1
|
Assays Based on Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:29-44. [PMID: 36920690 DOI: 10.1007/978-981-99-0113-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses are more and more widely used in virus research and the evaluation of antiviral products because of their high safety, simple operation, high accessibility, ease in achieving standardization, and high throughput. The development of measures based on pseudotyped virus is closely related to the characteristics of viruses, and it is also necessary to follow the principles of assay development. Only in the process of method development, where the key parameters that affect the results are systematically optimized and the preliminary established method is fully validated, can the accuracy, reliability, and repeatability of the test results be ensured. Only the method established on this basis can be transferred to different laboratories and make the results of different laboratories comparable. This paper summarizes the specific aspects and general principles in the development of assays based on pseudotyped virus, which is of reference value for the development of similar methods.
Collapse
|
2
|
Targeted destabilization of the HIV-1 gp120-gp41 interface leads to convergent evolution with mutations in the V1V2, HR1 and HR2 domains. J Virol 2021; 95:e0053221. [PMID: 34586861 PMCID: PMC8610599 DOI: 10.1128/jvi.00532-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is responsible for viral entry into target cells and is the sole target of neutralizing antibodies. The Env protein is therefore the focus of HIV-1 vaccine design. Env consists of two noncovalently linked subunits (gp120 and gp41) that form a trimer of heterodimers and this 6-subunit complex is metastable and conformationally flexible. Several approaches have been pursued to stabilize the Env trimer for vaccine purposes, which include structure-based design, high-throughput screening, and selection by mammalian cell display. Here, we employed directed virus evolution to improve Env trimer stability. Accordingly, we deliberately destabilized the Env gp120-gp41 interface by mutagenesis in the context of replicating HIV-1 LAI virus and virus evolution over time. We identified compensatory changes that pointed at convergent evolution, as they were largely restricted to specific Env regions, namely, the V1V2 domain of gp120 and the HR1 and HR2 domain of gp41. Specifically, S614G in V1V2 and Q567R in HR1 were frequently identified. Interestingly, the majority of the compensatory mutations were at distant locations from the original mutations and most likely strengthen intersubunit interactions. These results show how the virus can overcome Env instability and illuminate the regions that play a dominant role in Env stability. IMPORTANCE A successful HIV-1 vaccine most likely requires an envelope glycoprotein (Env) component, as Env is the only viral protein on the surface of the virus and the target for neutralizing antibodies. However, HIV Env is metastable and flexible because of the weak interactions between the Env subunits, complicating the generation of recombinant mimics of native Env. Here, we used directed viral evolution to study Env stability. We deliberately destabilized the interface between Env subunits and explored the capacity of the virus to repair trimer instability by evolution. We identified compensatory mutations that converged in specific Env locations: the apex and the trimer interface. Selected mutations enhanced the stability of recombinant soluble Env trimer proteins. These results provided clues on understanding the structural mechanisms involved in Env trimer stability, which can guide future immunogen design.
Collapse
|
3
|
McCaul N, Quandte M, Bontjer I, van Zadelhoff G, Land A, Crooks ET, Binley JM, Sanders RW, Braakman I. Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Rep 2021; 36:109646. [PMID: 34469718 DOI: 10.1016/j.celrep.2021.109646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/28/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.
Collapse
Affiliation(s)
- Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands
| | - Guus van Zadelhoff
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ema T Crooks
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - James M Binley
- San Diego Biomedical Research Institute, 10865 Road to the Cure #100, San Diego, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, 1105 Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Science4Life, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
4
|
de Taeye SW, Go EP, Sliepen K, de la Peña AT, Badal K, Medina-Ramírez M, Lee WH, Desaire H, Wilson IA, Moore JP, Ward AB, Sanders RW. Stabilization of the V2 loop improves the presentation of V2 loop-associated broadly neutralizing antibody epitopes on HIV-1 envelope trimers. J Biol Chem 2019; 294:5616-5631. [PMID: 30728245 PMCID: PMC6462529 DOI: 10.1074/jbc.ra118.005396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
A successful HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs) that target the envelope glycoprotein (Env) spike on the virus. Native-like recombinant Env trimers of the SOSIP design now serve as a platform for achieving this challenging goal. However, SOSIP trimers usually do not bind efficiently to the inferred germline precursors of bNAbs (gl-bNAbs). We hypothesized that the inherent flexibilities of the V1 and V2 variable loops in the Env trimer contribute to the poor recognition of gl-bNAb epitopes at the trimer apex that extensively involve V2 residues. To reduce local V2 flexibility and improve the binding of V2-dependent bNAbs and gl-bNAbs, we designed BG505 SOSIP.664 trimer variants containing newly created disulfide bonds intended to stabilize the V2 loop in an optimally antigenic configuration. The first variant, I184C/E190C, contained a new disulfide bond within the V2 loop, whereas the second variant, E153C/R178C, had a new disulfide bond that cross-linked V2 and V1. The resulting engineered native-like trimer variants were both more reactive with and were neutralized by V2 bNAbs and gl-bNAbs, a finding that may be valuable in the design of germline targeting and boosting trimer immunogens to create an antigenic conformation optimal for HIV vaccine development.
