1
|
Petushkov I, Elkina D, Burenina O, Kubareva E, Kulbachinskiy A. Key interactions of RNA polymerase with 6S RNA and secondary channel factors during pRNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195032. [PMID: 38692564 DOI: 10.1016/j.bbagrm.2024.195032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.
Collapse
Affiliation(s)
- Ivan Petushkov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Elkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Burenina
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
2
|
Han SJ, Jiang YL, You LL, Shen LQ, Wu X, Yang F, Cui N, Kong WW, Sun H, Zhou K, Meng HC, Chen ZP, Chen Y, Zhang Y, Zhou CZ. DNA looping mediates cooperative transcription activation. Nat Struct Mol Biol 2024; 31:293-299. [PMID: 38177666 DOI: 10.1038/s41594-023-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by ∼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.
Collapse
Affiliation(s)
- Shu-Jing Han
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yong-Liang Jiang
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China.
| | - Lin-Lin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Qiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Feng Yang
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Ning Cui
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Wen-Wen Kong
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hui Sun
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Ke Zhou
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hui-Chao Meng
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Zhi-Peng Chen
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yuxing Chen
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Cong-Zhao Zhou
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China.
| |
Collapse
|
3
|
Zhang Y, Wang Y, Li J, Wang C, Du G, Kang Z. Construction of Strong Promoters by Assembling Sigma Factor Binding Motifs. Methods Mol Biol 2022; 2461:137-147. [PMID: 35727448 DOI: 10.1007/978-1-0716-2152-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Development of strong promoters is of growing interest in the field of biotechnology and synthetic biology. Here we present a protocol for the construction of strong prokaryotic promoters that can be recognized by designated multiple sigma factors by interlocking their cognate binding motifs on DNA strands. Strong and stress responsive promoters for Escherichia coli and Bacillus subtilis have been created following the presented protocol. Customized promoters could be easily developed for fine-tuning gene expression or overproducing enzymes with prokaryotic cell factories.
Collapse
Affiliation(s)
- Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Chao Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Petushkov IV, Kulbachinskiy AV. Role of Interactions of the CRE Region of Escherichia coli RNA Polymerase with Nontemplate DNA during Promoter Escape. BIOCHEMISTRY (MOSCOW) 2021; 85:792-800. [PMID: 33040723 DOI: 10.1134/s000629792007007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA polymerase (RNAP) recognizes promoter DNA through many interactions that determine specificity of transcription initiation. In addition to the dedicated transcription initiation σ factor in bacteria, the core enzyme of RNAP can also participate in promoter recognition. In particular, guanine residue at the +2 position (+2G) of the nontemplate DNA strand is bound in the CRE pocket formed by the RNAP β subunit. Here, we analyzed the role of these contacts in the process of promoter escape by RNAP by studying point mutations in the β subunit of Escherichia coli RNAP that disrupted these interactions. We found that the presence of +2G in the promoter slowed down the rate of promoter escape and increased proportion of inactive complexes. Amino acid substitutions in the CRE pocket decreased the promoter complex stability and changed the pattern of short RNA products synthesized during initiation, but did not significantly affect the rate of transition to elongation, regardless of the presence of +2G. Thus, the contacts of the CRE pocket with +2G do not make a significant contribution to the kinetics of promoter escape by RNAP, while the observed changes in the efficiency of abortive synthesis are not directly related to the rate of promoter escape.
Collapse
Affiliation(s)
- I V Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - A V Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| |
Collapse
|
5
|
Fang C, Philips SJ, Wu X, Chen K, Shi J, Shen L, Xu J, Feng Y, O’Halloran TV, Zhang Y. CueR activates transcription through a DNA distortion mechanism. Nat Chem Biol 2021; 17:57-64. [PMID: 32989300 PMCID: PMC9904984 DOI: 10.1038/s41589-020-00653-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]
Abstract
The MerR-family transcription factors (TFs) are a large group of bacterial proteins responding to cellular metal ions and multiple antibiotics by binding within central RNA polymerase-binding regions of a promoter. While most TFs alter transcription through protein-protein interactions, MerR TFs are capable of reshaping promoter DNA. To address the question of which mechanism prevails, we determined two cryo-EM structures of transcription activation complexes (TAC) comprising Escherichia coli CueR (a prototype MerR TF), RNAP holoenzyme and promoter DNA. The structures reveal that this TF promotes productive promoter-polymerase association without canonical protein-protein contacts seen between other activator proteins and RNAP. Instead, CueR realigns the key promoter elements in the transcription activation complex by clamp-like protein-DNA interactions: these induce four distinct kinks that ultimately position the -10 element for formation of the transcription bubble. These structural and biochemical results provide strong support for the DNA distortion paradigm of allosteric transcriptional control by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven J. Philips
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Jing Shi
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juncao Xu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Thomas V. O’Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Corresponding author: (T.V.O.); (Y.F.); (Y.Z.)
