1
|
Freindorf M, Kraka E. A Closer Look at the FeS Heme Bonds in Azotobacter vinelandii Bacterioferritin: QM/MM and Local Mode Analysis. J Comput Chem 2025; 46:e70012. [PMID: 39749917 PMCID: PMC11697534 DOI: 10.1002/jcc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Using the QM/MM methodology and a local mode analysis, we investigated a character and a strength of FeS bonds of heme groups in oxidized and reduced forms of Bacterioferritin from Azotobacter vinelandii. The strength of the FeS bonds was correlated with a bond length, an energy density at a bond critical point, and a charge difference of the F and S atoms. Changing the oxidation state from ferrous to ferric generally makes the FeS bonds weaker, longer, more covalent, and more polar. We also investigated the SFeS bond bending and found that the stronger FeS bond, generally makes the SFeS bond bending stiffer, which could play a key role in the balance between ferric and ferrous oxidation states and related biological activities.
Collapse
Affiliation(s)
- Marek Freindorf
- Chemistry DepartmentSouthern Methodist UniversityDallasTexasUSA
| | - Elfi Kraka
- Chemistry DepartmentSouthern Methodist UniversityDallasTexasUSA
| |
Collapse
|
2
|
Behera N, Bhattacharyya G, Behera S, Behera RK. Iron mobilization from intact ferritin: effect of differential redox activity of quinone derivatives with NADH/O 2 and in situ-generated ROS. J Biol Inorg Chem 2024; 29:455-475. [PMID: 38780762 DOI: 10.1007/s00775-024-02058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ferritins are multimeric nanocage proteins that sequester/concentrate excess of free iron and catalytically synthesize a hydrated ferric oxyhydroxide bio-mineral. Besides functioning as the primary intracellular iron storehouses, these supramolecular assemblies also oversee the controlled release of iron to meet physiologic demands. By virtue of the reducing nature of the cytosol, reductive dissolution of ferritin-iron bio-mineral by physiologic reducing agents might be a probable pathway operating in vivo. Herein, to explore this reductive iron-release pathway, a series of quinone analogs differing in size, position/nature of substituents and redox potentials were employed to relay electrons from physiologic reducing agent, NADH, to the ferritin core. Quinones are well known natural electron/proton mediators capable of facilitating both 1/2 electron transfer processes and have been implicated in iron/nutrient acquisition in plants and energy transduction. Our findings on the structure-reactivity of quinone mediators highlight that iron release from ferritin is dictated by electron-relay capability (dependent on E1/2 values) of quinones, their molecular structure (i.e., the presence of iron-chelation sites and the propensity for H-bonding) and the type/amount of reactive oxygen species (ROS) they generate in situ. Juglone/Plumbagin released maximum iron due to their intermediate E1/2 values, presence of iron chelation sites, the ability to inhibit in situ generation of H2O2 and form intramolecular H-bonding (possibly promotes semiquinone formation). This study may strengthen our understanding of the ferritin-iron-release process and their significance in bioenergetics/O2-based cellular metabolism/toxicity while providing insights on microbial/plant iron acquisition and the dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Gargee Bhattacharyya
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Satyabrat Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Bradley JM, Bugg Z, Sackey A, Andrews SC, Wilson MT, Svistunenko DA, Moore GR, Le Brun NE. The Ferroxidase Centre of Escherichia coli Bacterioferritin Plays a Key Role in the Reductive Mobilisation of the Mineral Iron Core. Angew Chem Int Ed Engl 2024; 63:e202401379. [PMID: 38407997 DOI: 10.1002/anie.202401379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Zinnia Bugg
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Aaren Sackey
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
4
|
Ma L, Zheng JJ, Zhou N, Zhang R, Fang L, Yang Y, Gao X, Chen C, Yan X, Fan K. A natural biogenic nanozyme for scavenging superoxide radicals. Nat Commun 2024; 15:233. [PMID: 38172125 PMCID: PMC10764798 DOI: 10.1038/s41467-023-44463-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Biominerals, the inorganic minerals of organisms, are known mainly for their physical property-related functions in modern living organisms. Our recent discovery of the enzyme-like activities of nanomaterials, coined as nanozyme, inspires the hypothesis that nano-biominerals might function as enzyme-like catalyzers in cells. Here we report that the iron cores of biogenic ferritins act as natural nanozymes to scavenge superoxide radicals. Through analyzing eighteen representative ferritins from three living kingdoms, we find that the iron core of prokaryote ferritin possesses higher superoxide-diminishing activity than that of eukaryotes. Further investigation reveals that the differences in catalytic capability result from the iron/phosphate ratio changes in the iron core, which is mainly determined by the structures of ferritins. The phosphate in the iron core switches the iron core from single crystalline to amorphous iron phosphate-like structure, resulting in decreased affinity to the hydrogen proton of the ferrihydrite-like core that facilitates its reaction with superoxide in a manner different from that of ferric ions. Furthermore, overexpression of ferritins with high superoxide-diminishing activities in E. coli increases the resistance to superoxide, whereas bacterioferritin knockout or human ferritin knock-in diminishes free radical tolerance, highlighting the physiological antioxidant role of this type of nanozymes.
Collapse
Affiliation(s)
- Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100408, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ning Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Fang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yili Yang
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou, Jiangsu, 225316, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100408, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100408, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China.
| |
Collapse
|
5
|
Jobichen C, Ying Chong T, Rattinam R, Basak S, Srinivasan M, Choong YK, Pandey KP, Ngoc TB, Shi J, Angayarkanni J, Sivaraman J. Bacterioferritin nanocage structures uncover the biomineralization process in ferritins. PNAS NEXUS 2023; 2:pgad235. [PMID: 37529551 PMCID: PMC10388152 DOI: 10.1093/pnasnexus/pgad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Iron is an essential element involved in various metabolic processes. The ferritin family of proteins forms nanocage assembly and is involved in iron oxidation, storage, and mineralization. Although several structures of human ferritins and bacterioferritins have been solved, there is still no complete structure that shows both the trapped Fe-biomineral cluster and the nanocage. Furthermore, whereas the mechanism of iron trafficking has been explained using various approaches, structural details on the biomineralization process (i.e. the formation of the mineral itself) are generally lacking. Here, we report the cryo-electron microscopy (cryo-EM) structures of apoform and biomineral bound form (holoforms) of the Streptomyces coelicolor bacterioferritin (ScBfr) nanocage and the subunit crystal structure. The holoforms show different stages of Fe-biomineral accumulation inside the nanocage, in which the connections exist in two of the fourfold channels of the nanocage between the C-terminal of the ScBfr monomers and the Fe-biomineral cluster. The mutation and truncation of the bacterioferritin residues involved in these connections significantly reduced the iron and phosphate binding in comparison with those of the wild type and together explain the underlying mechanism. Collectively, our results represent a prototype for the bacterioferritin nanocage, which reveals insight into its biomineralization and the potential channel for bacterioferritin-associated iron trafficking.