Collapse
Affiliation(s)
- Steven W de Taeye
- From the Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Eden P Go
- the Department of Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Kwinten Sliepen
- From the Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Alba Torrents de la Peña
- From the Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Kimberly Badal
- From the Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Max Medina-Ramírez
- From the Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Wen-Hsin Lee
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, and
| | - Heather Desaire
- the Department of Chemistry, University of Kansas, Lawrence, Kansas 66045
| | - Ian A Wilson
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, and
| | - John P Moore
- the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Andrew B Ward
- the Department of Integrative Structural and Computational Biology, Scripps CHAVI-ID, IAVI Neutralizing Antibody Center and Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, California 92037, and
| | - Rogier W Sanders
- From the Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands, .,the Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
5
|
Torrents de la Peña A, Sanders RW. Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies. Retrovirology 2018; 15:63. [PMID: 30208933 PMCID: PMC6134781 DOI: 10.1186/s12977-018-0445-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023] Open
Abstract
An effective HIV-1 vaccine probably will need to be able to induce broadly neutralizing HIV-1 antibodies (bNAbs) in order to be efficacious. The many bNAbs that have been isolated from HIV-1 infected patients illustrate that the human immune system is able to elicit this type of antibodies. The elucidation of the structure of the HIV-1 envelope glycoprotein (Env) trimer has further fueled the search for Env immunogens that induce bNAbs, but while native Env trimer mimetics are often capable of inducing strain-specific neutralizing antibodies (NAbs) against the parental virus, they have not yet induced potent bNAb responses. To improve the performance of Env trimer immunogens, researchers have studied the immune responses that Env trimers have induced in animals; they have evaluated how to best use Env trimers in various immunization regimens; and they have engineered increasingly stabilized Env trimer variants. Here, we review the different approaches that have been used to increase the stability of HIV-1 Env trimer immunogens with the aim of improving the induction of NAbs. In particular, we draw parallels between the various approaches to stabilize Env trimers and ones that have been used by nature in extremophile microorganisms in order to survive in extreme environmental conditions.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021 USA
| |
Collapse
|
6
|
Snapp EL, McCaul N, Quandte M, Cabartova Z, Bontjer I, Källgren C, Nilsson I, Land A, von Heijne G, Sanders RW, Braakman I. Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. eLife 2017; 6:26067. [PMID: 28753126 PMCID: PMC5577925 DOI: 10.7554/elife.26067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
Abstract
Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.
Collapse
Affiliation(s)
- Erik Lee Snapp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nicholas McCaul
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Matthias Quandte
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Zuzana Cabartova
- National Institute of Public Health, National Reference Laboratory for Viral Hepatitis, Prague, Czech Republic
| | - Ilja Bontjer
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Carolina Källgren
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - IngMarie Nilsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Aafke Land
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Rogier W Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
DeLeon O, Hodis H, O’Malley Y, Johnson J, Salimi H, Zhai Y, Winter E, Remec C, Eichelberger N, Van Cleave B, Puliadi R, Harrington RD, Stapleton JT, Haim H. Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model. PLoS Biol 2017; 15:e2001549. [PMID: 28384158 PMCID: PMC5383018 DOI: 10.1371/journal.pbio.2001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 continuously evolve in the host by random mutations and recombination events. The resulting diversity of Env variants circulating in the population and their continuing diversification process limit the efficacy of AIDS vaccines. We examined the historic changes in Env sequence and structural features (measured by integrity of epitopes on the Env trimer) in a geographically defined population in the United States. As expected, many Env features were relatively conserved during the 1980s. From this state, some features diversified whereas others remained conserved across the years. We sought to identify “clues” to predict the observed historic diversification patterns. Comparison of viruses that cocirculate in patients at any given time revealed that each feature of Env (sequence or structural) exists at a defined level of variance. The in-host variance of each feature is highly conserved among individuals but can vary between different HIV-1 clades. We designate this property “volatility” and apply it to model evolution of features as a linear diffusion process that progresses with increasing genetic distance. Volatilities of different features are highly correlated with their divergence in longitudinally monitored patients. Volatilities of features also correlate highly with their population-level diversification. Using volatility indices measured from a