1
|
Samardak K, Bâcle J, Moriel-Carretero M. Behind the stoNE wall: A fervent activity for nuclear lipids. Biochimie 2024; 227:53-84. [PMID: 39111564 DOI: 10.1016/j.biochi.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/27/2024]
Abstract
The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.
Collapse
Affiliation(s)
- Kseniya Samardak
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - Janélie Bâcle
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM) UMR5237, Université de Montpellier, Centre National de La Recherche Scientifique, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
2
|
Xiong T, Zhang Z, Fan T, Ye F, Ye Z. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals. BMC Genomics 2024; 25:350. [PMID: 38589807 PMCID: PMC11000326 DOI: 10.1186/s12864-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.
Collapse
Affiliation(s)
- Tao Xiong
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Fan Ye
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ziyi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Di Leva F, Filosi M, Oyston L, Silvestri E, Picard A, Lavdas AA, Lobbestael E, Baekelandt V, Neely GG, Pramstaller PP, Hicks AA, Corti C. Increased Levels of the Parkinson's Disease-Associated Gene ITPKB Correlate with Higher Expression Levels of α-Synuclein, Independent of Mutation Status. Int J Mol Sci 2023; 24:1984. [PMID: 36768321 PMCID: PMC9916293 DOI: 10.3390/ijms24031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Autosomal dominant mutations in the gene encoding α-synuclein (SNCA) were the first to be linked with hereditary Parkinson's disease (PD). Duplication and triplication of SNCA has been observed in PD patients, together with mutations at the N-terminal of the protein, among which A30P and A53T influence the formation of fibrils. By overexpressing human α-synuclein in the neuronal system of Drosophila, we functionally validated the ability of IP3K2, an ortholog of the GWAS identified risk gene, Inositol-trisphosphate 3-kinase B (ITPKB), to modulate α-synuclein toxicity in vivo. ITPKB mRNA and protein levels were also increased in SK-N-SH cells overexpressing wild-type α-synuclein, A53T or A30P mutants. Kinase overexpression was detected in the cytoplasmatic and in the nuclear compartments in all α-synuclein cell types. By quantifying mRNAs in the cortex of PD patients, we observed higher levels of ITPKB mRNA when SNCA was expressed more (p < 0.05), compared to controls. A positive correlation was also observed between SNCA and ITPKB expression in the cortex of patients, which was not seen in the controls. We replicated this observation in a public dataset. Our data, generated in SK-N-SH cells and in cortex from PD patients, show that the expression of α-synuclein and ITPKB is correlated in pathological situations.
Collapse
Affiliation(s)
- Francesca Di Leva
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Michele Filosi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Lisa Oyston
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erica Silvestri
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - G. Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| |
Collapse
|
4
|
Janssen AFJ, Breusegem SY, Larrieu D. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. Cells 2022; 11:347. [PMID: 35159153 PMCID: PMC8834579 DOI: 10.3390/cells11030347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/02/2023] Open
Abstract
Any given cell type has an associated "normal" nuclear morphology, which is important to maintain proper cellular functioning and safeguard genomic integrity. Deviations from this can be indicative of diseases such as cancer or premature aging syndrome. To accurately assess nuclear abnormalities, it is important to use quantitative measures of nuclear morphology. Here, we give an overview of several nuclear abnormalities, including micronuclei, nuclear envelope invaginations, blebs and ruptures, and review the current methods used for image-based quantification of these abnormalities. We discuss several parameters that can be used to quantify nuclear shape and compare their outputs using example images. In addition, we present new pipelines for quantitative analysis of nuclear blebs and invaginations. Quantitative analyses of nuclear aberrations and shape will be important in a wide range of applications, from assessments of cancer cell anomalies to studies of nucleus deformability under mechanical or other types of stress.