Collapse
Affiliation(s)
| | - Tan Ying Chong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Rajesh Rattinam
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sandip Basak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yeu Khai Choong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Kannu Priya Pandey
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Tran Bich Ngoc
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jayaraman Angayarkanni
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | |
Collapse
|
6
|
Wang J, Wang Q, Tang YJ, Fu HM, Fang F, Guo JS, Yan P, Chen YP. Unraveling the structure and function of bacterioferritin in Candidatus Kuenenia stuttgartiensis: Iron storage sites maintain cellular iron homeostasis. WATER RESEARCH 2023; 238:120016. [PMID: 37146397 DOI: 10.1016/j.watres.2023.120016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu-Jiao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
7
|
Parida A, Mohanty A, Raut RK, Padhy I, Behera RK. Modification of 4-Fold and B-Pores in Bacterioferritin from Mycobacterium tuberculosis Reveals Their Role in Fe 2+ Entry and Oxidoreductase Activity. Inorg Chem 2023; 62:178-191. [PMID: 36525578 DOI: 10.1021/acs.inorgchem.2c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-assembled ferritin nanocages, nature's solution to iron toxicity and its low solubility, scavenge free iron to synthesize hydrated ferric oxyhydroxide mineral inside their central cavity by protein-mediated ferroxidase and hydrolytic/nucleation reactions. These complex processes in ferritin commence with the rapid influx of Fe2+ ions via the inter-subunit contact points (i.e., pores/channels). Investigation of these pores as Fe2+ uptake routes in ferritins remains a subject of intense research, in iron metabolism, toxicity, and bacterial pathogenesis, which are yet to be established in the bacterioferritin (BfrA) from Mycobacterium tuberculosis (Mtb). The electrostatic properties of this protein indicate that the 4-fold and B-pores might serve as potential Fe2+ entry routes. Therefore, in the current work, electrostatics at/along these pores was altered by site-directed mutagenesis to establish their role in Fe2+ uptake/oxidation (ferroxidase activity) in Mtb BfrA. Despite forming self-assembled protein nanocompartment, these 4-fold and B-pore variants exhibited partial loss of ferroxidase activity and lower accumulation of transient species, which not only indicated their role in Fe2+ entry but also suggested the existence of multiple pathways. Although the B-pore variants inhibited the rapid ferroxidase activity to a larger extent, they had minimal impact on their cage stability. The current work revealed the relative contribution of these pores toward rapid Fe2+ uptake/oxidation and cage stability, possibly as consequences of their differential symmetry, number of modified residues (at each pore), and heme content. Therefore, these findings may help to understand the role of these pores in iron acquisition and Mtb proliferation under iron-limiting conditions to control its pathogenesis.
Collapse
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Rohit Kumar Raut
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Ipsita Padhy
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| |
Collapse
|
8
|
Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol Adv 2022; 61:108057. [DOI: 10.1016/j.biotechadv.2022.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
9
|
Structural and functional relationship of mammalian and nematode ferritins. BIOTECHNOLOGIA 2021; 102:457-471. [PMID: 36605605 PMCID: PMC9642938 DOI: 10.5114/bta.2021.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Ferritin is a unique buffering protein in iron metabolism. By storing or releasing iron in a tightly controlled manner, it prevents the negative effects of free ferrous ions on biomolecules in all domains of life - from bacteria to mammals. This review focuses on the structural features and activity of the ferritin protein family with an emphasis on nematode ferritins and the similarities in their biological roles with mammalian ferritins. The conservative characteristic of the ferritin family across the species originates from the ferroxidase activity against redox-active iron. The antioxidative function of these proteins translates into their involvement in a wide range of important biological processes, e.g., aging, fat metabolism, immunity, anticancer activity, and antipathogenic activity. Moreover, disturbances in ferritin expression lead to severe iron-associated diseases. Research on the Caenorhabditis elegans model organism may allow us to better understand the wide spectrum of mechanisms involving ferritin activity.
Collapse
|
10
|
Mohanty A, Parida A, Subhadarshanee B, Behera N, Subudhi T, Koochana PK, Behera RK. Alteration of Coaxial Heme Ligands Reveals the Role of Heme in Bacterioferritin from Mycobacterium tuberculosis. Inorg Chem 2021; 60:16937-16952. [PMID: 34695354 DOI: 10.1021/acs.inorgchem.1c01554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The uptake and utilization of iron remains critical for the survival/virulence of the host/pathogens in spite of the limitations (low bioavailability/high toxicity) associated with this nutrient. Both the host and pathogens manage to overcome these problems by utilizing the iron repository protein nanocages, ferritins, which not only sequester and detoxify the free Fe(II) ions but also decrease the iron solubility gap by synthesizing/encapsulating the Fe(III)-oxyhydroxide biomineral in its central hollow nanocavity. Bacterial pathogens including Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encode a distinct subclass of ferritins called bacterioferritin (BfrA), which binds heme, the versatile redox cofactor, via coaxial, conserved methionine (M52) residues at its subunit-dimer interfaces. However, the exact role of heme in Mtb BfrA remains yet to be established. Therefore, its coaxial ligands were altered via site-directed mutagenesis, which resulted in both heme-bound (M52C; ∼1 heme per cage) and heme-free (M52H and M52L) variants, indicating the importance of M52 residues as preferential heme binding axial ligands in Mtb BfrA. All these variants formed intact nanocages of similar size and iron-loading ability as that of wild-type (WT) Mtb BfrA. However, the as-isolated heme-bound variants (WT and M52C) exhibited enhanced protein stability and reductive iron mobilization as compared to their heme-free analogues (M52H and M52L). Further, increasing the heme content in BfrA variants by reconstitution not only enhanced the cage stability but also facilitated the iron mobilization, suggesting the role of heme. In contrary, heme altered the ferroxidase activity to a lesser extent despite facilitating the accumulation of the reactive intermediates formed during the course of the reaction. The current study suggests that heme in Mtb BfrA enhances the overall stability of the protein and possibly acts as an intrinsic electron relay station to influence the iron mineral dissolution and thus may be associated with Mtb's pathogenicity.
Collapse
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Tanaya Subudhi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
11
|
Meng D, Zhu L, Zhang L, Ma T, Zhang Y, Chen L, Shan Y, Wang Y, Wang Z, Zhou Z, Yang R. Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis. Food Chem 2021; 361:130069. [PMID: 34058660 DOI: 10.1016/j.foodchem.2021.130069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022]
Abstract
Ferritin, a protein with an 8-nm cage structure, can encapsulate and deliver bioactive molecules. In this study, succinylation was adopted to modify plant ferritin to fabricate succinylated red been ferritin (SRBF) at pH 8.0. The SRBF was retained as a cage-like shape (12 nm diameter), while its secondary structure was altered, rendering higher negative charge accompanies by decreased surface hydrophobicity. The SRBF also demonstrated favorable property of reversible assembly regulated by pH-transitions (pH 2.0/7.0), thus enabled successful encapsulation of epigallocatechin gallate (EGCG) for fabrication of EGCG-loaded SRBF complexes with a diameter of ~12 nm. Succinylation enhanced the thermal stabilities of ferritin and the embedded EGCG. Moreover, SRBF markedly improved the transport efficiency of EGCG in Caco-2 monolayers relative to EGCG and that encapsulated in unmodified ferritin. These findings have extended the succinylation reaction for the cage-like protein modification, and facilitated the usage of ferritin variant in delivery of bioactive molecules.
Collapse
Affiliation(s)
- Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liqun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tianhua Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yimeng Shan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yiwen Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Koochana PK, Mohanty A, Parida A, Behera N, Behera PM, Dixit A, Behera RK. Flavin-mediated reductive iron mobilization from frog M and Mycobacterial ferritins: impact of their size, charge and reactivities with NADH/O 2. J Biol Inorg Chem 2021; 26:265-281. [PMID: 33598740 DOI: 10.1007/s00775-021-01850-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/21/2021] [Indexed: 01/01/2023]
Abstract
In vitro, reductive mobilization of ferritin iron using suitable electron transfer mediators has emerged as a possible mechanism to mimic the iron release process, in vivo. Nature uses flavins as electron relay molecules for important biological oxidation and oxygenation reactions. Therefore, the current work utilizes three flavin analogues: riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which differ in size and charge but have similar redox potentials, to relay electron from nicotinamide adenine dinucleotide (NADH) to ferritin mineral core. Of these, the smallest/neutral analogue, RF, released more iron (~ three fold) in comparison to the larger and negatively charged FMN and FAD. Although iron mobilization got marred during the initial stages under aerobic conditions, but increased with a greater slope at the later stages of the reaction kinetics, which gets inhibited by superoxide dismutase, consistent with the generation of O2∙- in situ. The initial step, i.e., interaction of flavins with NADH played critical role in the iron release process. Overall, the flavin-mediated reductive iron mobilization from ferritins occurred via two competitive pathways, involving the reduced form of flavins either alone (anaerobic condition) or in combination with O2∙- intermediate (aerobic condition). Moreover, faster iron release was observed for ferritins from Mycobacterium tuberculosis than from bullfrog, indicating the importance of protein nanocage and the advantages they provide to the respective organisms. Therefore, these structure-reactivity studies of flavins with NADH/O2 holds significance in ferritin iron release, bioenergetics, O2-based cellular toxicity and may be potentially exploited in the treatment of methemoglobinemia. Smaller sized/neutral flavin analogue, riboflavin (RF) exhibits faster reactivity towards both NADH and O2 generating more amount of O2∙- and releases higher amount of iron from different ferritins, compared to its larger sized/negatively charged derivatives such as FMN and FAD.
