1
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
2
|
Gulyás G, Radvánszki G, Matuska R, Balla A, Hunyady L, Balla T, Várnai P. Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins. J Biol Chem 2017; 292:18862-18877. [PMID: 28939768 DOI: 10.1074/jbc.m117.806679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/11/2017] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane (PM) localization of Ras proteins is crucial for transmitting signals upon mitogen stimulation. Post-translational lipid modification of Ras proteins plays an important role in their recruitment to the PM. Electrostatic interactions between negatively charged PM phospholipids and basic amino acids found in K-Ras4B (K-Ras) but not in H-Ras are important for permanent K-Ras localization to the PM. Here, we investigated how acute depletion of negatively charged PM polyphosphoinositides (PPIns) from the PM alters the intracellular distribution and activity of K- and H-Ras proteins. PPIns depletion from the PM was achieved either by agonist-induced activation of phospholipase C β or with a rapamycin-inducible system in which various phosphatidylinositol phosphatases were recruited to the PM. Redistribution of the two Ras proteins was monitored with confocal microscopy or with a recently developed bioluminescence resonance energy transfer-based approach involving fusion of the Ras C-terminal targeting sequences or the entire Ras proteins to Venus fluorescent protein. We found that PM PPIns depletion caused rapid translocation of K-Ras but not H-Ras from the PM to the Golgi. PM depletion of either phosphatidylinositol 4-phosphate (PtdIns4P) or PtdIns(4,5)P2 but not PtdIns(3,4,5)P3 was sufficient to evoke K-Ras translocation. This effect was diminished by deltarasin, an inhibitor of the Ras-phosphodiesterase interaction, or by simultaneous depletion of the Golgi PtdIns4P. The PPIns depletion decreased incorporation of [3H]leucine in K-Ras-expressing cells, suggesting that Golgi-localized K-Ras is not as signaling-competent as its PM-bound form. We conclude that PPIns in the PM are important regulators of K-Ras-mediated signals.
Collapse
Affiliation(s)
- Gergő Gulyás
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Glória Radvánszki
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Rita Matuska
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - András Balla
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest 1094, Hungary, and
| | - László Hunyady
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest 1094, Hungary, and
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Péter Várnai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary,
| |
Collapse
|
3
|
Huang LL, Pan C, Yu TT, Guo K, Wang XH, Zhang JY, Wang HZ, Gao S. Benefical therapeutic effect of Chinese Herbal Xinji'erkang formula on hypertension-induced renal injury in the 2-kidney-1-clip hypertensive rats. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2014; 11:16-27. [PMID: 25395699 PMCID: PMC4202512 DOI: 10.4314/ajtcam.v11i5.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Increase in evidence shows that the role of kidney injury in hypertension is important. Xinji'erkang (XJEK), a Chinese herbal formula, has been identified as an effective preparation in the treatment of coronary heart disease and myocarditis. We have previously demonstrated that XJEK attenuate oxidative stress and hypertension target organ damage. The aim of this study was to assess the renal protective function of XJEK. MATERIALS AND METHODS Two Kidney One Clip (2K1C) model was adopted to induce hypertension in rats. We submitted male Sprague Dawley (150-180) g rats to either renal artery clipping or sham operation. Renal hypertension was established after four weeks of surgery. Rats were randomized divided into the four groups: sham-operated group (Sh-Op) (n=10), two-kidney, one-clip hypertension group (2K1C) (n=10), Xinji'erkang treatment group (XJEK) (n=10) and Fosinopril (n=10) treatment group. Drugs were administered orally daily for four weeks. Systolic pressures were measured every week using the tail-cuff apparatus. 24h before death, urine samples were collected for detect of urinary proteins. The kidney weight (KW) index was expressed as kidney weight/body weight (KW/BW). The histological changes were investigated by hematoxylin and eosin and Van Gieson staining. Immunohistochemical assay was employed to observe the intra-renal transforming growth factor-β1 (TGF-β1) protein expression. Serum creatinine (SCR) and blood urea nitrogen (BUN) were assayed by automatic biochemical analyzer. ELISA kit was used to assay Angiotensin II (Ang II) and TGF-β1 content in serum. RESULTS Administration of XJEK markedly alleviated the rise in blood pressure and declined LKW/BW ratio. Histo-pathological injuries including hypertrophic glomerular, glomerular sclerosis, glomerular and interstitial fibrosis were attenuated. XJEK also decreased SCR, BUN, urinary proteins in 24h urine, serum Ang II and TGF-β1 concentrations and the intra-renal TGF-β1 protein expression. CONCLUSION XJEK therapy in the 2K1C hypertensive rats affects the rise in blood pressure and ameliorates the severity of kidney injury. The protective effect is most likely due to the ability of XJEK to affect the Renin-Angiotensin-Aldosterone System (RAAS) and the TGF-β systems.
Collapse
Affiliation(s)
- Ling-Ling Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, China
| | - Chen Pan
- Department of Clinical of Pharmacy, Lishui People's Hospital, Zhe Jiang 323000, China
| | - Ting-ting Yu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Kun Guo
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xing-hui Wang
- Department of Pharmacy, the Second People's Hospital of Hefei, Hefei 230011, China
| | - Jun-Yan Zhang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Hong-zhi Wang
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei 230031, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
4
|
Jaeger WC, Armstrong SP, Hill SJ, Pfleger KDG. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014; 5:26. [PMID: 24634666 PMCID: PMC3943086 DOI: 10.3389/fendo.2014.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Werner C. Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen P. Armstrong
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen J. Hill
- Cell Signalling Research Group, School of Life Sciences, Queen’s Medical Centre, University of Nottingham Medical School, Nottingham, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Dimerix Bioscience Pty Ltd, Perth, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, QQ Block, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia e-mail:
| |
Collapse
|
5
|
Haeussler DJ, Pimentel DR, Hou X, Burgoyne JR, Cohen RA, Bachschmid MM. Endomembrane H-Ras controls vascular endothelial growth factor-induced nitric-oxide synthase-mediated endothelial cell migration. J Biol Chem 2013; 288:15380-9. [PMID: 23548900 PMCID: PMC3663556 DOI: 10.1074/jbc.m112.427765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling.
Collapse
Affiliation(s)
- Dagmar J Haeussler
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
6
|
β-Arrestins: modulators of small GTPase activation and function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:149-74. [PMID: 23764053 DOI: 10.1016/b978-0-12-394440-5.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most cellular events responsible for accurate G protein-coupled receptor trafficking involve small GTP-binding proteins. For example, trafficking of receptors via the endocytic and exocytic pathways requires activation of ADP-ribosylation factors and Rab proteins, while receptor-mediated complex responses such as migration are well characterized to be dependent upon Rho family members. Because β-arrestin proteins are recruited to activated receptors and now considered as key signaling molecules, whether they act to control small GTPase activity remains a subject of great interest. Over the years, considerable evidence has suggested that β-arrestins and GTPases might be effectors of the same signaling pathways. One example is the roles of both β-arrestin and Ras, the prototypical GTPase, in coordinating activation of mitogen-activated protein kinase. Recently developed tools effective in suppressing the expression of β-arrestins will help define whether they are essential for small G protein activation. Furthermore, novel approaches to identify protein complexes will greatly advance our understanding of the possible cross talk between β-arrestin and small GTPases.
Collapse
|