Collapse
Affiliation(s)
| | | | - Delphine Larrieu
- Department of Clinical Biochemistry, Addenbrookes Biomedical Campus, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; (A.F.J.J.); (S.Y.B.)
| |
Collapse
|
5
|
A toolkit for expression of Strep-tagged enhanced green fluorescent protein concatemers in mammalian cells. Anal Biochem 2019; 586:113430. [PMID: 31521668 DOI: 10.1016/j.ab.2019.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022]
Abstract
Green fluorescent protein (GFP) and its variants are widely used tools in life sciences. Recently, we and others have used enhanced green fluorescent protein (EGFP) concatemers for determination of nuclear localization signal strength, as natural fluorescence standards and for mapping mobility in living cell nuclei. In this study, we present a molecular toolbox of Strep-tagged EGFP concatemers ranging from 1 to 12 subunits (Addgene plasmids #122488-122499). EGFP concatemers can be easily fused to targeting motifs of any origin by oligonucleotide ligation. Subsequently, we used liposomal transfection for transient expression of EGFP concatemers in eukaryotic cells. We have tested multiple protocols for further processing of the cells and recommend use of formalin or paraformaldehyde/methanol fixation. After usage of these protocols, we were able to detect concatemers by both GFP fluorescence microscopy and αStrep immunomicroscopy. In addition, we observed a more reliable detection of the StrepTag polypeptide (SA-WSHPQFEK) when using αStrepTag antibody instead of StrepTag binding protein. Summing up, we present a toolbox for expression of a wide range of Strep-tagged EGFP concatemers for multiple applications. By use of EGFP fluorescence and/or StrepTag polypeptide, the expressed concatemers can be easily detected in the cell.
Collapse
|
6
|
Videlock EJ, Mahurkar-Joshi S, Hoffman JM, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G140-G157. [PMID: 29565640 PMCID: PMC6109711 DOI: 10.1152/ajpgi.00288.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
Peripheral factors likely play a role in at least a subset of irritable bowel syndrome (IBS) patients. Few studies have investigated mucosal gene expression using an unbiased approach. Here, we performed mucosal gene profiling in a sex-balanced sample to identify relevant signaling pathways and gene networks and compare with publicly available profiling data from additional cohorts. Twenty Rome III+ IBS patients [10 IBS with constipation (IBS-C), 10 IBS with diarrhea (IBS-D), 5 men/women each), and 10 age-/sex-matched healthy controls (HCs)] underwent sigmoidoscopy with biopsy for gene microarray analysis, including differential expression, weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis, and comparison with publicly available data. Expression levels of 67 genes were validated in an expanded cohort, including the above samples and 18 additional participants (6 each of IBS-C, IBS-D, HCs) using NanoString nCounter technology. There were 1,270 differentially expressed genes (FDR < 0.05) in IBS-C vs. HCs but none in IBS or IBS-D vs. HCs. WGNCA analysis identified activation of the cAMP/protein kinase A signaling pathway. Nine of 67 genes were validated by the NanoString nCounter technology (FDR < 0.05) in the expanded sample. Comparison with publicly available microarray data from the Mayo Clinic and University of Nottingham supports the reproducibility of 17 genes from the microarray analysis and three of nine genes validated by nCounter in IBS-C vs. HCs. This study supports the involvement of peripheral mechanisms in IBS-C, particularly pathways mediating neuronal signaling. NEW & NOTEWORTHY Peripheral factors play a role in the pathophysiology of irritable bowel syndrome (IBS), which, to date, has been mostly evident in IBS with diarrhea. Here, we show that sigmoid colon mucosal gene expression profiles differentiate IBS with constipation from healthy controls. These profiling data and analysis of additional cohorts also support the concept that peripheral neuronal pathways contribute to IBS pathophysiology.