Collapse
Affiliation(s)
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
13
|
Pullin J, Bradley JM, Moore GR, Le Brun NE, Wilson MT, Svistunenko DA. Electron Transfer from Haem to the Di-Iron Ferroxidase Centre in Bacterioferritin. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8457-8460. [PMID: 38505322 PMCID: PMC10946800 DOI: 10.1002/ange.202015965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Indexed: 03/21/2024]
Abstract
The iron redox cycle in ferritins is not completely understood. Bacterioferritins are distinct from other ferritins in that they contain haem groups. It is acknowledged that the two iron motifs in bacterioferritins, the di-nuclear ferroxidase centre and the haem B group, play key roles in two opposing processes, iron sequestration and iron mobilisation, respectively, and the two redox processes are independent. Herein, we show that in Escherichia coli bacterioferritin, there is an electron transfer pathway from the haem to the ferroxidase centre suggesting a new role(s) haem might play in bacterioferritins.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Justin M. Bradley
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Geoffrey R. Moore
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Nick E. Le Brun
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNorfolkNR4 7TJUK
| | - Michael T. Wilson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | |
Collapse
|
14
|
Pullin J, Bradley JM, Moore GR, Le Brun NE, Wilson MT, Svistunenko DA. Electron Transfer from Haem to the Di-Iron Ferroxidase Centre in Bacterioferritin. Angew Chem Int Ed Engl 2021; 60:8376-8379. [PMID: 33460502 PMCID: PMC8048850 DOI: 10.1002/anie.202015965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Indexed: 12/14/2022]
Abstract
The iron redox cycle in ferritins is not completely understood. Bacterioferritins are distinct from other ferritins in that they contain haem groups. It is acknowledged that the two iron motifs in bacterioferritins, the di‐nuclear ferroxidase centre and the haem B group, play key roles in two opposing processes, iron sequestration and iron mobilisation, respectively, and the two redox processes are independent. Herein, we show that in Escherichia coli bacterioferritin, there is an electron transfer pathway from the haem to the ferroxidase centre suggesting a new role(s) haem might play in bacterioferritins.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Justin M Bradley
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
15
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
16
|
Benavides BS, Valandro S, Cioloboc D, Taylor AB, Schanze KS, Kurtz DM. Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry 2020; 59:1618-1629. [PMID: 32283930 PMCID: PMC7927158 DOI: 10.1021/acs.biochem.9b01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.
Collapse
Affiliation(s)
- Brenda S Benavides
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Silvano Valandro
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio (UT Health San Antonio), San Antonio, Texas 78229, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Donald M Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
17
|
Wang X, Du K, Heng H, Chen W, Li X, Wei X, Feng F, Wang S. Precise engineering of apoferritin through site-specific host–guest binding. Chem Commun (Camb) 2020; 56:12897-12900. [DOI: 10.1039/d0cc05382a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient non-covalent method for precise engineering of the apoferritin surface at twelve two-fold channels is established using a PEGylated porphyrin.
Collapse
Affiliation(s)
- Xuewei Wang
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Ke Du
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Hao Heng
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Weijian Chen
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Xiao Li
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Xiaoxuan Wei
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Fude Feng
- Department of Polymer Science & Engineering
- School of Chemistry and Chemical Engineering
- Nanjing University
- Jiangsu
- China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
18
|
Parida A, Mohanty A, Kansara BT, Behera RK. Impact of Phosphate on Iron Mineralization and Mobilization in Nonheme Bacterioferritin B from Mycobacterium tuberculosis. Inorg Chem 2019; 59:629-641. [DOI: 10.1021/acs.inorgchem.9b02894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bharat T. Kansara
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Rabindra K. Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
19
|
Structural diffusion properties of two atypical Dps from the cyanobacterium Nostoc punctiforme disclose interactions with ferredoxins and DNA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148063. [PMID: 31419396 DOI: 10.1016/j.bbabio.2019.148063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
Ferritin-like proteins, Dps (DNA-binding protein from starved cells), store iron and play a key role in the iron homeostasis in bacteria, yet their iron releasing machinery remains largely unexplored. The electron donor proteins that may interact with Dps and promote the mobilization of the stored iron have hitherto not been identified. Here, we investigate the binding capacity of the two atypical Dps proteins NpDps4 and NpDps5 from Nostoc punctiforme to isolated ferredoxins. We report NpDps-ferredoxin interactions by fluorescence correlation spectroscopy (FCS) and fluorescence resonance energy transfer (FRET) methods. Dynamic light scattering, size exclusion chromatography and native gel electrophoresis results show that NpDps4 forms a dodecamer at both pH 6.0 and pH 8.0, while NpDps5 forms a dodecamer only at pH 6.0. In addition, FCS data clearly reveal that the non-canonical NpDps5 interacts with DNA at pH 6.0. Our spectroscopic analysis shows that [FeS] centers of the three recombinantly expressed and isolated ferredoxins are properly incorporated and are consistent with their respective native states. The results support our hypothesis that ferredoxins could be involved in cellular iron homeostasis by interacting with Dps and assisting the release of stored iron.
Collapse
|
20
|
Bacterioferritin of Magnetospirillum gryphiswaldense Is a Heterotetraeicosameric Complex Composed of Functionally Distinct Subunits but Is Not Involved in Magnetite Biomineralization. mBio 2019; 10:mBio.02795-18. [PMID: 31113903 PMCID: PMC6529640 DOI: 10.1128/mbio.02795-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The biomineralization pathway of magnetite in magnetotactic bacteria is still poorly understood and a matter of intense debates. In particular, the existence, nature, and location of possible mineral precursors of magnetite are not clear. One possible precursor has been suggested to be ferritin-bound ferrihydrite. To clarify its role for magnetite biomineralization, we analyzed and characterized ferritin-like proteins from the magnetotactic alphaproteobacterium Magnetospirillum gryphiswaldense MSR-1, employing genetic, biochemical, and spectroscopic techniques. Transmission Mössbauer spectroscopy of the wild type (WT) and a bacterioferritin (bfr) deletion strain uncovered that the presence of ferrihydrite in cells is coupled to the presence of Bfr. However, bfr and dps deletion mutants, encoding another ferritin-like protein, or even mutants with their codeletion had no impact on magnetite formation in MSR-1. Thus, ferritin-like proteins are not involved in magnetite biomineralization and Bfr-bound ferrihydrite is not a precursor of magnetite biosynthesis. Using transmission electron microscopy and bacterial two-hybrid and electrophoretic methods, we also show that MSR-1 Bfr is an atypical representative of the Bfr subfamily, as it forms tetraeicosameric complexes from two distinct subunits. Furthermore, our analyses revealed that these subunits are functionally divergent, with Bfr1 harboring a ferroxidase activity while only Bfr2 contributes to heme binding. Because of this functional differentiation and the poor formation of homooligomeric Bfr1 complexes, only heterooligomeric Bfr protects cells from oxidative stress in vivo. In summary, our results not only provide novel insights into the biomineralization of magnetite but also reveal the unique properties of so-far-uncharacterized heterooligomeric bacterioferritins.IMPORTANCE Magnetotactic bacteria like Magnetospirillum gryphiswaldense are able to orient along magnetic field lines due to the intracellular formation of magnetite nanoparticles. Biomineralization of magnetite has been suggested to require a yet-unknown ferritin-like ferrihydrite component. Here, we report the identification of a bacterioferritin as the source of ferrihydrite in M. gryphiswaldense and show that, contrary to previous reports, bacterioferritin is not involved in magnetite biomineralization but required for oxidative stress resistance. Additionally, we show that bacterioferritin of M. gryphiswaldense is an unusual member of the bacterioferritin subfamily as it is composed of two functionally distinct subunits. Thus, our findings extend our understanding of the bacterioferritin subfamily and also solve a longstanding question about the magnetite biomineralization pathway.