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Novel Escherichia coli RNA Polymerase Binding Protein Encoded by Bacteriophage T5. Viruses 2020; 12:v12080807. [PMID: 32722583 PMCID: PMC7472727 DOI: 10.3390/v12080807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
The Escherichia coli bacteriophage T5 has three temporal classes of genes (pre-early, early, and late). All three classes are transcribed by host RNA polymerase (RNAP) containing the σ70 promoter specificity subunit. Molecular mechanisms responsible for the switching of viral transcription from one class to another remain unknown. Here, we find the product of T5 gene 026 (gpT5.026) in RNAP preparations purified from T5-infected cells and demonstrate in vitro its tight binding to E. coli RNAP. While proteins homologous to gpT5.026 are encoded by all T5-related phages, no similarities to proteins with known functions can be detected. GpT5.026 binds to two regions of the RNAP β subunit and moderately inhibits RNAP interaction with the discriminator region of σ70-dependent promoters. A T5 mutant with disrupted gene 026 is viable, but the host cell lysis phase is prolongated and fewer virus particles are produced. During the mutant phage infection, the number of early transcripts increases, whereas the number of late transcripts decreases. We propose that gpT5.026 is part of the regulatory cascade that orchestrates a switch from early to late bacteriophage T5 transcription.
Collapse
|
7
|
Ooi WY, Murayama Y, Mekler V, Minakhin L, Severinov K, Yokoyama S, Sekine SI. A Thermus phage protein inhibits host RNA polymerase by preventing template DNA strand loading during open promoter complex formation. Nucleic Acids Res 2019; 46:431-441. [PMID: 29165680 PMCID: PMC5758890 DOI: 10.1093/nar/gkx1162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 01/25/2023] Open
Abstract
RNA polymerase (RNAP) is a major target of gene regulation. Thermus thermophilus bacteriophage P23–45 encodes two RNAP binding proteins, gp39 and gp76, which shut off host gene transcription while allowing orderly transcription of phage genes. We previously reported the structure of the T. thermophilus RNAP•σA holoenzyme complexed with gp39. Here, we solved the structure of the RNAP•σA holoenzyme bound with both gp39 and gp76, which revealed an unprecedented inhibition mechanism by gp76. The acidic protein gp76 binds within the RNAP cleft and occupies the path of the template DNA strand at positions –11 to –4, relative to the transcription start site at +1. Thus, gp76 obstructs the formation of an open promoter complex and prevents transcription by T. thermophilus RNAP from most host promoters. gp76 is less inhibitory for phage transcription, as tighter RNAP interaction with the phage promoters allows the template DNA to compete with gp76 for the common binding site. gp76 also inhibits Escherichia coli RNAP highlighting the template–DNA binding site as a new target site for developing antibacterial agents.
Collapse
Affiliation(s)
- Wei-Yang Ooi
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuko Murayama
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Vladimir Mekler
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| | - Leonid Minakhin
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA.,Skolkovo Institute of Science and Technology, Moscow Region 143025, Russia.,St. Petersburg State Polytechnical Institute, St. Petersburg, Russia
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
8
|
Jain I, Minakhin L, Mekler V, Sitnik V, Rubanova N, Severinov K, Semenova E. Defining the seed sequence of the Cas12b CRISPR-Cas effector complex. RNA Biol 2019; 16:413-422. [PMID: 30022698 PMCID: PMC6546406 DOI: 10.1080/15476286.2018.1495492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Target binding by CRISPR-Cas ribonucleoprotein effectors is initiated by the recognition of double-stranded PAM motifs by the Cas protein moiety followed by destabilization, localized melting, and interrogation of the target by the guide part of CRISPR RNA moiety. The latter process depends on seed sequences, parts of the target that must be strictly complementary to CRISPR RNA guide. Mismatches between the target and CRISPR RNA guide outside the seed have minor effects on target binding, thus contributing to off-target activity of CRISPR-Cas effectors. Here, we define the seed sequence of the Type V Cas12b effector from Bacillus thermoamylovorans. While the Cas12b seed is just five bases long, in contrast to all other effectors characterized to date, the nucleotide base at the site of target cleavage makes a very strong contribution to target binding. The generality of this additional requirement was confirmed during analysis of target recognition by Cas12b effector from Alicyclobacillus acidoterrestris. Thus, while the short seed may contribute to Cas12b promiscuity, the additional specificity determinant at the site of cleavage may have a compensatory effect making Cas12b suitable for specialized genome editing applications.