Collapse
Affiliation(s)
- Elizabeth J Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Jill M Hoffman
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| |
Collapse
|
7
|
Effect of the actin- and calcium-regulating activities of ITPKB on the metastatic potential of lung cancer cells. Biochem J 2018; 475:2057-2071. [DOI: 10.1042/bcj20180238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) exhibits oncogenic activity in lung cancer cells by regulating Ins(1,4,5)P3-mediated calcium release and cytoskeletal dynamics. Since, in normal cells, ITPKA is mainly expressed in the brain, it is an excellent target for selected therapy of lung cancer. However, ITPKB is strongly expressed in normal lung tissues, but is down-regulated in lung cancer cells by miR-375, assuming that ITPKB might have tumor suppressor activity. In addition, ITPKB binds to F-actin making it likely that, similar to ITPKA, it controls actin dynamics. Thus, the treatment of ITPKA-expressing lung cancer with ITPKA inhibitors simultaneously inhibiting ITPKB may counteract the therapy. Based on these considerations, we analyzed if ITPKB controls actin dynamics and if the protein reduces aggressive progression of lung cancer cells. We found that ITPKB bundled F-actin in cell-free systems. However, the stable expression of ITPKB in H1299 lung cancer cells, exhibiting very low endogenous ITPKB expression, had no significant effect on the actin structure. In addition, our data show that ITPKB negatively controls transmigration of H1299 cells in vitro by blocking Ins(1,4,5)P3-mediated calcium release. On the other hand, colony formation was stimulated by ITPKB, independent of Ins(1,4,5)P3-mediated calcium signals. However, dissemination of H1299 cells from the skin to the lung in NOD scid gamma mice was not significantly affected by ITPKB expression. In summary, ITPKB does not affect the cellular actin structure and does not suppress dissemination of human lung cancer cells in mice. Thus, our initial hypotheses that ITPKB exhibits tumor suppressor activity could not be supported.
Collapse
|
8
|
Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells. Cell Signal 2018; 49:87-94. [PMID: 29852247 DOI: 10.1016/j.cellsig.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells.
Collapse
|
9
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
10
|
Long noncoding RNA CCAT1 functions as a ceRNA to antagonize the effect of miR-410 on the down-regulation of ITPKB in human HCT-116 and HCT-8 cells. Oncotarget 2017; 8:92855-92863. [PMID: 29190961 PMCID: PMC5696227 DOI: 10.18632/oncotarget.21612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/26/2017] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies, which has seriously affected people's health. Abnormal expression of long non-coding RNAs and microRNAs are closely related to the process of occurrence, development, invasion and metastasis of colorectal cancer. However, the effect of lnc CCAT1 on human HCT-116/HCT-8 cells and its potential mechanism were investigated. In present study, differential expression of CCAT1, miR-410 and ITPKB were detected in colon cancer tissues and adjacent parts. Then the prediction programs were applied to predict the target genes of miR-410. The complementary bindings of miR-410 with lnc CCAT1 and ITPKB were assessed by luciferase assays. The interaction between LncRNA CCAT1 and miR-410 was analyzed. In addition, the mRNA and protein of ITPKB and apoptosis factors were examined in cells after miR-410 overexpression or silencing. Meanwhile, MTT and flow cytometer were used to detect the cells proliferation and apoptosis level. Results showed that CCAT1 and miR-410 were up-regulated in colon cancer tissues, but ITPKB was down-regulated. Lnc CCAT1 and ITPKB were predicted to be the targets of miR-410 and the prediction were verified by luciferase assays. The expression of lnc CCAT1 and ITPKB were inhibited by miR-410 in human HCT-116/HCT-8 cells. Meanwhile, lnc CCAT1 could lead to a decrease of miR-410. Furthermore, miR-410 overexpression could promote cell proliferation and reduce apoptosis. In summary, these data demonstrated that miR-410 could promote cell proliferation and reduce apoptosis by inhibiting ITPKB expression and the expression of lnc CCAT1 antagonized the effect of miR-410.
Collapse
|
11
|
Drozdz MM, Jiang H, Pytowski L, Grovenor C, Vaux DJ. Formation of a nucleoplasmic reticulum requires de novo assembly of nascent phospholipids and shows preferential incorporation of nascent lamins. Sci Rep 2017; 7:7454. [PMID: 28785031 PMCID: PMC5547041 DOI: 10.1038/s41598-017-07614-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
Structure of interphase cell nuclei remains dynamic and can undergo various changes of shape and organisation, in health and disease. The double-membraned envelope that separates nuclear genetic material from the rest of the cell frequently includes deep, branching tubular invaginations that form a dynamic nucleoplasmic reticulum (NR). This study addresses mechanisms by which NR can form in interphase nuclei. We present a combination of Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS) approach and light microscopy techniques to follow formation of NR by using pulse-chase experiments to examine protein and lipid delivery to nascent NR in cultured cells. Lamina protein incorporation was assessed using precursor accumulation (for lamin A) or a MAPLE3 photoconvertible tag (for lamin B1) and membrane phospholipid incorporation using stable isotope labelling with deuterated precursors followed by high resolution NanoSIMS. In all three cases, nascent molecules were selectively incorporated into newly forming NR tubules; thus strongly suggesting that NR formation is a regulated process involving a focal assembly machine, rather than simple physical perturbation of a pre-existing nuclear envelope.