Collapse
|
21
|
Mohanty A, Subhadarshanee B, Barman P, Mahapatra C, Aishwarya B, Behera RK. Iron Mineralizing Bacterioferritin A from Mycobacterium tuberculosis Exhibits Unique Catalase-Dps-like Dual Activities. Inorg Chem 2019; 58:4741-4752. [DOI: 10.1021/acs.inorgchem.8b02758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Biswamaitree Subhadarshanee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar 751024, Odisha, India
| | - Pallavi Barman
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Chinmayee Mahapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - B. Aishwarya
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rabindra K. Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
22
|
Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019; 133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 μM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard J Naftalin
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
23
|
Oliveira FM, Da Costa AC, Procopio VO, Garcia W, Araújo JN, Da Silva RA, Junqueira-Kipnis AP, Kipnis A. Mycobacterium abscessus subsp. massiliense mycma_0076 and mycma_0077 Genes Code for Ferritins That Are Modulated by Iron Concentration. Front Microbiol 2018; 9:1072. [PMID: 29910777 PMCID: PMC5992710 DOI: 10.3389/fmicb.2018.01072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mycobacterium abscessus complex has been characterized in the last decade as part of a cluster of mycobacteria that evolved from an opportunistic to true human pathogen; however, the factors responsible for pathogenicity are still undefined. It appears that the success of mycobacterial infection is intrinsically related with the capacity of the bacteria to regulate intracellular iron levels, mostly using iron storage proteins. This study evaluated two potential M. abscessus subsp. massiliense genes involved in iron storage. Unlike other opportunist or pathogenic mycobacteria studied, M. abscessus complex has two genes similar to ferritins from M. tuberculosis (Rv3841), and in M. abscessus subsp. massiliense, those genes are annotated as mycma_0076 and mycma_0077. Molecular dynamic analysis of the predicted expressed proteins showed that they have a ferroxidase center. The expressions of mycma_0076 and mycma_0077 genes were modulated by the iron levels in both in vitro cultures as well as infected macrophages. Structural studies using size-exclusion chromatography, circular dichroism spectroscopy and dynamic light scattering showed that r0076 protein has a structure similar to those observed in the ferritin family. The r0076 forms oligomers in solution most likely composed of 24 subunits. Functional studies with recombinant proteins, obtained from heterologous expression of mycma_0076 and mycma_0077 genes in Escherichia coli, showed that both proteins were capable of oxidizing Fe2+ into Fe3+, demonstrating that these proteins have a functional ferroxidase center. In conclusion, two ferritins proteins were shown, for the first time, to be involved in iron storage in M. abscessus subsp. massiliense and their expressions were modulated by the iron levels.
Collapse
Affiliation(s)
- Fábio M. Oliveira
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - Adeliane C. Da Costa
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - Victor O. Procopio
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Federal University of ABC (UFABC), Santo André, Brazil
| | - Juscemácia N. Araújo
- Centro de Ciências Naturais e Humanas, Federal University of ABC (UFABC), Santo André, Brazil
| | - Roosevelt A. Da Silva
- Collaborative Center of Biosystems, Regional Jataí, Federal University of Goiás, Goiânia, Brazil
| | - Ana Paula Junqueira-Kipnis
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| | - André Kipnis
- Tropical Institute of Pathology and Public Health, Department of Microbiology, Immunology, Parasitology and Pathology, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
24
|
Keppel M, Davoudi E, Gätgens C, Frunzke J. Membrane Topology and Heme Binding of the Histidine Kinases HrrS and ChrS in Corynebacterium glutamicum. Front Microbiol 2018; 9:183. [PMID: 29479345 PMCID: PMC5812335 DOI: 10.3389/fmicb.2018.00183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/26/2018] [Indexed: 01/11/2023] Open
Abstract
The HrrSA and the ChrSA two-component systems play a central role in the coordination of heme homeostasis in the Gram-positive soil bacterium Corynebacterium glutamicum and the prominent pathogen Corynebacterium diphtheriae, both members of the Corynebacteriaceae. In this study, we have performed a comparative analysis of the membrane topology and heme-binding characteristics of the histidine kinases HrrS and ChrS of C. glutamicum. While the cytoplasmic catalytic domains are highly conserved between HrrS and ChrS, the N-terminal sensing parts share only minor sequence similarity. PhoA and LacZ fusions of the N-terminal sensor domains of HrrS and ChrS revealed that both proteins are embedded into the cytoplasmic membrane via six α-helices. Although the overall membrane topology appeared to be conserved, target gene profiling indicated a higher sensitivity of the ChrS system to low heme levels (< 1 μM). In vitro, solubilized and purified full-length proteins bound heme in a 1:1 stoichiometry per monomer. Alanine-scanning of conserved amino acid residues in the N-terminal sensor domain revealed three aromatic residues (Y112, F115, and F118), which apparently contribute to heme binding of HrrS. Exchange of either one or all three residues resulted in an almost abolished heme binding of HrrS in vitro. In contrast, ChrS mutants only displayed a red shift of the soret band from 406 to 418 nm suggesting an altered set of ligands in the triple mutant. In line with target gene profiling, these in vitro studies suggest distinct differences in the heme-protein interface of HrrS and ChrS. Since the membrane topology mapping displayed no extensive loop regions and alanine-scanning revealed potential heme-binding residues in α-helix number four, we propose an intramembrane sensing mechanism for both proteins. Overall, we present a first comparative analysis of the ChrS and HrrS kinases functioning as transient heme sensors in the Corynebacteriaceae.
Collapse
Affiliation(s)
- Marc Keppel
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Eva Davoudi
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Cornelia Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
25
|
The Irr and RirA Proteins Participate in a Complex Regulatory Circuit and Act in Concert To Modulate Bacterioferritin Expression in Ensifer meliloti 1021. Appl Environ Microbiol 2017. [PMID: 28625986 DOI: 10.1128/aem.00895-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this work we found that the bfr gene of the rhizobial species Ensifer meliloti, encoding a bacterioferritin iron storage protein, is involved in iron homeostasis and the oxidative stress response. This gene is located downstream of and overlapping the smc03787 open reading frame (ORF). No well-predicted RirA or Irr boxes were found in the region immediately upstream of the bfr gene although two presumptive RirA boxes and one presumptive Irr box were present in the putative promoter of smc03787 We demonstrate that bfr gene expression is enhanced under iron-sufficient conditions and that Irr and RirA modulate this expression. The pattern of bfr gene expression as well as the response to Irr and RirA is inversely correlated to that of smc03787 Moreover, our results suggest that the small RNA SmelC759 participates in RirA- and Irr-mediated regulation of bfr expression and that additional unknown factors are involved in iron-dependent regulation.IMPORTANCEE. meliloti belongs to the Alphaproteobacteria, a group of bacteria that includes several species able to associate with eukaryotic hosts, from mammals to plants, in a symbiotic or pathogenic manner. Regulation of iron homeostasis in this group of bacteria differs from that found in the well-studied Gammaproteobacteria In this work we analyzed the effect of rirA and irr mutations on bfr gene expression. We demonstrate the effect of an irr mutation on iron homeostasis in this bacterial genus. Moreover, results obtained indicate a complex regulatory circuit where multiple regulators, including RirA, Irr, the small RNA SmelC759, and still unknown factors, act in concert to balance bfr gene expression.
