1
|
Cisneros AF, Nielly-Thibault L, Mallik S, Levy ED, Landry CR. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol Syst Biol 2024; 20:549-572. [PMID: 38499674 PMCID: PMC11066126 DOI: 10.1038/s44320-024-00030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Biological systems can gain complexity over time. While some of these transitions are likely driven by natural selection, the extent to which they occur without providing an adaptive benefit is unknown. At the molecular level, one example is heteromeric complexes replacing homomeric ones following gene duplication. Here, we build a biophysical model and simulate the evolution of homodimers and heterodimers following gene duplication using distributions of mutational effects inferred from available protein structures. We keep the specific activity of each dimer identical, so their concentrations drift neutrally without new functions. We show that for more than 60% of tested dimer structures, the relative concentration of the heteromer increases over time due to mutational biases that favor the heterodimer. However, allowing mutational effects on synthesis rates and differences in the specific activity of homo- and heterodimers can limit or reverse the observed bias toward heterodimers. Our results show that the accumulation of more complex protein quaternary structures is likely under neutral evolution, and that natural selection would be needed to reverse this tendency.
Collapse
Affiliation(s)
- Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lou Nielly-Thibault
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada.
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada.
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
| |
Collapse
|
2
|
Vishwanathan V, D’Silva P. Loss of Function of mtHsp70 Chaperone Variants Leads to Mitochondrial Dysfunction in Congenital Sideroblastic Anemia. Front Cell Dev Biol 2022; 10:847045. [PMID: 35252210 PMCID: PMC8888832 DOI: 10.3389/fcell.2022.847045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital Sideroblastic Anemias (CSA) is a group of rare genetic disorders characterized by the abnormal accumulation of iron in erythrocyte precursors. A common hallmark underlying these pathological conditions is mitochondrial dysfunction due to altered protein homeostasis, heme biosynthesis, and oxidative phosphorylation. A clinical study on congenital sideroblastic anemia has identified mutations in mitochondrial Hsp70 (mtHsp70/Mortalin). Mitochondrial Hsp70 plays a critical role in maintaining mitochondrial function by regulating several pathways, including protein import and folding, and iron-sulfur cluster synthesis. Owing to the structural and functional homology between human and yeast mtHsp70, we have utilized the yeast system to delineate the role of mtHsp70 variants in the etiology of CSA’s. Analogous mutations in yeast mtHsp70 exhibited temperature-sensitive growth phenotypes under non-respiratory and respiratory conditions. In vivo analyses indicate a perturbation in mitochondrial mass and functionality accompanied by an alteration in the organelle network and cellular redox levels. Preliminary in vitro biochemical studies of mtHsp70 mutants suggest impaired import function, altered ATPase activity and substrate interaction. Together, our findings suggest the loss of chaperone activity to be a pivotal factor in the pathophysiology of congenital sideroblastic anemia.
Collapse
|
3
|
Nyakundi DO, Bentley SJ, Boshoff A. Hsp70 Escort Protein: More Than a Regulator of Mitochondrial Hsp70. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713104919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hsp70 members occupy a central role in proteostasis and are found in different eukaryotic
cellular compartments. The mitochondrial Hsp70/J-protein machinery performs multiple functions vital
for the proper functioning of the mitochondria, including forming part of the import motor that
transports proteins from the cytosol into the matrix and inner membrane, and subsequently folds these
proteins in the mitochondria. However, unlike other Hsp70s, mitochondrial Hsp70 (mtHsp70) has the
propensity to self-aggregate, accumulating as insoluble aggregates. The self-aggregation of mtHsp70 is
caused by both interdomain and intramolecular communication within the ATPase and linker domains.
Since mtHsp70 is unable to fold itself into an active conformation, it requires an Hsp70 escort protein
(Hep) to both inhibit self-aggregation and promote the correct folding. Hep1 orthologues are present in
the mitochondria of many eukaryotic cells but are absent in prokaryotes. Hep1 proteins are relatively
small and contain a highly conserved zinc-finger domain with one tetracysteine motif that is essential
for binding zinc ions and maintaining the function and solubility of the protein. The zinc-finger domain
lies towards the C-terminus of Hep1 proteins, with very little conservation outside of this domain.