Collapse
Affiliation(s)
- Marek M Drozdz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Lior Pytowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Chris Grovenor
- Department of Materials, University of Oxford, Oxford, OX1 3PH, United Kingdom
| | - David J Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
12
|
A set of enhanced green fluorescent protein concatemers for quantitative determination of nuclear localization signal strength. Anal Biochem 2017; 533:48-55. [PMID: 28669708 DOI: 10.1016/j.ab.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/08/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated transport of proteins between nucleus and cytoplasm is an important process in the eukaryotic cell. In most cases, active nucleo-cytoplasmic protein transport is mediated by nuclear localization signal (NLS) and/or nuclear export signal (NES) motifs. In this study, we developed a set of vectors expressing enhanced GFP (EGFP) concatemers ranging from 2 to 12 subunits (2xEGFP to 12xEGFP) for analysis of NLS strength. As shown by in gel GFP fluorescence analysis and αGFP Western blotting, EGFP concatemers are expressed as fluorescent full-length proteins in eukaryotic cells. As expected, nuclear localization of concatemeric EGFPs decreases with increasing molecular weight. By oligonucleotide ligation this set of EGFP concatemers can be easily fused to NLS motifs. After determination of intracellular localization of EGFP concatemers alone and fused to different NLS motifs we calculated the size of a hypothetic EGFP concatemer showing a defined distribution of EGFP fluorescence between nucleus and cytoplasm (n/c ratio = 2). Clear differences of the size of the hypothetic EGFP concatemer depending on the fused NLS motif were observed. Therefore, we propose to use the size of this hypothetic concatemer as quantitative indicator for comparing strength of different NLS motifs.
Collapse
|
13
|
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is frequently over-expressed and functions as an oncogene in several tumor types. Biochem Pharmacol 2017; 137:1-9. [PMID: 28377279 DOI: 10.1016/j.bcp.2017.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023]
Abstract
At present targeted tumor therapy is based on inhibition of proteins or protein mutants that are up-regulated in tumor but not in corresponding normal cells. The actin bundling Inositol-trisphosphate 3-kinase A (ITPKA) belongs to such molecular targets. ITPKA is expressed in a broad range of tumor types but shows limited expression in normal cells. In lung and breast cancer expression of ITPKA is stimulated by gene body methylation which increases with increasing malignancy of these tumors but is not detectable in the corresponding normal tissues. Since ITPKA gene body methylation occurs early in tumor development, it could serve as biomarker for early detection of lung cancer. Detailed mechanistic studies revealed that down-regulation of ITPKA in lung adenocarcinoma cancers reduced both, tumor growth and metastasis. It is assumed that tumor growth is stimulated by the InsP3Kinase activity of ITPKA and metastasis by its actin bundling activity. A selective inhibitor against the InsP3Kinase activity of ITPKA has been identified but compounds inhibiting the actin bundling activity are not available yet. Since no curative therapy option for metastatic lung or breast tumors exist, therapies that block activities of ITPKA may offer new options for patients with these tumors. Thus, efforts should be made to develop clinical drugs that selectively target InsP3Kinase activity as well as actin bundling activity of ITPKA.
Collapse
|
14
|
Drozdz MM, Vaux DJ. Shared mechanisms in physiological and pathological nucleoplasmic reticulum formation. Nucleus 2017; 8:34-45. [PMID: 27797635 PMCID: PMC5287099 DOI: 10.1080/19491034.2016.1252893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The mammalian nuclear envelope (NE) can develop complex dynamic membrane-bounded invaginations in response to both physiological and pathological stimuli. Since the formation of these nucleoplasmic reticulum (NR) structures can occur during interphase, without mitotic NE breakdown and reassembly, some other mechanism must drive their development. Here we consider models for deformation of the interphase NE, together with the evidence for their potential roles in NR formation.