Collapse
|
26
|
Badu-Boateng C, Pardalaki S, Wolf C, Lajnef S, Peyrot F, Naftalin RJ. Labile iron potentiates ascorbate-dependent reduction and mobilization of ferritin iron. Free Radic Biol Med 2017; 108:94-109. [PMID: 28336129 DOI: 10.1016/j.freeradbiomed.2017.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/29/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022]
Abstract
Ascorbate mobilizes iron from equine spleen ferritin by two separate processes. Ascorbate alone mobilizes ferritin iron with an apparent Km (ascorbate) ≈1.5mM. Labile iron >2μM, complexed with citrate (10mM), synergises ascorbate-dependent iron mobilization by decreasing the apparent Km (ascorbate) to ≈270μM and raising maximal mobilization rate by ≈5-fold. Catalase reduces the apparent Km(ascorbate) for both ascorbate and ascorbate+iron dependent mobilization by ≈80%. Iron mobilization by ascorbate alone has a higher activation energy (Ea=45.0±5.5kJ/mole) than when mediated by ascorbate with labile iron (10μM) (Ea=13.7±2.2kJ/mole); also mobilization by iron-ascorbate has a three-fold higher pH sensitivity (pH range 6.0-8.0) than with ascorbate alone. Hydrogen peroxide inhibits ascorbate's iron mobilizing action. EPR and autochemiluminescence studies show that ascorbate and labile iron within ferritin enhances radical formation, whereas ascorbate alone produces negligible radicals. These findings suggest that iron catalysed single electron transfer reactions from ascorbate, involving ascorbate or superoxide and possibly ferroxidase tyrosine radicals, accelerate iron mobilization from the ferroxidase centre more than EPR silent, bi-dentate two-electron transfers. These differing modes of electron transference from ascorbate mirror the known mono and bidentate oxidation reactions of dioxygen and hydrogen peroxide with di-ferrous iron at the ferroxidase centre. This study implies that labile iron, at physiological pH, complexed with citrate, synergises iron mobilization from ferritin by ascorbate (50-4000μM). This autocatalytic process can exacerbate oxidative stress in ferritin-containing inflamed tissue.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence and Physiology Department, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Sofia Pardalaki
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence and Physiology Department, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | | | - Sonia Lajnef
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR CNRS 8601), Université Paris Descartes, 75006 Paris, France
| | - Fabienne Peyrot
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR CNRS 8601), Université Paris Descartes, 75006 Paris, France; ESPE de l'académie de Paris, Université Paris Sorbonne, 75016 Paris, France
| | - Richard J Naftalin
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence and Physiology Department, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
27
|
Rivera M. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization. Acc Chem Res 2017; 50:331-340. [PMID: 28177216 PMCID: PMC5358871 DOI: 10.1021/acs.accounts.6b00514] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its essentiality to life, iron presents significant challenges to cells: the exceedingly low solubility of Fe3+ limits its bioavailability, and the reactivity of Fe2+ toward H2O2 is a source of the toxic hydroxyl radical (HO•). Consequently, cellular levels of free iron are highly regulated to ensure sufficiency while preventing iron-induced toxicity. Relatively little is known about the fate of iron in the bacterial cytosol or how cells balance the need for relatively high cytosolic iron concentrations with the potential toxicity of the nutrient. Iron storage proteins are integral to iron metabolism, and bacteria utilize two types of ferritin-like molecules to store iron, bacterial ferritin (Ftn) and bacterioferritin (Bfr). Ftn and Bfr compartmentalize iron at concentrations far above the solubility of Fe3+ and protect the reducing cell environment from unwanted Fe3+/Fe2+ redox cycling. This Account focuses on our laboratory's efforts to study iron storage proteins in the model bacterium Pseudomonas aeruginosa, an opportunistic pathogen. Prior to our studies, it was thought that P. aeruginosa cells relied on a single Bfr assembled from two distinct subunits coded by the bfrA and bfrB genes. It is now known that, like in most bacteria, two iron storage proteins coexist in P. aeruginosa cells, a bacterial Ftn (FtnA), coded by the ftnA (formerly bfrA) gene and a bacterioferritin (BfrB), coded by the bfrB gene. Studies with BfrB showed that Fe2+ oxidation occurs at ferroxidase centers (FCs), followed by gated translocation of Fe3+ to the interior cavity, a process that is, surprisingly, distinct from that observed with the extensively studied Bfr from Escherichia coli, where the FCs are stable and function only as a catalytic site for O2 reduction. Investigations with BfrB showed that the oxidation of Fe2+ at FCs and the internalization of Fe3+ depend on long-range cooperative motions, extending from 4-fold pores, via B-pores, into FCs. It remains to be seen whether similar studies with E. coli Bfr will reveal distinct cooperative motions contributing to the stability of its FCs. Mobilization of Fe3+ stored in BfrB requires interaction with a ferredoxin (Bfd), which transfers electrons to reduce Fe3+ in the internal cavity of BfrB for subsequent release of Fe2+. The structure of the BfrB/Bfd complex furnished the only known structure of a ferritin molecule in complex with a physiological protein partner. The BfrB/Bfd complex is stabilized by hot-spot residues in both proteins, which interweave into a highly complementary hot region. The hot-spot residues are conserved in the sequences of Bfr and Bfd proteins from a number of bacteria, indicating that the BfrB/Bfd interaction is of widespread significance in bacterial iron metabolism. The BfrB/Bfd structure also furnished the only known structure of a Bfd, which revealed a novel helix-turn-helix fold different from the β-strand and α-helix fold of plant and vertebrate [2Fe-2S]-ferredoxins. Bfds seem to be unique to bacteria; consequently, although mobilization of iron from eukaryotic ferritins may also be facilitated by protein-protein interactions, the nature of the protein that delivers electrons to the ferric core of eukaryotic ferritins remains unknown.
Collapse
Affiliation(s)
- Mario Rivera
- Department of Chemistry and Ralph N. Adams
Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker
Dr., Lawrence, Kansas 66047, United States
| |
Collapse
|
28
|
Khare G, Nangpal P, Tyagi AK. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium tuberculosis. PLoS One 2017; 12:e0169545. [PMID: 28060867 PMCID: PMC5218490 DOI: 10.1371/journal.pone.0169545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/01/2023] Open
Abstract
Ferritins and bacterioferritins are iron storage proteins that represent key players in iron homeostasis. Several organisms possess both forms of ferritins, however, their relative physiological roles are less understood. Mycobacterium tuberculosis possesses both ferritin (BfrB) and bacterioferritin (BfrA), playing an essential role in its pathogenesis as reported by us earlier. This study provides insights into the role of these two proteins in iron homeostasis by employing M. tuberculosis bfr mutants. Our data suggests that BfrA is required for efficient utilization of stored iron under low iron conditions while BfrB plays a crucial role as the major defense protein under excessive iron conditions. We show that these two proteins provide protection against oxidative stress and hypoxia. Iron incorporation study showed that BfrB has higher capacity for storing iron than BfrA, which augurs well for efficient iron quenching under iron excess conditions. Moreover, iron release assay demonstrated that BfrA has 3 times superior ability to release stored iron emphasizing its requirement for efficient iron release under low iron conditions, facilitated by the presence of heme. Thus, for the first time, our observations suggest that the importance of BfrA or BfrB separately might vary depending upon the iron situation faced by the cell.
Collapse
Affiliation(s)
- Garima Khare
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Prachi Nangpal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | - Anil K. Tyagi
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
- Vice Chancellor, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka New Delhi, India
- * E-mail:
| |
Collapse
|
29
|
Bradley JM, Svistunenko DA, Moore GR, Le Brun NE. Tyr25, Tyr58 and Trp133 ofEscherichia colibacterioferritin transfer electrons between iron in the central cavity and the ferroxidase centre. Metallomics 2017; 9:1421-1428. [DOI: 10.1039/c7mt00187h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tyr58 and Trp133 play key roles in the formation and decay of the Tyr25 radical species ofE. coliBFR.
Collapse
Affiliation(s)
- Justin M. Bradley
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| | | | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| |
Collapse
|
30
|
Vita N, Landolfi G, Baslé A, Platsaki S, Lee J, Waldron KJ, Dennison C. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Sci Rep 2016; 6:39065. [PMID: 27991525 PMCID: PMC5171941 DOI: 10.1038/srep39065] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Bacteria are thought to avoid using the essential metal ion copper in their cytosol due to its toxicity. Herein we characterize Csp3, the cytosolic member of a new family of bacterial copper storage proteins from Methylosinus trichosporium OB3b and Bacillus subtilis. These tetrameric proteins possess a large number of Cys residues that point into the cores of their four-helix bundle monomers. The Csp3 tetramers can bind a maximum of approximately 80 Cu(I) ions, mainly via thiolate groups, with average affinities in the (1–2) × 1017 M−1 range. Cu(I) removal from these Csp3s by higher affinity potential physiological partners and small-molecule ligands is very slow, which is unexpected for a metal-storage protein. In vivo data demonstrate that Csp3s prevent toxicity caused by the presence of excess copper. Furthermore, bacteria expressing Csp3 accumulate copper and are able to safely maintain large quantities of this metal ion in their cytosol. This suggests a requirement for storing copper in this compartment of Csp3-producing bacteria.