small number of patient samples, we accurately predict the population diversity that developed for each feature over the course of 30 years. Amino acid variants that evolved at key antigenic sites are also predicted well. Therefore, small “fluctuations” in feature values measured in isolated patient samples accurately describe their potential for population-level diversification. These tools will likely contribute to the design of population-targeted AIDS vaccines by effectively capturing the diversity of currently circulating strains and addressing properties of variants expected to appear in the future. HIV-1 is the causative agent of the global AIDS pandemic. The envelope glycoproteins (Envs) of HIV-1 constitute a primary target for antibody-based vaccines. However, the diversity of Envs in the population limits the potential efficacy of this approach. Accurate estimates of the range of variants that currently infect patients and those expected to appear in the future will likely contribute to the design of population-targeted immunogens. We found that different properties (features) of Env have different propensities for small “fluctuations” in their values among viruses that infect patients at any given time point. This propensity of each feature for in-host variance, which we designate “volatility”, is conserved among patients. We apply this parameter to model the evolution of features (in patients and population) as a diffusion process driven by their “diffusion coefficients” (volatilities). Using volatilities measured from a few patient samples from the 1980s, we accurately predict properties of viruses that evolved in the population over the course of 30 years. The diffusion-based model described here efficiently captures evolution of phenotypes in biological systems controlled by a dominant random component.
Collapse
Affiliation(s)
- Orlando DeLeon
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hagit Hodis
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yunxia O’Malley
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jacklyn Johnson
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hamid Salimi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yinjie Zhai
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Winter
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire Remec
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah Eichelberger
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Brandon Van Cleave
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramya Puliadi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Robert D. Harrington
- Center for AIDS Research (CFAR) at the University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus. PLoS Pathog 2016; 12:e1005619. [PMID: 27163788 PMCID: PMC4862634 DOI: 10.1371/journal.ppat.1005619] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. While the global spread of HIV-1 has been fueled by sexual transmission the genetic determinants underlying the transmission bottleneck remains poorly understood. Here we characterized founder virus population diversity from next generation sequencing data in a cohort of 74 acute and early HIV-1 infected individuals. We observe that the risk of multi-variant infection in men-who-have-sex-with-men (MSM) is not greater than that observed for heterosexuals (HSX), contrary to reports of higher rates of multiple founder virus infections in higher-risk MSM transmissions. These findings were further supported through a metadata analysis of 354 acute and early HIV-1 subjects. We did, however, observe differences between HSM and MSM founder viruses, including a higher selection barrier in HSX transmission with founder viruses being more cohort consensus-like that may be reflective of increased replicative fitness. We also identified a number of residues within Envelope that behave in a risk-dependent manner and could be key for HIV-1 transmission. These novel insights improve our understanding of the HIV-1 transmission bottleneck and underscore the differential selective pressures that founder viruses within the two major transmission risk groups are subjected to.
Collapse
|
9
|
Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH, Blattner C, Ramirez A, Derking R, van Gils MJ, Liang CH, Mcbride R, von Bredow B, Shivatare SS, Wu CY, Chan-Hui PY, Liu Y, Feizi T, Zwick MB, Koff WC, Seaman MS, Swiderek K, Moore JP, Evans D, Paulson JC, Wong CH, Ward AB, Wilson IA, Sanders RW, Poignard P, Burton DR. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 2014; 40:657-68. [PMID: 24768347 DOI: 10.1016/j.immuni.2014.04.009] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/06/2014] [Indexed: 01/25/2023]
Abstract
Broadly neutralizing HIV antibodies are much sought after (a) to guide vaccine design, both as templates and as indicators of the authenticity of vaccine candidates, (b) to assist in structural studies, and (c) to serve as potential therapeutics. However, the number of targets on the viral envelope spike for such antibodies has been limited. Here, we describe a set of human monoclonal antibodies that define what is, to the best of our knowledge, a previously undefined target on HIV Env. The antibodies recognize a glycan-dependent epitope on the prefusion conformation of gp41 and unambiguously distinguish cleaved from uncleaved Env trimers, an important property given increasing evidence that cleavage is required for vaccine candidates that seek to mimic the functional HIV envelope spike. The availability of this set of antibodies expands the number of vaccine targets on HIV and provides reagents to characterize the native envelope spike.