Collapse
Affiliation(s)
| | - David John Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Ferru-Clément R, Spanova M, Dhayal S, Morgan NG, Hélye R, Becq F, Hirose H, Antonny B, Vamparys L, Fuchs PFJ, Ferreira T. Targeting surface voids to counter membrane disorders in lipointoxication-related diseases. J Cell Sci 2016; 129:2368-81. [PMID: 27142833 DOI: 10.1242/jcs.183590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Saturated fatty acids (SFA), which are abundant in the so-called western diet, have been shown to efficiently incorporate within membrane phospholipids and therefore impact on organelle integrity and function in many cell types. In the present study, we have developed a yeast-based two-step assay and a virtual screening strategy to identify new drugs able to counter SFA-mediated lipointoxication. The compounds identified here were effective in relieving lipointoxication in mammalian β-cells, one of the main targets of SFA toxicity in humans. In vitro reconstitutions and molecular dynamics simulations on bilayers revealed that these molecules, albeit according to different mechanisms, can generate voids at the membrane surface. The resulting surface defects correlate with the recruitment of loose lipid packing or void-sensing proteins required for vesicular budding, a central cellular process that is precluded under SFA accumulation. Taken together, the results presented here point at modulation of surface voids as a central parameter to consider in order to counter the impacts of SFA on cell function.
Collapse
Affiliation(s)
- Romain Ferru-Clément
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France Société d'Accélération du Transfert de Technologie (SATT) Grand Centre, 8 rue Pablo Picasso, Clermont-Ferrand 63000, France
| | - Miroslava Spanova
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France
| | - Shalinee Dhayal
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Reynald Hélye
- Société d'Accélération du Transfert de Technologie (SATT) Grand Centre, 8 rue Pablo Picasso, Clermont-Ferrand 63000, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France
| | - Hisaaki Hirose
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université de Nice Sofia-Antipolis, 660 route des Lucioles, Valbonne 06560, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université de Nice Sofia-Antipolis, 660 route des Lucioles, Valbonne 06560, France
| | - Lydie Vamparys
- Dynamique des membranes et trafic intracellulaire, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, Paris 75013, France
| | - Patrick F J Fuchs
- Dynamique des membranes et trafic intracellulaire, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, Paris 75013, France
| | - Thierry Ferreira
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France
| |
Collapse
|
16
|
Common variable immunodeficiency associated with microdeletion of chromosome 1q42.1-q42.3 and inositol 1,4,5-trisphosphate kinase B (ITPKB) deficiency. Clin Transl Immunology 2016; 5:e59. [PMID: 26900472 PMCID: PMC4735063 DOI: 10.1038/cti.2015.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogenous disorder characterized by hypogammaglobulinemia and impaired specific antibody response and increased susceptibility to infections, autoimmunity and malignancies. A number of gene mutations, including ICOS, TACI and BAFF-R, and CD19, CD20, CD21, CD81, MSH5 and LRBA have been described; however, they account for approximately 20–25% of total cases of CVID. In this study, we report a patient with CVID with an intrinsic microdeletion of chromosome 1q42.1-42.3, where gene for inositol 1,3,4, trisphosphate kinase β (ITPKB) is localized. ITPKB has an important role in the development, survival and function of B cells. In this subject, the expression of ITPKB mRNA as well as ITKPB protein was significantly reduced. The sequencing of ITPKB gene revealed three variants, two of them were missense variants and third was a synonymous variant; the significance of each of them in relation to CVID is discussed. This case suggests that a deficiency of ITPKB may have a role in CVID.
Collapse
|
17
|
Erneux C, Ghosh S, Koenig S. Inositol(1,4,5)P3 3-kinase isoenzymes: Catalytic properties and importance of targeting to F-actin to understand function. Adv Biol Regul 2016; 60:135-143. [PMID: 26446452 DOI: 10.1016/j.jbior.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) 3-kinases (Itpks) catalyze the phosphorylation of inositol(1,4,5)trisphosphate into inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). Three isoenzymes Itpka/b and c have been identified in human, rat and mouse. They share a catalytic domain relatively well conserved at the C-terminal end and a quite isoenzyme specific regulatory domain at the N-terminal end of the protein. Activity determined in cell homogenates with Ins(1,4,5)P3 and ATP as substrate is generally very low compared to Ins(1,4,5)P3 5-phosphatase, except in a few tissues such as brain, testis, thymus or intestine. Activity is very much Ca(2+) sensitive and increased in the presence of Ca(2+)/calmodulin (CaM) as compared to EGTA alone. When challenged after receptor activation, activity could be further activated several fold, e.g. in rat brain cortical slices stimulated by carbachol or in human astrocytoma cells stimulated by purinergic agonists. Two of the three isoenzymes show an unexpected cytoskeletal localization for Itpka/b or at the leading edge for Itpkb. This is explained by the presence of an F-actin binding site at the N-terminal part of the two isoenzymes. This interaction confers to Itpka the properties of an F-actin bundling protein with two major consequences: i) it can reorganize the cytoskeletal network, particularly in dendritic spines, and ii) can provide an opportunity for Ins(1,3,4,5)P4 to act very locally as second messenger.