Collapse
Affiliation(s)
- Ishita Jain
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Leonid Minakhin
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
| | - Vladimir Mekler
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
| | - Vasily Sitnik
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Natalia Rubanova
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Konstantin Severinov
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, Russia
| | - Ekaterina Semenova
- Department of Rutgers University, Rutgers The State University of New Jersey, Waksman Institute of Microbiology, Piscataway, NJ, USA
| |
Collapse
|
9
|
Interplay between σ region 3.2 and secondary channel factors during promoter escape by bacterial RNA polymerase. Biochem J 2017; 474:4053-4064. [DOI: 10.1042/bcj20170436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022]
Abstract
In bacterial RNA polymerase (RNAP), conserved region 3.2 of the σ subunit was proposed to contribute to promoter escape by interacting with the 5′-end of nascent RNA, thus facilitating σ dissociation. RNAP activity during transcription initiation can also be modulated by protein factors that bind within the secondary channel and reach the enzyme active site. To monitor the kinetics of promoter escape in real time, we used a molecular beacon assay with fluorescently labeled σ70 subunit of Escherichia coli RNAP. We show that substitutions and deletions in σ region 3.2 decrease the rate of promoter escape and lead to accumulation of inactive complexes during transcription initiation. Secondary channel factors differentially regulate this process depending on the promoter and mutations in σ region 3.2. GreA generally increase the rate of promoter escape; DksA also stimulates promoter escape on certain templates, while GreB either stimulates or inhibits this process depending on the template. When observed, the stimulation of promoter escape correlates with the accumulation of stressed transcription complexes with scrunched DNA, while changes in the RNA 5′-end structure modulate promoter clearance. Thus, the initiation-to-elongation transition is controlled by a complex interplay between RNAP-binding protein factors and the growing RNA chain.
Collapse
|
10
|
Wenholz DS, Zeng M, Ma C, Mielczarek M, Yang X, Bhadbhade M, Black DSC, Lewis PJ, Griffith R, Kumar N. Small molecule inhibitors of bacterial transcription complex formation. Bioorg Med Chem Lett 2017; 27:4302-4308. [PMID: 28866270 DOI: 10.1016/j.bmcl.2017.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/26/2022]
Abstract
Knoevenagel condensation was employed to generate a set of molecules potentially capable of inhibiting the RNA polymerase-σ70/σA interaction in bacteria. Synthesis was achieved via reactions between a variety of indole-7-carbaldehydes and rhodanine, N-allylrhodanine, barbituric acid or thiobarbituric acid. A library of structurally diverse compounds was examined by enzyme-linked immunosorbent assay (ELISA) to assess the inhibition of the targeted protein-protein interaction. Inhibition of bacterial growth was also evaluated using Bacillus subtilis and Escherichia coli cultures. The structure-activity relationship studies demonstrated the significance of particular structural features of the synthesized molecules for RNA polymerase-σ70/σA interaction inhibition and antibacterial activity. Docking was investigated as an in silico method for the further development of the compounds.
Collapse
Affiliation(s)
- Daniel S Wenholz
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Ming Zeng
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cong Ma
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | | | - Xiao Yang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Mohan Bhadbhade
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - David St C Black
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Renate Griffith
- School of Medical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia; Australian Centre for Nanomedicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
11
|
Feklistov A, Bae B, Hauver J, Lass-Napiorkowska A, Kalesse M, Glaus F, Altmann KH, Heyduk T, Landick R, Darst SA. RNA polymerase motions during promoter melting. Science 2017; 356:863-866. [PMID: 28546214 PMCID: PMC5696265 DOI: 10.1126/science.aam7858] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
Abstract
All cellular RNA polymerases (RNAPs), from those of bacteria to those of man, possess a clamp that can open and close, and it has been assumed that the open RNAP separates promoter DNA strands and then closes to establish a tight grip on the DNA template. Here, we resolve successive motions of the initiating bacterial RNAP by studying real-time signatures of fluorescent reporters placed on RNAP and DNA in the presence of ligands locking the clamp in distinct conformations. We report evidence for an unexpected and obligatory step early in the initiation involving a transient clamp closure as a prerequisite for DNA melting. We also present a 2.6-angstrom crystal structure of a late-initiation intermediate harboring a rotationally unconstrained downstream DNA duplex within the open RNAP active site cleft. Our findings explain how RNAP thermal motions control the promoter search and drive DNA melting in the absence of external energy sources.
Collapse
Affiliation(s)
- Andrey Feklistov
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Brian Bae
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jesse Hauver
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Agnieszka Lass-Napiorkowska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Markus Kalesse
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Brunswick, Germany
| | - Florian Glaus
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1-5/10 8093 Zürich, Switzerland
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
12
|
Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:E6562-E6571. [PMID: 27729537 DOI: 10.1073/pnas.1605038113] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiation is a highly regulated, rate-limiting step in transcription. We used a series of approaches to examine the kinetics of RNA polymerase (RNAP) transcription initiation in greater detail. Quenched kinetics assays, in combination with gel-based assays, showed that RNAP exit kinetics from complexes stalled at later stages of initiation (e.g., from a 7-base transcript) were markedly slower than from earlier stages (e.g., from a 2- or 4-base transcript). In addition, the RNAP-GreA endonuclease accelerated transcription kinetics from otherwise delayed initiation states. Further examination with magnetic tweezers transcription experiments showed that RNAP adopted a long-lived backtracked state during initiation and that the paused-backtracked initiation intermediate was populated abundantly at physiologically relevant nucleoside triphosphate (NTP) concentrations. The paused intermediate population was further increased when the NTP concentration was decreased and/or when an imbalance in NTP concentration was introduced (situations that mimic stress). Our results confirm the existence of a previously hypothesized paused and backtracked RNAP initiation intermediate and suggest it is biologically relevant; furthermore, such intermediates could be exploited for therapeutic purposes and may reflect a conserved state among paused, initiating eukaryotic RNA polymerase II enzymes.