Collapse
Affiliation(s)
- Nicolas Vita
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gianpiero Landolfi
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Semeli Platsaki
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jaeick Lee
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin J Waldron
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
31
|
Kwak Y, Schwartz JK, Huang VW, Boice E, Kurtz DM, Solomon EI. CD/MCD/VTVH-MCD Studies of Escherichia coli Bacterioferritin Support a Binuclear Iron Cofactor Site. Biochemistry 2015; 54:7010-8. [PMID: 26551523 DOI: 10.1021/acs.biochem.5b01033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferritins and bacterioferritins (Bfrs) utilize a binuclear non-heme iron binding site to catalyze oxidation of Fe(II), leading to formation of an iron mineral core within a protein shell. Unlike ferritins, in which the diiron site binds Fe(II) as a substrate, which then autoxidizes and migrates to the mineral core, the diiron site in Bfr has a 2-His/4-carboxylate ligand set that is commonly found in diiron cofactor enzymes. Bfrs could, therefore, utilize the diiron site as a cofactor rather than for substrate iron binding. In this study, we applied circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field MCD (VTVH-MCD) spectroscopies to define the geometric and electronic structures of the biferrous active site in Escherichia coli Bfr. For these studies, we used an engineered M52L variant, which is known to eliminate binding of a heme cofactor but to have very minor effects on either iron oxidation or mineral core formation. We also examined an H46A/D50A/M52L Bfr variant, which additionally disrupts a previously observed mononuclear non-heme iron binding site inside the protein shell. The spectral analyses define a binuclear and an additional mononuclear ferrous site. The biferrous site shows two different five-coordinate centers. After O2 oxidation and re-reduction, only the mononuclear ferrous signal is eliminated. The retention of the biferrous but not the mononuclear ferrous site upon O2 cycling supports a mechanism in which the binuclear site acts as a cofactor for the O2 reaction, while the mononuclear site binds the substrate Fe(II) that, after its oxidation to Fe(III), migrates to the mineral core.
Collapse
Affiliation(s)
- Yeonju Kwak
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Jennifer K Schwartz
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Victor W Huang
- Department of Chemistry, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas 78249, United States
| | - Emily Boice
- Department of Chemistry, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas 78249, United States
| | - Donald M Kurtz
- Department of Chemistry, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas 78249, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
32
|
Pfaffen S, Bradley JM, Abdulqadir R, Firme MR, Moore GR, Le Brun NE, Murphy MEP. A Diatom Ferritin Optimized for Iron Oxidation but Not Iron Storage. J Biol Chem 2015; 290:28416-28427. [PMID: 26396187 PMCID: PMC4653698 DOI: 10.1074/jbc.m115.669713] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 12/30/2022] Open
Abstract
Ferritin from the marine pennate diatom Pseudo-nitzschia multiseries (PmFTN) plays a key role in sustaining growth in iron-limited ocean environments. The di-iron catalytic ferroxidase center of PmFTN (sites A and B) has a nearby third iron site (site C) in an arrangement typically observed in prokaryotic ferritins. Here we demonstrate that Glu-44, a site C ligand, and Glu-130, a residue that bridges iron bound at sites B and C, limit the rate of post-oxidation reorganization of iron coordination and the rate at which Fe(3+) exits the ferroxidase center for storage within the mineral core. The latter, in particular, severely limits the overall rate of iron mineralization. Thus, the diatom ferritin is optimized for initial Fe(2+) oxidation but not for mineralization, pointing to a role for this protein in buffering iron availability and facilitating iron-sparing rather than only long-term iron storage.
Collapse
Affiliation(s)
- Stephanie Pfaffen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Raz Abdulqadir
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Marlo R Firme
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
33
|
Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Proc Natl Acad Sci U S A 2015; 112:2343-8. [PMID: 25675492 DOI: 10.1073/pnas.1417047112] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many diseases are associated with oxidative stress, which occurs when the production of reactive oxygen species (ROS) overwhelms the scavenging ability of an organism. Here, we evaluated the carbon nanoparticle antioxidant properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron paramagnetic resonance (EPR) spectroscopy, oxygen electrode, and spectrophotometric assays. These carbon nanoparticles have 1 equivalent of stable radical and showed superoxide (O2 (•-)) dismutase-like properties yet were inert to nitric oxide (NO(•)) as well as peroxynitrite (ONOO(-)). Thus, PEG-HCCs can act as selective antioxidants that do not require regeneration by enzymes. Our steady-state kinetic assay using KO2 and direct freeze-trap EPR to follow its decay removed the rate-limiting substrate provision, thus enabling determination of the remarkable intrinsic turnover numbers of O2 (•-) to O2 by PEG-HCCs at >20,000 s(-1). The major products of this catalytic turnover are O2 and H2O2, making the PEG-HCCs a biomimetic superoxide dismutase.
Collapse
|
34
|
Poirier I, Kuhn L, Caplat C, Hammann P, Bertrand M. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:120-133. [PMID: 25456226 DOI: 10.1016/j.aquatox.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/06/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
This study examined the effect of cold stress on the proteome and metal tolerance of Pseudomonas fluorescens BA3SM1, a marine strain isolated from tidal flat sediments. When cold stress (+10 °C for 36 h) was applied before moderate metal stress (0.4 mM Cd, 0.6 mM Cd, 1.5 mM Zn, and 1.5 mM Cu), growth disturbances induced by metal, in comparison with respective controls, were reduced for Cd and Zn while they were pronounced for Cu. This marine strain was able to respond to cold stress through a number of changes in protein regulation. Analysis of the predicted differentially expressed protein functions demonstrated that some mechanisms developed under cold stress were similar to those developed in response to Cd, Zn, and Cu. Therefore, pre-cold stress could help this strain to better counteract toxicity of moderate concentrations of some metals. P. fluorescens BA3SM1 was able to remove up to 404.3 mg Cd/g dry weight, 172.5 mg Zn/g dry weight, and 11.3 mg Cu/g dry weight and its metal biosorption ability seemed to be related to the bacterial growth phase. Thus, P. fluorescens BA3SM1 appears as a promising agent for bioremediation processes, even at low temperatures.
Collapse
Affiliation(s)
- Isabelle Poirier
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Christelle Caplat
- UMR BOREA, Université de Caen Basse-Normandie, Esplanade de la Paix, BP 5186, 14032 Caen Cedex, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Martine Bertrand
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France
| |
Collapse
|
35
|
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev 2014; 115:295-326. [DOI: 10.1021/cr5004908] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| |
Collapse
|
36
|
Bradley JM, Moore GR, Le Brun NE. Mechanisms of iron mineralization in ferritins: one size does not fit all. J Biol Inorg Chem 2014; 19:775-85. [PMID: 24748222 DOI: 10.1007/s00775-014-1136-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022]
Abstract
Significant progress has been made in recent years toward understanding the processes by which an iron mineral is deposited within members of the ferritin family of 24mer iron storage proteins, enabled by high-resolution structures together with spectroscopic and kinetic studies. These suggest common characteristics that are shared between ferritins, namely, a highly symmetric arrangement of subunits that provides a protein coat around a central cavity in which the mineral is formed, channels through the coat that facilitate ingress and egress of ions, and catalytic sites, called ferroxidase centers, that drive Fe(2+) oxidation. They also reveal significant variations in both structure and mechanism amongst ferritins. Here, we describe three general types of structurally distinct ferroxidase center and the mechanisms of mineralization that they are associated with. The highlighted variation leads us to conclude that there is no universal mechanism by which ferritins function, but instead there exists several distinct mechanisms of ferritin iron mineralization.