Collapse
Affiliation(s)
- Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Somadri Ghosh
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Sandra Koenig
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
18
|
Jin Y, Liu Y, Zhang J, Huang W, Jiang H, Hou Y, Xu C, Zhai C, Gao X, Wang S, Wu Y, Zhu H, Lu S. The Expression of miR-375 Is Associated with Carcinogenesis in Three Subtypes of Lung Cancer. PLoS One 2015; 10:e0144187. [PMID: 26642205 PMCID: PMC4671676 DOI: 10.1371/journal.pone.0144187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Many studies demonstrated unique microRNA profiles in lung cancer. Nonetheless, the role and related signal pathways of miR-375 in lung cancer are largely unknown. Our study investigated relationships between carcinogenesis and miR-375 in adenocarcinoma, squamous cell carcinoma and small cell lung carcinoma to identify new molecular targets for treatment. We evaluated 723 microRNAs in microdissected cancerous cells and adjacent normal cells from 126 snap-frozen lung specimens using microarrays. We validated the expression profiles of miR-375 and its 22 putative target mRNAs in an independent cohort of 78 snap-frozen lung cancer tissues using quantitative reverse-transcriptase PCR. Moreover, we performed dual luciferase reporter assay and Western blot on 6 targeted genes (FZD8, ITGA10, ITPKB, LRP5, PIAS1 andRUNX1) in small cell lung carcinoma cell line NCI-H82. We also detected the effect of miR-375 on cell proliferation in NCI-H82. We found that miR-375 expression was significantly up-regulated in adenocarcinoma and small cell lung carcinoma but down-regulated in squamous cell carcinoma. Among the 22 putative target genes, 11 showed significantly different expression levels in at least 2 of 3 pair-wise comparisons (adenocarcinoma vs. normal, squamous cell carcinoma vs. normal or small cell lung carcinoma vs. normal). Six targeted genes had strong negative correlation with the expression level of miR-375 in small cell lung carcinoma. Further investigation revealed that miR-375 directly targeted the 3’UTR of ITPKB mRNA and over-expression of miR-375 led to significantly decreased ITPKB protein level and promoted cell growth. Thus, our study demonstrates the differential expression profiles of miR-375 in 3 subtypes of lung carcinomas and finds thatmiR-375 directly targets ITPKB and promoted cell growth in SCLC cell line.
Collapse
Affiliation(s)
- Yi Jin
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, China
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yalan Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, Institute of Medical Sciences, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Huang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongni Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changwen Zhai
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Ying Wu
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Hongguang Zhu
- Department of Pathology, School of Basic Medical Science, Fudan University, Shanghai, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
19
|
Oliveira AG, Guimarães ES, Andrade LM, Menezes GB, Fatima Leite M. Decoding calcium signaling across the nucleus. Physiology (Bethesda) 2015; 29:361-8. [PMID: 25180265 DOI: 10.1152/physiol.00056.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Calcium (Ca(2+)) is an important multifaceted second messenger that regulates a wide range of cellular events. A Ca(2+)-signaling toolkit has been shown to exist in the nucleus and to be capable of generating and modulating nucleoplasmic Ca(2+) transients. Within the nucleus, Ca(2+) controls cellular events that are different from those modulated by cytosolic Ca(2+). This review focuses on nuclear Ca(2+) signals and their role in regulating physiological and pathological processes.