Collapse
|
13
|
Thach O, Mielczarek M, Ma C, Kutty SK, Yang X, Black DS, Griffith R, Lewis PJ, Kumar N. From indole to pyrrole, furan, thiophene and pyridine: Search for novel small molecule inhibitors of bacterial transcription initiation complex formation. Bioorg Med Chem 2016; 24:1171-82. [DOI: 10.1016/j.bmc.2016.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
14
|
Miropolskaya N, Kulbachinskiy A. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase. Biochem Biophys Res Commun 2015; 469:294-9. [PMID: 26631966 DOI: 10.1016/j.bbrc.2015.11.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022]
Abstract
Promoter recognition by bacterial RNA polymerase (RNAP) is a multi-step process involving multiple protein-DNA interactions and several structural and kinetic intermediates which remain only partially characterized. We used single-stranded DNA aptamers containing specific promoter motifs to probe the interactions of the Thermus aquaticus RNAP σ(A) subunit with the -10 promoter element in the absence of other parts of the promoter complex. The aptamer binding decreased intrinsic fluorescence of the σ subunit, likely as a result of interactions between the -10 element and conserved tryptophan residues of the σ DNA-binding region 2. By monitoring these changes, we demonstrated that DNA binding proceeds through a single rate-limiting step resulting in formation of very stable complexes. Deletion of the N-terminal domain of the σ(A) subunit increased the rate of aptamer binding while replacement of this domain with an unrelated N-terminal region 1.1 from the Escherichia coli σ(70) subunit restored the original kinetics of σ-aptamer interactions. The results demonstrate that the key step in promoter recognition can be modelled in a simple σ-aptamer system and reveal that highly divergent N-terminal domains similarly modulate the DNA-binding properties of the σ subunit. The aptamers efficiently suppressed promoter-dependent transcription initiation by the holoenzyme of RNA polymerase, suggesting that they may be used for development of novel transcription inhibitors.
Collapse
Affiliation(s)
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|
15
|
Mekler V, Severinov K. Use of RNA polymerase molecular beacon assay to measure RNA polymerase interactions with model promoter fragments. Methods Mol Biol 2015; 1276:199-210. [PMID: 25665565 DOI: 10.1007/978-1-4939-2392-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
RNA polymerase-promoter interactions that keep the transcription initiation complex together are complex and multipartite, and formation of the RNA polymerase-promoter complex proceeds through multiple intermediates. Short promoter fragments can be used as a tool to dissect RNA polymerase-promoter interactions and to pinpoint elements responsible for specific properties of the entire promoter complex. A recently developed fluorometric molecular beacon assay allows one to monitor the enzyme interactions with various DNA probes and quantitatively characterize partial RNA polymerase-promoter interactions. Here, we present detailed protocols for the preparation of an Escherichia coli molecular beacon and its application to study RNA polymerase interactions with model promoter fragments.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA,
| | | |
Collapse
|
16
|
Bae B, Feklistov A, Lass-Napiorkowska A, Landick R, Darst SA. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife 2015; 4. [PMID: 26349032 PMCID: PMC4593229 DOI: 10.7554/elife.08504] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/03/2015] [Indexed: 01/17/2023] Open
Abstract
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the −10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstream of the −10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation. DOI:http://dx.doi.org/10.7554/eLife.08504.001 Inside cells, molecules of double-stranded DNA encode the instructions needed to make proteins. To make a protein, the two strands of DNA that make up a gene are separated and one strand acts as a template to make molecules of messenger ribonucleic acid (or mRNA for short). This process is called transcription. The mRNA is then used as a template to assemble the protein. An enzyme called RNA polymerase carries out transcription and is found in all cells ranging from bacteria to humans and other animals. Bacteria have the simplest form of RNA polymerase and provide an excellent system to study how it controls transcription. It is made up of several proteins that work together to make RNA using DNA as a template. However, it requires the help of another protein called sigma factor to direct it to regions of DNA called promoters, which are just before the start of the gene. When RNA polymerase and the sigma factor interact the resulting group of proteins is known as the RNA polymerase ‘holoenzyme’. Transcription takes place in several stages. To start with, the RNA polymerase holoenzyme locates and binds to promoter DNA. Next, it separates the two strands of DNA and exposes a portion of the template strand. At this point, the DNA and the holoenzyme are said to be in an ‘open promoter complex’ and the section of promoter DNA that is within it is known as a ‘transcription bubble’. However, it is not clear how RNA polymerase holoenzyme interacts with DNA in the open promoter complex. Bae, Feklistov et al. have now used X-ray crystallography to reveal the three-dimensional structure of the open promoter complex with an entire transcription bubble from a bacterium called Thermus aquaticus. The experiments show that there are several important interactions between RNA polymerase holoenzyme and promoter DNA. In particular, the sigma factor inserts into a region of the DNA at the start of the transcription bubble. This rearranges the DNA in a manner that allows the DNA to be exposed and contact the main part of the RNA polymerase. If the holoenyzyme fails to contact the DNA in this way, the holoenzyme does not bind properly to the promoter and transcription does not start. These findings build on previous work to provide a detailed structural framework for understanding how the RNA polymerase holoenzyme and DNA interact to form the open promoter complex. Another study by Bae et al.—which involved some of the same researchers as this study—reveals how another protein called CarD also binds to DNA at the start of the transcription bubble to stabilize the open promoter complex. DOI:http://dx.doi.org/10.7554/eLife.08504.002
