terminus. PlyBt33 exhibited activity against all Bacillus strains tested from five different species, but was not active against Gram-negative bacteria. Optimal conditions for PlyBt33 reactivity were pH 9.0 and 50°C. PlyBt33 showed high thermostability, with 40% of initial activity remaining following 1 h of treatment at 60°C. The C-terminus of PlyBt33 bound to B. thuringiensis strain HD-73 and Bacillus subtilis strain 168. This cell wall binding domain might be novel, as its amino acid sequence showed little similarity to previously reported endolysins. Conclusions PlyBt33 showed potential as a novel antimicrobial agent at a relatively high temperature and had a broad lytic spectrum within the Bacillus genus. The C-terminus of PlyBt33 might be a novel kind of cell wall binding domain.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR, China.
| | | | | |
Collapse
|
34
|
Abstract
Peptidoglycan (PG) is the major structural component of the bacterial cell wall. Bacteria have autolytic PG hydrolases that allow the cell to grow and divide. A well-studied group of PG hydrolase enzymes are the bacteriophage endolysins. Endolysins are PG-degrading proteins that allow the phage to escape from the bacterial cell during the phage lytic cycle. The endolysins, when purified and exposed to PG externally, can cause "lysis from without." Numerous publications have described how this phenomenon can be used therapeutically as an effective antimicrobial against certain pathogens. Endolysins have a characteristic modular structure, often with multiple lytic and/or cell wall-binding domains (CBDs). They degrade the PG with glycosidase, amidase, endopeptidase, or lytic transglycosylase activities and have been shown to be synergistic with fellow PG hydrolases or a range of other antimicrobials. Due to the coevolution of phage and host, it is thought they are much less likely to invoke resistance. Endolysin engineering has opened a range of new applications for these proteins from food safety to environmental decontamination to more effective antimicrobials that are believed refractory to resistance development. To put phage endolysin work in a broader context, this chapter includes relevant studies of other well-characterized PG hydrolase antimicrobials.
Collapse
|
35
|
Bustamante N, Rico-Lastres P, García E, García P, Menéndez M. Thermal stability of Cpl-7 endolysin from the streptococcus pneumoniae bacteriophage Cp-7; cell wall-targeting of its CW_7 motifs. PLoS One 2012; 7:e46654. [PMID: 23056389 PMCID: PMC3466307 DOI: 10.1371/journal.pone.0046654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/02/2012] [Indexed: 11/28/2022] Open
Abstract
Endolysins comprise a novel class of selective antibacterials refractory to develop resistances. The Cpl-7 endolysin, encoded by the Streptococcus pneumoniae bacteriophage Cp-7, consists of a catalytic module (CM) with muramidase activity and a cell wall-binding module (CWBM) made of three fully conserved CW_7 repeats essential for activity. Firstly identified in the Cpl-7 endolysin, CW_7 motifs are also present in a great variety of cell wall hydrolases encoded, among others, by human and live-stock pathogens. However, the nature of CW_7 receptors on the bacterial envelope remains unknown. In the present study, the structural stability of Cpl-7 and the target recognized by CW_7 repeats, relevant for exploitation of Cpl-7 as antimicrobial, have been analyzed, and transitions from the CM and the CWBM assigned, using circular dichroism and differential scanning calorimetry. Cpl-7 stability is maximum around 6.0-6.5, near the optimal pH for activity. Above pH 8.0 the CM becomes extremely unstable, probably due to deprotonation of the N-terminal amino-group, whereas the CWBM is rather insensitive to pH variation and its structural stabilization by GlcNAc-MurNAc-l-Ala-d-isoGln points to the cell wall muropeptide as the cell wall target recognized by the CW_7 repeats. Denaturation data also revealed that Cpl-7 is organized into two essentially independent folding units, which will facilitate the recombination of the CM and the CWBM with other catalytic domains and/or cell wall-binding motifs to yield new tailored chimeric lysins with higher bactericidal activities or new pathogen specificities.
Collapse
Affiliation(s)
- Noemí Bustamante
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Palma Rico-Lastres
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
36
|
In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother 2011; 55:4144-8. [PMID: 21746941 DOI: 10.1128/aac.00492-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Host- and phage-coded cell wall hydrolases have been used to fight Streptococcus pneumoniae growing as planktonic cells in vitro as well as in animal models. Until now, however, the usefulness of these enzymes in biofilm-grown pneumococci has gone untested. The antipneumococcal activity of different cell wall hydrolases produced by S. pneumoniae and a number of its phages was examined in an in vitro biofilm model. The major pneumococcal autolysin LytA, an N-acetylmuramoyl-l-alanine amidase, showed the greatest efficiency in disintegrating S. pneumoniae biofilms. The phage-encoded lysozymes Cpl-1 and Cpl-7 were also very efficient. Biofilms formed by the close pneumococcal relatives Streptococcus pseudopneumoniae and Streptococcus oralis were also destroyed by the phage endolysins but not by the S. pneumoniae autolysin LytA. A cooperative effect of LytA and Cpl-1 in the disintegration of S. pneumoniae biofilms was recorded.
Collapse
|
37
|
Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol 2010; 22:164-71. [PMID: 21093250 DOI: 10.1016/j.copbio.2010.10.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 12/11/2022]
Abstract
Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.
Collapse
|