Collapse
Affiliation(s)
- André G Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Erika S Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil; Molecular Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil; and
| | - Lídia M Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - M Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil;
| |
Collapse
|
20
|
Kublun I, Ehm P, Brehm MA, Nalaskowski MM. Efficacious inhibition of Importin α/β-mediated nuclear import of human inositol phosphate multikinase. Biochimie 2014; 102:117-23. [DOI: 10.1016/j.biochi.2014.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/01/2014] [Indexed: 12/30/2022]
|
21
|
Payet LA, Pineau L, Snyder ECR, Colas J, Moussa A, Vannier B, Bigay J, Clarhaut J, Becq F, Berjeaud JM, Vandebrouck C, Ferreira T. Saturated Fatty Acids Alter the Late Secretory Pathway by Modulating Membrane Properties. Traffic 2013; 14:1228-41. [DOI: 10.1111/tra.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Laurie-Anne Payet
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | | | - Ellen C. R. Snyder
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jenny Colas
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Ahmed Moussa
- Ecole Nationale des Sciences Appliquées de Tanger; BP 1818 90000 Tanger Morocco
| | - Brigitte Vannier
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Joelle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire; UMR CNRS 7275, Université de Nice-Sophia Antipolis; 660 Route des Lucioles, Sophia Antipolis 06560 Valbonne France
| | - Jonathan Clarhaut
- INSERM CIC 0802; CHU de Poitiers; 2 rue de la Milétrie 86021 Poitiers France
| | - Frédéric Becq
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Jean-Marc Berjeaud
- Université de Poitiers; Ecologie et Biologie des Interactions; UMR CNRS 7267, 40 avenue du Recteur Pineau 86022 Poitiers Cedex France
| | - Clarisse Vandebrouck
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| | - Thierry Ferreira
- Université de Poitiers; Institut de Physiologie et de Biologie Cellulaires; FRE CNRS 3511, Pôle Biologie-Santé, 1, Rue Georges BONNET, BP 633 86022 Poitiers Cedex France
| |
Collapse
|
22
|
Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly. Proc Natl Acad Sci U S A 2013; 110:11029-34. [PMID: 23776233 DOI: 10.1073/pnas.1217308110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wound healing is essential for survival. We took advantage of the Xenopus embryo, which exhibits remarkable capacities to repair wounds quickly and efficiently, to investigate the mechanisms responsible for wound healing. Previous work has shown that injury triggers a rapid calcium response, followed by the activation of Ras homolog (Rho) family guanosine triphosphatases (GTPases), which regulate the formation and contraction of an F-actin purse string around the wound margin. How these processes are coordinated following wounding remained unclear. Here we show that inositol-trisphosphate 3-kinase B (Itpkb) via its enzymatic product inositol 1,3,4,5-tetrakisphosphate (InsP4) plays an essential role during wound healing by modulating the activity of Rho family GTPases and F-actin ring assembly. Furthermore, we show that Itpkb and InsP4 modulate the speed of the calcium wave, which propagates from the site of injury into neighboring uninjured cells. Strikingly, both overexpression of itpkb and exogenous application of InsP4 accelerate the speed of wound closure, a finding that has potential implications in our quest to find treatments that improve wound healing in patients with acute or chronic wounds.
Collapse
|
23
|
Wieschhaus AJ, Le Breton GC, Chishti AH. Headpiece domain of dematin regulates calcium mobilization and signaling in platelets. J Biol Chem 2012; 287:41218-31. [PMID: 23060452 DOI: 10.1074/jbc.m112.364679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dematin is a broadly expressed membrane cytoskeletal protein that has been well characterized in erythrocytes and to a lesser extent in non-erythroid cells. However, dematin's function in platelets is not known. Here, we show that dematin is abundantly expressed in both human and mouse platelets. Platelets harvested from the dematin headpiece knock-out (HPKO) mouse model exhibit a striking defect in the mobilization of calcium in response to multiple agonists of platelet activation. The reduced calcium mobilization in HPKO platelets is associated with concomitant inhibition of platelet aggregation and granule secretion. Integrin α(IIb)β(3) activation in response to agonists is attenuated in the HPKO platelets. The mutant platelets show nearly normal spreading on fibrinogen and an unaltered basal cAMP level; however, the clot retraction was compromised in the mutant mice. Immunofluorescence analysis indicated that dematin is present both at the dense tubular system and plasma membrane fractions of platelets. Proteomic analysis of dematin-associated proteins in human platelets identified inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) as a binding partner, which was confirmed by immunoprecipitation analysis. IP3KB, a dense tubular system protein, is a major regulator of calcium homeostasis. Loss of the dematin headpiece resulted in a decrease of IP3KB at the membrane and increased levels of IP3KB in the cytosol. Collectively, these findings unveil dematin as a novel regulator of internal calcium mobilization in platelets affecting multiple signaling and cytoskeletal functions. Implications of a conserved role of dematin in the regulation of calcium homeostasis in other cell types will be discussed.