Collapse
Affiliation(s)
- Brian Bae
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Andrey Feklistov
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| | - Agnieszka Lass-Napiorkowska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-madison, Madison, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
| | - Seth A Darst
- Laboratory for Molecular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
17
|
Wessner F, Lacoux C, Goeders N, Fouquier d'Hérouel A, Matos R, Serror P, Van Melderen L, Repoila F. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol 2015; 12:1099-108. [PMID: 26305399 DOI: 10.1080/15476286.2015.1084465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We discovered a chromosomal locus containing 2 toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively. We have shown that the putative MazF is toxic for E. coli and triggers RNA degradation, and its cognate antitoxin MazE counteracts toxicity. The second module, adjacent to mazEF, expresses a toxin predicted to belong to the TxpA type I family found in Firmicutes, and the antisense RNA antidote, RatA. Genomic analysis indicates that the cis-association of mazEF and txpA-ratA modules has been favored during evolution, suggesting a selective advantage for this TA organization in the E. faecalis species. We showed regulatory interplays between the 2 modules, involving transcription control and RNA stability. Remarkably, our data reveal that MazE and MazEF have a dual transcriptional activity: they act as autorepressors and activate ratA transcription, most likely in a direct manner. RatA controls txpA RNA levels through stability. Our data suggest a pivotal role of MazEF in the coordinated expression of mazEF and txpA-ratA modules in V583. To our knowledge, this is the first report describing a crosstalk between type I and II TAs.
Collapse
Affiliation(s)
- Françoise Wessner
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Caroline Lacoux
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Nathalie Goeders
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | | | - Renata Matos
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Pascale Serror
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Laurence Van Melderen
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | - Francis Repoila
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| |
Collapse
|
18
|
E. coli RNA Polymerase Determinants of Open Complex Lifetime and Structure. J Mol Biol 2015; 427:2435-2450. [PMID: 26055538 DOI: 10.1016/j.jmb.2015.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
Abstract
In transcription initiation by Escherichia coli RNA polymerase (RNAP), initial binding to promoter DNA triggers large conformational changes, bending downstream duplex DNA into the RNAP cleft and opening 13bp to form a short-lived open intermediate (I2). Subsequent conformational changes increase lifetimes of λPR and T7A1 open complexes (OCs) by >10(5)-fold and >10(2)-fold, respectively. OC lifetime is a target for regulation. To characterize late conformational changes, we determine effects on OC dissociation kinetics of deletions in RNAP mobile elements σ(70) region 1.1 (σ1.1), β' jaw and β' sequence insertion 3 (SI3). In very stable OC formed by the wild type WT RNAP with λPR (RPO) and by Δσ1.1 RNAP with λPR or T7A1, we conclude that downstream duplex DNA is bound to the jaw in an assembly with SI3, and bases -4 to +2 of the nontemplate strand discriminator region are stably bound in a positively charged track in the cleft. We deduce that polyanionic σ1.1 destabilizes OC by competing for binding sites in the cleft and on the jaw with the polyanionic discriminator strand and downstream duplex, respectively. Examples of σ1.1-destabilized OC are the final T7A1 OC and the λPR I3 intermediate OC. Deleting σ1.1 and either β' jaw or SI3 equalizes OC lifetimes for λPR and T7A1. DNA closing rates are similar for both promoters and all RNAP variants. We conclude that late conformational changes that stabilize OC, like early ones that bend the duplex into the cleft, are primary targets of regulation, while the intrinsic DNA opening/closing step is not.
Collapse
|
19
|
Abstract
Transcription initiation is a highly regulated step of gene expression. Here, we discuss the series of large conformational changes set in motion by initial specific binding of bacterial RNA polymerase (RNAP) to promoter DNA and their relevance for regulation. Bending and wrapping of the upstream duplex facilitates bending of the downstream duplex into the active site cleft, nucleating opening of 13 bp in the cleft. The rate-determining opening step, driven by binding free energy, forms an unstable open complex, probably with the template strand in the active site. At some promoters, this initial open complex is greatly stabilized by rearrangements of the discriminator region between the -10 element and +1 base of the nontemplate strand and of mobile in-cleft and downstream elements of RNAP. The rate of open complex formation is regulated by effects on the rapidly-reversible steps preceding DNA opening, while open complex lifetime is regulated by effects on the stabilization of the initial open complex. Intrinsic DNA opening-closing appears less regulated. This noncovalent mechanism and its regulation exhibit many analogies to mechanisms of enzyme catalysis.