Collapse
Affiliation(s)
- Justin M Bradley
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|
37
|
Lalli D, Turano P. Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage. Acc Chem Res 2013; 46:2676-85. [PMID: 24000809 DOI: 10.1021/ar4000983] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ferritins are intracellular proteins that can store thousands of iron(III) ions as a solid mineral. These structures autoassemble from four-helix bundle subunits to form a hollow sphere and are a prototypical example of protein nanocages. The protein acts as a reservoir, encapsulating iron as ferric oxide in its central cavity in a nontoxic and bioavailable form. Scientists have long known the structural details of the protein shell, owing to very high resolution X-ray structures of the apoform. However, the atomic level mechanism governing the multistep biomineralization process remained largely elusive. Through analysis of the chemical behavior of ferritin mutants, chemists have found the role of some residues in key reaction steps. Using Mössbauer and XAS, they have identified some di-iron intermediates of the catalytic reaction trapped by rapid freeze quench. However, structural information about the iron interaction sites remains scarce. The entire process is governed by a number of specific, but weak, interactions between the protein shell and the iron species moving across the cage. While this situation may constitute a major problem for crystallography, NMR spectroscopy represents an optimal tool to detect and characterize transient species involving soluble proteins. Regardless, NMR analysis of the 480 kDa ferritin represents a real challenge. Our interest in ferritin chemistry inspired us to use an original combination of solution and solid state approaches. While the highly symmetric structure of the homo-24-mer frog ferritin greatly simplifies the spectra, the large protein size hinders the efficient coherence transfer in solution, thus preventing the sequence specific assignments. In contrast, extensive (13)C-spin diffusion makes the solution (13)C-(13)C NOESY experiment our gold standard to monitor protein side chains both in the apoprotein alone and in its interaction with paramagnetic iron species, inducing line broadening on the resonances of nearby residues. We could retrieve the structural information embedded in the (13)C-(13)C NOESY due to a partial sequence specific assignment of protein backbone and side chains we obtained from solid state MAS NMR of ferritin microcrystals. We used the 59 assigned amino acids (∼33% of the total) as probes to locate paramagnetic ferric species in the protein cage. Through this approach, we could identify ferric dimers at the ferroxidase site and on their pathway towards the nanocage. Comparison with existing data on bacterioferritins and bacterial ferritins, as well as with eukaryotic ferritins loaded with various nonfunctional divalent ions, allowed us to reinterpret the available information. The resulting picture of the ferroxidase site is slightly different with various ferritins but is designed to provide multiple and generally weak iron ligands. The latter assist binding of two incoming iron(II) ions in two proximal positions to facilitate coupling with oxygen. Subsequent oxidation is accompanied by a decrease in the metal-metal distance (consistent with XAS/Mössbauer) and in the number of protein residues involved in metal coordination, facilitating the release of products as di-iron clusters under the effect of new incoming iron(II) ions.
Collapse
Affiliation(s)
- Daniela Lalli
- CERM and Department of Chemistry, University of Florence, via Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Paola Turano
- CERM and Department of Chemistry, University of Florence, via Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
38
|
Carmona F, Palacios Ò, Gálvez N, Cuesta R, Atrian S, Capdevila M, Domínguez-Vera JM. Ferritin iron uptake and release in the presence of metals and metalloproteins: Chemical implications in the brain. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.03.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Iron binding at specific sites within the octameric HbpS protects streptomycetes from iron-mediated oxidative stress. PLoS One 2013; 8:e71579. [PMID: 24013686 PMCID: PMC3754957 DOI: 10.1371/journal.pone.0071579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
The soil bacterium Streptomyces reticuli secretes the octameric protein HbpS that acts as a sensory component of the redox-signalling pathway HbpS-SenS-SenR. This system modulates a genetic response on iron- and haem-mediated oxidative stress. Moreover, HbpS alone provides this bacterium with a defence mechanism to the presence of high concentrations of iron ions and haem. While the protection against haem has been related to its haem-binding and haem-degrading activity, the interaction with iron has not been studied in detail. In this work, we biochemically analyzed the iron-binding activity of a set of generated HbpS mutant proteins and present evidence showing the involvement of one internal and two exposed D/EXXE motifs in binding of high quantities of ferrous iron, with the internal E78XXE81 displaying the tightest binding. We additionally show that HbpS is able to oxidize ferrous to ferric iron ions. Based on the crystal structure of both the wild-type and the mutant HbpS-D78XXD81, we conclude that the local arrangement of the side chains from the glutamates in E78XXE81 within the octameric assembly is a pre-requisite for interaction with iron. The data obtained led us to propose that the exposed and the internal motif build a highly specific route that is involved in the transport of high quantities of iron ions into the core of the HbpS octamer. Furthermore, physiological studies using Streptomyces transformants secreting either wild-type or HbpS mutant proteins and different redox-cycling compounds led us to conclude that the iron-sequestering activity of HbpS protects these soil bacteria from the hazardous side effects of peroxide- and iron-based oxidative stress.
Collapse
|
40
|
Abstract
The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen.
Collapse
|
41
|
McMath LM, Contreras H, Owens CP, Goulding CW. The structural characterization of bacterioferritin, BfrA, from Mycobacterium tuberculosis. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. Like most bacterial pathogens, iron acquisition, regulation, and storage are critical for its survival. Due to the poor solubility of iron under physiological conditions, both eukaryotes and prokaryotes possess ferritins, large protein complexes that store iron and keep it bioavailable. Mtb encodes for two ferritin homologs: a heme-containing bacterioferritin (Mtb-BfrA) and a non-heme eukaryotic-like ferritin (Mtb-BfrB). A conserved feature of bacterioferritins is the presence of a heme group at the interface between two subunits of each dimer that is related by a non-crystallographic two-fold axis. The structure of a selenomethionine derivative of Mtb-BfrA was previously reported (PDB ID: 2WTL); however, a proposed heme degradation product was modeled into the heme-binding site, as electron density for intact heme was not observed. Here, the purification and structure determination of recombinant Mtb-BfrA is reported. As-isolated Mtb-BfrA from Escherichia coli is not fully heme loaded. However, the absorption spectrum features suggest binding of intact heme. In an attempt to fully complement Mtb-BfrA with heme, two different methodologies are described. Electronic spectroscopy and structure determination were used to confirm varying amounts of intact bis-methionine coordinated heme to Mtb-BfrA. We also report that increased heme incorporation only slightly increases Mtb-BfrA ferroxidase activity. Finally, the cognate partner of Mtb-BfrA is proposed to be a putative encoded gene which is located approximately 300 bps upstream of Mycobacterium tuberculosisbfrA, homologous to the cognate partner of Pseudomonas aeruginosa bacterioferritin, a 7 kDa ferrodoxin Bfd.
Collapse
Affiliation(s)
- Lisa M. McMath
- Department of Molecular Biology and Biochemistry, UC Irvine, 2212 Natrual Sciences I, Irvine, CA 92697, USA
| | - Heidi Contreras
- Department of Molecular Biology and Biochemistry, UC Irvine, 2212 Natrual Sciences I, Irvine, CA 92697, USA
| | - Cedric P. Owens
- Department of Molecular Biology and Biochemistry, UC Irvine, 2212 Natrual Sciences I, Irvine, CA 92697, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, UC Irvine, 2212 Natrual Sciences I, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, UC Irvine, 2212 Natrual Sciences I, Irvine, CA 92697, USA
| |
Collapse
|
42
|
Pfaffen S, Abdulqadir R, Le Brun NE, Murphy MEP. Mechanism of ferrous iron binding and oxidation by ferritin from a pennate diatom. J Biol Chem 2013; 288:14917-25. [PMID: 23548912 PMCID: PMC3663513 DOI: 10.1074/jbc.m113.454496] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A novel ferritin was recently found in Pseudo-nitzschia multiseries (PmFTN), a marine pennate diatom that plays a major role in global primary production and carbon sequestration into the deep ocean. Crystals of recombinant PmFTN were soaked in iron and zinc solutions, and the structures were solved to 1.65–2.2-Å resolution. Three distinct iron binding sites were identified as determined from anomalous dispersion data from aerobically grown ferrous soaked crystals. Sites A and B comprise the conserved ferroxidase active site, and site C forms a pathway leading toward the central cavity where iron storage occurs. In contrast, crystal structures derived from anaerobically grown and ferrous soaked crystals revealed only one ferrous iron in the active site occupying site A. In the presence of dioxygen, zinc is observed bound to all three sites. Iron oxidation experiments using stopped-flow absorbance spectroscopy revealed an extremely rapid phase corresponding to Fe(II) oxidation at the ferroxidase site, which is saturated after adding 48 ferrous iron to apo-PmFTN (two ferrous iron per subunit), and a much slower phase due to iron core formation. These results suggest an ordered stepwise binding of ferrous iron and dioxygen to the ferroxidase site in preparation for catalysis and a partial mobilization of iron from the site following oxidation.