Collapse
Affiliation(s)
- Adam J Wieschhaus
- Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
24
|
Nalaskowski MM, Ehm P, Giehler S, Mayr GW. A toolkit for graded expression of green fluorescent protein fusion proteins in mammalian cells. Anal Biochem 2012; 428:24-7. [DOI: 10.1016/j.ab.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/16/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022]
|
25
|
Hoofd C, Devreker F, Deneubourg L, Deleu S, Nguyen TMU, Sermon K, Englert Y, Erneux C. A specific increase in inositol 1,4,5-trisphosphate 3-kinase B expression upon differentiation of human embryonic stem cells. Cell Signal 2012; 24:1461-70. [DOI: 10.1016/j.cellsig.2012.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 12/12/2022]
|
26
|
Mauger JP. Role of the nuclear envelope in calcium signalling. Biol Cell 2011; 104:70-83. [PMID: 22188206 DOI: 10.1111/boc.201100103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major Ca(2+) store inside the cell. Its organisation in specialised subdomains allows the local delivery of Ca(2+) to specific cell areas on stimulation. The nuclear envelope (NE), which is continuous with the ER, has a double role: it insulates the nucleoplasm from the cytoplasm and it stores Ca(2+) around the nucleus. Furthermore, all the constituents of the signalling cascade leading to Ca(2+) mobilisation are found in the NE; this allows the nuclear Ca(2+) to be regulated autonomously. On the other hand, cytosolic Ca(2+) transients can propagate within the nucleus via the nuclear pore complex. The variations in nuclear Ca(2+) concentration are important for controlling gene transcription and progression in the cell cycle. Recent data suggest that invaginations of the NE modify the morphology of the nucleus and may affect Ca(2+) dynamics in the nucleus and regulate transcriptional activity.
Collapse
|
27
|
Goulbourne CN, Malhas AN, Vaux DJ. The induction of a nucleoplasmic reticulum by prelamin A accumulation requires CTP:phosphocholine cytidylyltransferase-α. J Cell Sci 2011; 124:4253-66. [PMID: 22223883 PMCID: PMC3258109 DOI: 10.1242/jcs.091009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 12/24/2022] Open
Abstract
Farnesylated prelamin A accumulates when the final endoproteolytic maturation of the protein fails to occur and causes a dysmorphic nuclear phenotype; however, the morphology and mechanisms of biogenesis of these changes remain unclear. We show here that acute prelamin A accumulation after reduction in the activity of the ZMPSTE24 endoprotease by short interfering RNA knockdown, results in the generation of a complex nucleoplasmic reticulum that depends for its formation on the enzyme CTP:phosphocholine-cytidylyltransferase-α (CCT-α, also known as choline-phosphate cytidylyltransferase A). This structure can form during interphase, confirming that it is independent of mitosis and therefore not a consequence of disordered nuclear envelope assembly. Serial-section dual-axis electron tomography reveals that these invaginations can take two forms: one in which the inner nuclear membrane infolds alone with an inter membrane space interior, and the other in which an invagination of both nuclear membranes occurs, enclosing a cytoplasmic core. Both types of invagination can co-exist in one nucleus and both are frequently studded with nuclear pore complexes (NPC), which reduces NPC abundance on the nuclear surface.
Collapse
Affiliation(s)
- Chris N. Goulbourne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ashraf N. Malhas
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - David J. Vaux
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
28
|
Malhas A, Goulbourne C, Vaux DJ. The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011; 21:362-73. [DOI: 10.1016/j.tcb.2011.03.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|