Collapse
|
20
|
Mekler V, Severinov K. RNA polymerase molecular beacon as tool for studies of RNA polymerase-promoter interactions. Methods 2015; 86:19-26. [PMID: 25956222 DOI: 10.1016/j.ymeth.2015.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022] Open
Abstract
The molecular details of formation of transcription initiation complex upon the interaction of bacterial RNA polymerase (RNAP) with promoters are not completely understood. One way to address this problem is to understand how RNAP interacts with different parts of promoter DNA. A recently developed fluorometric RNAP molecular beacon assay allows one to monitor the RNAP interactions with various unlabeled DNA probes and quantitatively characterize partial RNAP-promoter interactions. This paper focuses on methodological aspects of application of this powerful assay to study the mechanism of transcription initiation complex formation by Escherichia coli RNA polymerase σ(70) holoenzyme and its regulation by bacterial and phage encoded factors.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA; Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
21
|
Karpen ME, deHaseth PL. Base flipping in open complex formation at bacterial promoters. Biomolecules 2015; 5:668-78. [PMID: 25927327 PMCID: PMC4496690 DOI: 10.3390/biom5020668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022] Open
Abstract
In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds) promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp), including the start site of transcription, to form the so-called "open complex" (also referred to as RP(o)). This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the -11A (the A of the non-template strand that is 11 bp upstream from the transcription start site) of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the -11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the -11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.
Collapse
Affiliation(s)
- Mary E Karpen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, 312 Padnos Hall, Allendale, MI 49401, USA.
| | - Pieter L deHaseth
- Center for RNA Molecular Biology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA.
- Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Synthesis and biological activity of novel mono-indole and mono-benzofuran inhibitors of bacterial transcription initiation complex formation. Bioorg Med Chem 2015; 23:1763-75. [DOI: 10.1016/j.bmc.2015.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
|
23
|
Ruff EF, Kontur WS, Record MT. Using solutes and kinetics to probe large conformational changes in the steps of transcription initiation. Methods Mol Biol 2015; 1276:241-61. [PMID: 25665568 DOI: 10.1007/978-1-4939-2392-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small solutes are useful probes of large conformational changes in RNA polymerase-promoter interactions and other biopolymer processes. In general, a large effect of a solute on an equilibrium constant (or rate constant) indicates a large change in water-accessible biopolymer surface area in the corresponding step (or transition state), resulting from conformational changes, interface formation, or both. Here, we describe nitrocellulose filter binding assays from series used to determine the urea dependence of open complex formation and dissociation with Escherichia coli RNA polymerase and phage λPR promoter DNA. Then, we describe the subsequent data analysis and interpretation of these solute effects.
Collapse
Affiliation(s)
- Emily F Ruff
- Department of Chemistry, 3206 BSB, University of Wisconsin-Madison, Madison, WI, 53706, USA,
| | | | | |
Collapse
|
24
|
Mekler V, Minakhin L, Borukhov S, Mustaev A, Severinov K. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex. J Mol Biol 2014; 426:3973-3984. [PMID: 25311862 DOI: 10.1016/j.jmb.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| | - Leonid Minakhin
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Arkady Mustaev
- Public Health Research Institute Center, New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, NJ 07103, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Leninsky Avenue, 14, 119991 Moscow, Russia.
| |
Collapse
|
25
|
Vvedenskaya IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR, Zhang Y, Ebright RH, Nickels BE. Interactions between RNA polymerase and the "core recognition element" counteract pausing. Science 2014; 344:1285-9. [PMID: 24926020 DOI: 10.1126/science.1253458] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription elongation is interrupted by sequences that inhibit nucleotide addition and cause RNA polymerase (RNAP) to pause. Here, by use of native elongating transcript sequencing (NET-seq) and a variant of NET-seq that enables analysis of mutant RNAP derivatives in merodiploid cells (mNET-seq), we analyze transcriptional pausing genome-wide in vivo in Escherichia coli. We identify a consensus pause-inducing sequence element, G₋₁₀Y₋₁G(+1) (where -1 corresponds to the position of the RNA 3' end). We demonstrate that sequence-specific interactions between RNAP core enzyme and a core recognition element (CRE) that stabilize transcription initiation complexes also occur in transcription elongation complexes and facilitate pause read-through by stabilizing RNAP in a posttranslocated register. Our findings identify key sequence determinants of transcriptional pausing and establish that RNAP-CRE interactions modulate pausing.