Collapse
Affiliation(s)
- Emilia Falkowska
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA 02114, USA
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katie J Doores
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Jeong Hyun Lee
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Claudia Blattner
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandro Ramirez
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Chi-Hui Liang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Mcbride
- Departments of Cell and Molecular Biology and Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin von Bredow
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53711, USA
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 ONN, UK
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 ONN, UK
| | - Michael B Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Boston, MA, 02215, USA
| | | | - John P Moore
- Weill Medical College of Cornell University, New York, NY 10004, USA
| | - David Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53711, USA
| | - James C Paulson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; Weill Medical College of Cornell University, New York, NY 10004, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Isik G, van Montfort T, Chung NPY, Moore JP, Sanders RW. Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens. THE JOURNAL OF IMMUNOLOGY 2014; 192:4628-35. [PMID: 24729614 DOI: 10.4049/jimmunol.1303401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that both moieties act on the same immune cells. The HIV-1 envelope glycoprotein (Env) spike, located on the outside of virus particles and the only relevant protein for the induction of neutralizing Abs, is poorly immunogenic. The induction of anti-Env Abs can be improved by coupling Env proteins to costimulatory molecules such as a proliferation inducing ligand (APRIL). In this study, we evaluated the immunogenicity of chimeric molecules containing uncleaved Env gp140 fused to the species-matched cytokines IL-21 or GM-CSF in rabbits and mice. Each cytokine was either fused to the C terminus of Env or embedded within Env at the position of the variable loops 1 and 2. The cytokine components of the chimeric Env-GM-CSF and Env-IL-21 molecules were functional in vitro, but none of the Env-cytokine fusion proteins resulted in improved Ab responses in vivo. Both the Env-GM-CSF and the Env-IL-21 molecules induced strong anticytokine Ab responses in both test species. These autoimmune responses were independent of the location of the cytokine in the chimeric Env molecules in that they were induced by cytokines inserted within the variable loops 1 and 2 of Env or fused to its C terminus. The induction of undesired autoimmune responses should be considered when using cytokines as costimulatory molecules in fusion proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 2013; 9:e1003618. [PMID: 24068931 PMCID: PMC3777863 DOI: 10.1371/journal.ppat.1003618] [Citation(s) in RCA: 763] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023] Open
Abstract
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.
Collapse
|
12
|
Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J Virol 2013; 87:9873-85. [PMID: 23824824 DOI: 10.1128/jvi.01226-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.
Collapse
|
13
|
Bontjer I, Melchers M, Tong T, van Montfort T, Eggink D, Montefiori D, Olson WC, Moore JP, Binley JM, Berkhout B, Sanders RW. Comparative Immunogenicity of Evolved V1V2-Deleted HIV-1 Envelope Glycoprotein Trimers. PLoS One 2013; 8:e67484. [PMID: 23840716 PMCID: PMC3694020 DOI: 10.1371/journal.pone.0067484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/16/2013] [Indexed: 12/16/2022] Open
Abstract
Despite almost 30 years of research, no effective vaccine has yet been developed against HIV-1. Probably such a vaccine would need to induce both an effective T cell and antibody response. Any vaccine component focused on inducing humoral immunity requires the HIV-1 envelope (Env) glycoprotein complex as it is the only viral protein exposed on the virion surface. HIV-1 has evolved several mechanisms to evade broadly reactive neutralizing antibodies. One such a mechanism involves variable loop domains, which are highly flexible structures that shield the underlying conserved epitopes. We hypothesized that removal of such loops would increase the exposure and immunogenicity of these conserved regions. Env variable loop deletion however often leads to protein misfolding and aggregation because hydrophobic patches becoming solvent accessible. We have therefore previously used virus evolution to acquire functional Env proteins lacking the V1V2 loop. We then expressed them in soluble (uncleaved) gp140 forms. Three mutants were found to perform optimally in terms of protein expression, stability, trimerization and folding. In this study, we characterized the immune responses to these antigens in rabbits. The V1V2 deletion mutant ΔV1V2.9.VK induced a prominent response directed to epitopes that are not fully available on the other Env proteins tested but that effectively bound and neutralized the ΔV1V2 Env virus. This Env variant also induced more efficient neutralization of the tier 1 virus SF162. The immune refocusing effect was lost after booster immunization with a full-length gp140 protein with intact V1V2 loops. Collectively, this result suggests that deletion of variable domains could alter the specificity of the humoral immune response, but did not result in broad neutralization of neutralization-resistant virus isolates.