Collapse
Affiliation(s)
- Stephanie Pfaffen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
43
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
44
|
Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013. [DOI: 10.1039/c2mt20193c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Wahlgren WY, Omran H, von Stetten D, Royant A, van der Post S, Katona G. Structural characterization of bacterioferritin from Blastochloris viridis. PLoS One 2012; 7:e46992. [PMID: 23056552 PMCID: PMC3467274 DOI: 10.1371/journal.pone.0046992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/07/2012] [Indexed: 12/02/2022] Open
Abstract
Iron storage and elimination of toxic ferrous iron are the responsibility of bacterioferritins in bacterial species. Bacterioferritins are capable of oxidizing iron using molecular oxygen and import iron ions into the large central cavity of the protein, where they are stored in a mineralized form. We isolated, crystallized bacterioferritin from the microaerophilic/anaerobic, purple non-sulfur bacterium Blastochloris viridis and determined its amino acid sequence and X-ray structure. The structure and sequence revealed similarity to other purple bacterial species with substantial differences in the pore regions. Static 3- and 4-fold pores do not allow the passage of iron ions even though structural dynamics may assist the iron gating. On the other hand the B-pore is open to water and larger ions in its native state. In order to study the mechanism of iron import, multiple soaking experiments were performed. Upon Fe(II) and urea treatment the ferroxidase site undergoes reorganization as seen in bacterioferritin from Escherichia coli and Pseudomonas aeruginosa. When soaking with Fe(II) only, a closely bound small molecular ligand is observed close to Fe1 and the coordination of Glu94 to Fe2 changes from bidentate to monodentate. DFT calculations indicate that the bound ligand is most likely a water or a hydroxide molecule representing a product complex. On the other hand the different soaking treatments did not modify the conformation of other pore regions.
Collapse
Affiliation(s)
- Weixiao Y. Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Hadil Omran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | | - Antoine Royant
- European Synchrotron Radiation Facility, Grenoble, France
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS CEA Université Joseph Fourier, Grenoble, France
| | | | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
46
|
Yao H, Wang Y, Lovell S, Kumar R, Ruvinsky AM, Battaile KP, Vakser IA, Rivera M. The structure of the BfrB-Bfd complex reveals protein-protein interactions enabling iron release from bacterioferritin. J Am Chem Soc 2012; 134:13470-81. [PMID: 22812654 PMCID: PMC3428730 DOI: 10.1021/ja305180n] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ferritin-like molecules are unique to cellular iron homeostasis because they can store iron at concentrations much higher than those dictated by the solubility of Fe(3+). Very little is known about the protein interactions that deliver iron for storage or promote the mobilization of stored iron from ferritin-like molecules. Here, we report the X-ray crystal structure of Pseudomonas aeruginosa bacterioferritin (Pa-BfrB) in complex with bacterioferritin-associated ferredoxin (Pa-Bfd) at 2.0 Å resolution. As the first example of a ferritin-like molecule in complex with a cognate partner, the structure provides unprecedented insight into the complementary interface that enables the [2Fe-2S] cluster of Pa-Bfd to promote heme-mediated electron transfer through the BfrB protein dielectric (~18 Å), a process that is necessary to reduce the core ferric mineral and facilitate mobilization of Fe(2+). The Pa-BfrB-Bfd complex also revealed the first structure of a Bfd, thus providing a first view to what appears to be a versatile metal binding domain ubiquitous to the large Fer2_BFD family of proteins and enzymes with diverse functions. Residues at the Pa-BfrB-Bfd interface are highly conserved in Bfr and Bfd sequences from a number of pathogenic bacteria, suggesting that the specific recognition between Pa-BfrB and Pa-Bfd is of widespread significance to the understanding of bacterial iron homeostasis.
Collapse
Affiliation(s)
- Huili Yao
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047
| | - Yan Wang
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047
| | - Scott Lovell
- Del Shankel Structural Biology Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047
| | - Ritesh Kumar
- Center for Bioinformatics, University of Kansas, 2030 Becker Dr., Lawrence, KS 66047
| | - Anatoly M. Ruvinsky
- Center for Bioinformatics, University of Kansas, 2030 Becker Dr., Lawrence, KS 66047
| | - Kevin P. Battaile
- IMCA-CAT, Hauptman Woodward Medical Research Institute, 9700 S. Cass Avenue, Bldg. 435A, Argonne, IL 60439
| | - Ilya A. Vakser
- Center for Bioinformatics, University of Kansas, 2030 Becker Dr., Lawrence, KS 66047
| | - Mario Rivera
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS 66047
| |
Collapse
|
47
|
Subramanian V, Evans DG. A Molecular Dynamics and Computational Study of Ligand Docking and Electron Transfer in Ferritins. J Phys Chem B 2012; 116:9287-302. [DOI: 10.1021/jp301055x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijaya Subramanian
- The Nanoscience and Microsystems
Program and the Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico
| | - Deborah G. Evans
- The Nanoscience and Microsystems
Program and the Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
48
|
Fe-haem bound to Escherichia coli bacterioferritin accelerates iron core formation by an electron transfer mechanism. Biochem J 2012; 444:553-60. [DOI: 10.1042/bj20112200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BFR (bacterioferritin) is an iron storage and detoxification protein that differs from other ferritins by its ability to bind haem cofactors. Haem bound to BFR is believed to be involved in iron release and was previously thought not to play a role in iron core formation. Investigation of the effect of bound haem on formation of the iron core has been enabled in the present work by development of a method for reconstitution of BFR from Escherichia coli with exogenously added haem at elevated temperature in the presence of a relatively high concentration of sodium chloride. Kinetic analysis of iron oxidation by E. coli BFR preparations containing various amounts of haem revealed that haem bound to BFR decreases the rate of iron oxidation at the dinuclear iron ferroxidase sites but increases the rate of iron core formation. Similar kinetic analysis of BFR reconstituted with cobalt-haem revealed that this haem derivative has no influence on the rate of iron core formation. These observations argue that haem bound to E. coli BFR accelerates iron core formation by an electron-transfer-based mechanism.
Collapse
|
49
|
Iron sulfur cluster proteins and microbial regulation: implications for understanding tuberculosis. Curr Opin Chem Biol 2012; 16:45-53. [PMID: 22483328 DOI: 10.1016/j.cbpa.2012.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 11/22/2022]
Abstract
All pathogenic and nonpathogenic microbes are continuously exposed to environmental or endogenous reactive oxygen and nitrogen species, which can critically effect survival and disease. Iron-sulfur [Fe-S] cluster containing prosthetic groups provide the microbial cell with a unique capacity to sense and transcriptionally respond to diatomic gases (e.g. NO and O2) and redox-cycling agents. Recent advances in our understanding of the mechanisms for how the FNR and SoxR [Fe-S] cluster proteins respond to NO and O2 have provided new insights into the biochemical mechanism of action of the Mycobacterium tuberculosis (Mtb) family of WhiB [Fe-S] cluster proteins. These insights have provided the basis for establishing a unifying paradigm for the Mtb WhiB family of proteins. Mtb is the etiological agent for tuberculosis (TB), a disease that affects nearly one-third of the world's population.
Collapse
|