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Hanif Vahedian-Movahed
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeremy G Bird
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jared G Knoblauch
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Seth R Goldman
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
26
|
Samanta S, Martin CT. Insights into the mechanism of initial transcription in Escherichia coli RNA polymerase. J Biol Chem 2013; 288:31993-2003. [PMID: 24047893 DOI: 10.1074/jbc.m113.497669] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has long been known that during initial transcription of the first 8-10 bases of RNA, complexes are relatively unstable, leading to the release of short abortive RNA transcripts. An early "stressed intermediate" model led to a more specific mechanistic model proposing "scrunching" stress as the basis for the instability. Recent studies in the single subunit T7 RNA polymerase have argued against scrunching as the energetic driving force and instead argue for a model in which pushing of the RNA-DNA hybrid against a protein element associated with promoter binding, while likely driving promoter release, reciprocally leads to instability of the hybrid. In this study, we test these models in the structurally unrelated multisubunit bacterial RNA polymerase. Via the targeted introduction of mismatches and nicks in the DNA, we demonstrate that neither downstream bubble collapse nor compaction/scrunching of either the single-stranded template or nontemplate strands is a major force driving abortive instability (although collapse from the downstream end of the bubble does contribute significantly to the instability of artificially halted complexes). In contrast, pushing of the hybrid against a mobile protein element (σ3.2 in the bacterial enzyme) results in substantially increased abortive instability and is likely the primary energetic contributor to abortive cycling. The results suggest that abortive instability is a by-product of the mechanistic need to couple the energy of nucleotide addition (RNA chain growth) to driving the timed release of promoter contacts during initial transcription.
Collapse
Affiliation(s)
- Satamita Samanta
- From the Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
27
|
Mekler V, Severinov K. Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase. Nucleic Acids Res 2013; 41:7276-85. [PMID: 23771146 PMCID: PMC3753650 DOI: 10.1093/nar/gkt541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase (RNAP) melts promoter DNA to form transcription-competent open promoter complex (RPo). Interaction of the RNAP σ subunit with non-template strand bases of a conserved -10 element (consensus sequence T-12A-11T-10A-9A-8T-7) is an important source of energy-driving localized promoter melting. Here, we used an RNAP molecular beacon assay to investigate interdependencies of RNAP interactions with -10 element nucleotides. The results reveal a strong cooperation between RNAP interactions with individual -10 element non-template strand nucleotides and indicate that recognition of the -10 element bases occurs only when free energy of the overall RNAP -10 element binding reaches a certain threshold level. The threshold-like mode of the -10 element recognition may be related to the energetic cost of attaining a conformation of the -10 element that is recognizable by RNAP. The RNAP interaction with T/A-12 base pair was found to be strongly stimulated by RNAP interactions with other -10 element bases and with promoter spacer between the -10 and -35 promoter elements. The data also indicate that unmelted -10 promoter element can impair RNAP interactions with promoter DNA upstream of the -11 position. We suggest that cooperativity and threshold effects are important factors guiding the dynamics and selectivity of RPo formation.
Collapse
Affiliation(s)
- Vladimir Mekler
- Department of Molecular Biology and Biochemistry, Waksman Institute of Microbiology Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA and Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | | |
Collapse
|
28
|
|
29
|
Mekler V, Minakhin L, Kuznedelov K, Mukhamedyarov D, Severinov K. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes. Nucleic Acids Res 2012; 40:11352-62. [PMID: 23087380 PMCID: PMC3526302 DOI: 10.1093/nar/gks973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the −10, −35 and UP promoter elements; the TG motif of the extended −10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP–DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
30
|
Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH. Structural basis of transcription initiation. Science 2012; 338:1076-80. [PMID: 23086998 DOI: 10.1126/science.1227786] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream double-stranded DNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand single-stranded DNA (ssDNA) preorganize template-strand ssDNA to engage the RNAP active center.
Collapse
Affiliation(s)
- Yu Zhang
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Feklistov A, Darst SA. Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit. Cell 2011; 147:1257-69. [PMID: 22136875 DOI: 10.1016/j.cell.2011.10.041] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 10/14/2022]
Abstract
The key step in bacterial promoter opening is recognition of the -10 promoter element (T(-12)A(-11)T(-10)A(-9)A(-8)T(-7) consensus sequence) by the RNA polymerase σ subunit. We determined crystal structures of σ domain 2 bound to single-stranded DNA bearing-10 element sequences. Extensive interactions occur between the protein and the DNA backbone of every -10 element nucleotide. Base-specific interactions occur primarily with A(-11) and T(-7), which are flipped out of the single-stranded DNA base stack and buried deep in protein pockets. The structures, along with biochemical data, support a model where the recognition of the -10 element sequence drives initial promoter opening as the bases of the nontemplate strand are extruded from the DNA double-helix and captured by σ. These results provide a detailed structural basis for the critical roles of A(-11) and T(-7) in promoter melting and reveal important insights into the initiation of transcription bubble formation.