Collapse
Affiliation(s)
- Ilja Bontjer
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Mark Melchers
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Tommy Tong
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William C. Olson
- Progenics Pharmaceuticals, Tarrytown, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
Isik G, Chung NPY, van Montfort T, Menis S, Matthews K, Schief WR, Moore JP, Sanders RW. An HIV-1 envelope glycoprotein trimer with an embedded IL-21 domain activates human B cells. PLoS One 2013; 8:e67309. [PMID: 23826263 PMCID: PMC3691133 DOI: 10.1371/journal.pone.0067309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) that target the HIV-1 envelope glycoproteins (Env) can prevent virus acquisition, but several Env properties limit its ability to induce an antibody response that is of sufficient quantity and quality. The immunogenicity of Env can be increased by fusion to co-stimulatory molecules and here we describe novel soluble Env trimers with embedded interleukin-4 (IL-4) or interleukin-21 (IL-21) domains, designed to activate B cells that recognize Env. In particular, the chimeric EnvIL-21 molecule activated B cells efficiently and induced the differentiation of antibody secreting plasmablast-like cells. We studied whether we could increase the activity of the embedded IL-21 by designing a chimeric IL-21/IL-4 (ChimIL-21/4) molecule and by introducing amino acid substitutions in the receptor binding domain of IL-21 that were predicted to enhance its binding. In addition, we incorporated IL-21 into a cleavable Env trimer and found that insertion of IL-21 did not impair Env cleavage, while Env cleavage did not impair IL-21 activity. These studies should guide the further design of chimeric proteins and EnvIL-21 may prove useful in improving antibody responses against HIV-1.
Collapse
Affiliation(s)
- Gözde Isik
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nancy P. Y. Chung
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sergey Menis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Katie Matthews
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - William R. Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, San Diego, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, San Diego, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, San Diego, California, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Isik G, van Montfort T, Boot M, Cobos Jiménez V, Kootstra NA, Sanders RW. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity. PLoS One 2013; 8:e60126. [PMID: 23565193 PMCID: PMC3615126 DOI: 10.1371/journal.pone.0060126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF) chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF) proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF) should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maikel Boot
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Viviana Cobos Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, United States of America
| |
Collapse
|
16
|
Leaman DP, Zwick MB. Increased functional stability and homogeneity of viral envelope spikes through directed evolution. PLoS Pathog 2013; 9:e1003184. [PMID: 23468626 PMCID: PMC3585149 DOI: 10.1371/journal.ppat.1003184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
The functional HIV-1 envelope glycoprotein (Env) trimer, the target of anti-HIV-1 neutralizing antibodies (Abs), is innately labile and coexists with non-native forms of Env. This lability and heterogeneity in Env has been associated with its tendency to elicit non-neutralizing Abs. Here, we use directed evolution to overcome instability and heterogeneity of a primary Env spike. HIV-1 virions were subjected to iterative cycles of destabilization followed by replication to select for Envs with enhanced stability. Two separate pools of stable Env variants with distinct sequence changes were selected using this method. Clones isolated from these viral pools could withstand heat, denaturants and other destabilizing conditions. Seven mutations in Env were associated with increased trimer stability, primarily in the heptad repeat regions of gp41, but also in V1 of gp120. Combining the seven mutations generated a variant Env with superior homogeneity and stability. This variant spike moreover showed resistance to proteolysis and to dissociation by detergent. Heterogeneity within the functional population of hyper-stable Envs was also reduced, as evidenced by a relative decrease in a proportion of virus that is resistant to the neutralizing Ab, PG9. The latter result may reflect a change in glycans on the stabilized Envs. The stabilizing mutations also increased the proportion of secreted gp140 existing in a trimeric conformation. Finally, several Env-stabilizing substitutions could stabilize Env spikes from HIV-1 clades A, B and C. Spike stabilizing mutations may be useful in the development of Env immunogens that stably retain native, trimeric structure. A vaccine is needed to prevent HIV/AIDS but eliciting potent neutralizing antibodies (Abs) against primary isolates has been a major stumbling block. The target of HIV-1 neutralizing antibodies is the native envelope glycoprotein (Env) trimer that is displayed on the surface of the virus. Virion associated Env typically elicits antibodies that cannot neutralize primary viruses. However, because native Env trimers can dissociate and coexist with non-fusogenic forms of Env interpreting these results are difficult. Here, we used directed evolution to select for virions that display native Env with increased stability and homogeneity. HIV-1 virions were subjected to increasingly harsh treatments that destabilize Env trimers, and the variants that survived each treatment were expanded. We could identify seven different mutations in Env that increased its stability of function in the face of multiple destabilizing treatments. When these mutations were combined, the resulting mutant Env trimers were far more stable than the original Env protein. Incorporating trimer-stabilizing mutations into Env-based immunogens should facilitate vaccine research by mitigating the confounding effects of non-native byproducts of Env decay. A similar approach may be used on other pathogens with potential vaccine targets that are difficult to isolate and maintain in a native form.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
van Gils MJ, Sanders RW. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology 2013; 435:46-56. [PMID: 23217615 DOI: 10.1016/j.virol.2012.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. Passive immunization and challenge studies in non-human primates testify that broadly neutralizing antibodies (BrNAbs) can accomplish protection against infection. In recent years, the introduction of new techniques has facilitated the discovery of an unprecedented number of new human BrNAbs that target and delineate diverse conserved epitopes on the envelope glycoprotein spike (Env). The epitopes of these BrNAbs can serve as templates for immunogen design aimed to induce similar antibodies. Here we will review the characteristics of the different classes of BrNAbs and their target epitopes, as well as factors associated with their development and implications for vaccine design.