Collapse
Affiliation(s)
- Andrey Feklistov
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
32
|
Mekler V, Minakhin L, Sheppard C, Wigneshweraraj S, Severinov K. Molecular mechanism of transcription inhibition by phage T7 gp2 protein. J Mol Biol 2011; 413:1016-27. [PMID: 21963987 DOI: 10.1016/j.jmb.2011.09.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
Escherichia coli T7 bacteriophage gp2 protein is a potent inhibitor of host RNA polymerase (RNAP). gp2 inhibits formation of open promoter complex by binding to the β' jaw, an RNAP domain that interacts with downstream promoter DNA. Here, we used an engineered promoter with an optimized sequence to obtain and characterize a specific promoter complex containing RNAP and gp2. In this complex, localized melting of promoter DNA is initiated but does not propagate to include the point of the transcription start. As a result, the complex is transcriptionally inactive. Using a highly sensitive RNAP beacon assay, we performed quantitative real-time measurements of specific binding of the RNAP-gp2 complex to promoter DNA and various promoter fragments. In this way, the effect of gp2 on RNAP interaction with promoters was dissected. As expected, gp2 greatly decreased RNAP affinity to downstream promoter duplex. However, gp2 also inhibited RNAP binding to promoter fragments that lacked downstream promoter DNA that interacts with the β' jaw. The inhibition was caused by gp2-mediated decrease of the RNAP binding affinity to template and non-template strand segments of the transcription bubble downstream of the -10 promoter element. The inhibition of RNAP interactions with single-stranded segments of the transcription bubble by gp2 is a novel effect, which may occur via allosteric mechanism that is set in motion by the gp2 binding to the β' jaw.
Collapse
Affiliation(s)
- Vladimir Mekler
- Department of Molecular Biology and Biochemistry, Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
33
|
Sztiller-Sikorska M, Heyduk E, Heyduk T. Promoter spacer DNA plays an active role in integrating the functional consequences of RNA polymerase contacts with -10 and -35 promoter elements. Biophys Chem 2011; 159:73-81. [PMID: 21621902 DOI: 10.1016/j.bpc.2011.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
Bacterial RNA polymerase (RNAP) interacts with conserved -10 and -35 promoter elements to recognize the promoter and to form an open complex in which DNA duplex around transcription start site melts. Using model DNA constructs (fork junction DNA) that mimic DNA structure found in the open complex we observed that the consequences of mutations in -10 promoter element for RNAP binding exhibited a striking dependence on the presence or absence of a functional -35 promoter element. A role of spacer DNA (a non-conserved DNA sequence connecting -10 and -35 promoter elements) in this phenomenon was probed with a series of fork junction DNA constructs containing perturbations to the spacer DNA. In the absence of a physical connection between the -10 and -35 DNA elements, or when -10 and -35 DNA elements were connected by a long flexible non-DNA linker, the dependence of RNAP interactions with -10 element on the strength of -35 element was lost. When these DNA elements were linked by a rigid DNA duplex or by a DNA duplex containing a short single-stranded gap, the coupling between the -10 and -35 binding activities was observed. These results indicated that promoter spacer DNA played an active role in integrating the functional consequences of RNA polymerase contacts with -10 and -35 promoter element. This role likely involves physical deformation of the spacer occurring in parallel with promoter melting as shown by Fluorescence Resonance Energy Transfer (FRET) experiments with the probes incorporated into spacer DNA.
Collapse
Affiliation(s)
- Malgorzata Sztiller-Sikorska
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, MO 63104, USA
| | | | | |
Collapse
|
34
|
Mekler V, Minakhin L, Severinov K. A critical role of downstream RNA polymerase-promoter interactions in the formation of initiation complex. J Biol Chem 2011; 286:22600-8. [PMID: 21525530 DOI: 10.1074/jbc.m111.247080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleation of promoter melting in bacteria is coupled with RNA polymerase (RNAP) binding to a conserved -10 promoter element located at the upstream edge of the transcription bubble. The mechanism of downstream propagation of the transcription bubble to include the transcription start site is unclear. Here we introduce new model downstream fork junction promoter fragments that specifically bind RNAP and mimic the downstream segment of promoter complexes. We demonstrate that RNAP binding to downstream fork junctions is coupled with DNA melting around the transcription start point. Consequently, certain downstream fork junction probes can serve as transcription templates. Using a protein beacon fluorescent method, we identify structural determinants of affinity and transcription activity of RNAP-downstream fork junction complexes. Measurements of RNAP interaction with double-stranded promoter fragments reveal that the strength of RNAP interactions with downstream DNA plays a critical role in promoter opening and that the length of the downstream duplex must exceed a critical length for efficient formation of transcription competent open promoter complex.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
35
|
Saecker RM, Record MT, Dehaseth PL. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 2011; 412:754-71. [PMID: 21371479 DOI: 10.1016/j.jmb.2011.01.018] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/08/2011] [Indexed: 10/18/2022]
Abstract
Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site. Subsequently, the nontemplate strand is repositioned and a clamp is assembled on duplex DNA downstream of the open region to form the highly stable open complex, RP(o). The transcription initiation factor, σ(70), plays critical roles in promoter recognition and RP(o) formation as well as in early steps of RNA synthesis.
Collapse
Affiliation(s)
- Ruth M Saecker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|