Collapse
Affiliation(s)
- Marit J van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Optimization and proficiency testing of a pseudovirus-based assay for detection of HIV-1 neutralizing antibody in China. J Virol Methods 2012; 185:267-75. [DOI: 10.1016/j.jviromet.2012.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/28/2012] [Accepted: 07/04/2012] [Indexed: 11/23/2022]
|
19
|
Hessell AJ, Haigwood NL. Neutralizing antibodies and control of HIV: moves and countermoves. Curr HIV/AIDS Rep 2012; 9:64-72. [PMID: 22203469 DOI: 10.1007/s11904-011-0105-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is now evident that powerful antibodies directed to conserved regions of HIV-1 envelope protein develop during chronic infection in some individuals and that these antibodies can neutralize a broad array of diverse isolates in vitro, so termed broadly neutralizing antibodies (bNAbs). A great deal of effort is directed internationally at understanding the ontogeny of NAbs during infection as well as in designing and testing immunogens that can elicit bNAbs in animal models and in humans. Given the parrying tactics of Env, multiple approaches, along with high-resolution structural studies, will be needed to reach a degree of understanding sufficient to design an effective vaccine. We discuss and note here some of the most important recent advances in our knowledge of how neutralizing antibodies develop in vivo, the recent discovery of extremely powerful neutralizing monoclonal antibodies isolated from natural infection, enhanced methodologies that have accelerated discoveries on both fronts, and the progress made in eliciting potent NAbs with limited breadth by vaccination.
Collapse
Affiliation(s)
- Ann J Hessell
- Pathobiology and Immunology Division, Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|
20
|
Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses. J Virol 2011; 86:2488-500. [PMID: 22205734 DOI: 10.1128/jvi.06259-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The Env-APRIL, Env-BAFF, and Env-CD40L gp140 trimers all enhanced the expression of activation-induced cytidine deaminase (AID), the enzyme responsible for inducing somatic hypermutation, antibody affinity maturation, and antibody class switching. They also triggered IgM, IgG, and IgA secretion from human B cells in vitro. The Env-APRIL trimers induced higher anti-Env antibody responses in rabbits, including neutralizing antibodies against tier 1 viruses. The enhanced Env-specific responses were not associated with a general increase in total plasma antibody concentrations, indicating that the effect of APRIL was specific for Env. All the rabbit sera raised against gp140 trimers, irrespective of the presence of CD40L, BAFF, or APRIL, recognized trimeric Env efficiently, whereas sera raised against gp120 monomers did not. The levels of trimer-binding and virus-neutralizing antibodies were strongly correlated, suggesting that gp140 trimers are superior to gp120 monomers as immunogens. Targeting and activating B cells with a trimeric HIV-1 Env-APRIL fusion protein may therefore improve the induction of humoral immunity against HIV-1.
Collapse
|
21
|
van Montfort T, Melchers M, Isik G, Menis S, Huang PS, Matthews K, Michael E, Berkhout B, Schief WR, Moore JP, Sanders RW. A chimeric HIV-1 envelope glycoprotein trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain induces enhanced antibody and T cell responses. J Biol Chem 2011; 286:22250-61. [PMID: 21515681 DOI: 10.1074/jbc.m111.229625] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.
Collapse
Affiliation(s)
- Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|