Other than maintaining mtHsp70 in a functional state, Hep1 proteins play a variety of other roles in the
cell and have been proposed to function as both chaperones and co-chaperones. The cellular
localisation and some of the functions are often speculative and are not common to all Hep1 proteins
analysed to date.
Collapse
Affiliation(s)
- David O. Nyakundi
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
4
|
Chen L, Zhang YH, Huang T, Cai YD. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities. Mol Genet Genomics 2016; 291:913-34. [PMID: 26728152 DOI: 10.1007/s00438-015-1157-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/08/2015] [Indexed: 01/18/2023]
Abstract
Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China. .,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
5
|
Manicki M, Majewska J, Ciesielski S, Schilke B, Blenska A, Kominek J, Marszalek J, Craig EA, Dutkiewicz R. Overlapping binding sites of the frataxin homologue assembly factor and the heat shock protein 70 transfer factor on the Isu iron-sulfur cluster scaffold protein. J Biol Chem 2014; 289:30268-30278. [PMID: 25228696 PMCID: PMC4215211 DOI: 10.1074/jbc.m114.596726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
In mitochondria FeS clusters, prosthetic groups critical for the activity of many proteins, are first assembled on Isu, a 14-kDa scaffold protein, and then transferred to recipient apoproteins. The assembly process involves interaction of Isu with both Nfs1, the cysteine desulfurase serving as a sulfur donor, and the yeast frataxin homolog (Yfh1) serving as a regulator of desulfurase activity and/or iron donor. Here, based on the results of biochemical experiments with purified wild-type and variant proteins, we report that interaction of Yfh1 with both Nfs1 and Isu are required for formation of a stable tripartite assembly complex. Disruption of either Yfh1-Isu or Nfs1-Isu interactions destabilizes the complex. Cluster transfer to recipient apoprotein is known to require the interaction of Isu with the J-protein/Hsp70 molecular chaperone pair, Jac1 and Ssq1. Here we show that the Yfh1 interaction with Isu involves the PVK sequence motif, which is also the site key for the interaction of Isu with Hsp70 Ssq1. Coupled with our previous observation that Nfs1 and Jac1 binding to Isu is mutually exclusive due to partially overlapping binding sites, we propose that such mutual exclusivity of cluster assembly factor (Nfs1/Yfh1) and cluster transfer factor (Jac1/Ssq1) binding to Isu has functional consequences for the transition from the assembly process to the transfer process, and thus regulation of the biogenesis of FeS cluster proteins.
Collapse
Affiliation(s)
- Mateusz Manicki
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80822, Poland and
| | - Julia Majewska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80822, Poland and; Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Szymon Ciesielski
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Brenda Schilke
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Anna Blenska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80822, Poland and
| | - Jacek Kominek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80822, Poland and
| | - Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80822, Poland and; Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706.
| | - Rafal Dutkiewicz
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk 80822, Poland and
| |
Collapse
|
6
|
Kominek J, Marszalek J, Neuvéglise C, Craig EA, Williams BL. The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective. Genome Biol Evol 2014; 5:2460-77. [PMID: 24277689 PMCID: PMC3879978 DOI: 10.1093/gbe/evt192] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hsp70 molecular chaperones are ubiquitous. By preventing aggregation, promoting folding, and regulating degradation, Hsp70s are major factors in the ability of cells to maintain proteostasis. Despite a wealth of functional information, little is understood about the evolutionary dynamics of Hsp70s. We undertook an analysis of Hsp70s in the fungal clade Ascomycota. Using the well-characterized 14 Hsp70s of Saccharomyces cerevisiae, we identified 491 orthologs from 53 genomes. Saccharomyces cerevisiae Hsp70s fall into seven subfamilies: four canonical-type Hsp70 chaperones (SSA, SSB, KAR, and SSC) and three atypical Hsp70s (SSE, SSZ, and LHS) that play regulatory roles, modulating the activity of canonical Hsp70 partners. Each of the 53 surveyed genomes harbored at least one member of each subfamily, and thus establishing these seven Hsp70s as units of function and evolution. Genomes of some species contained only one member of each subfamily that is only seven Hsp70s. Overall, members of each subfamily formed a monophyletic group, suggesting that each diversified from their corresponding ancestral gene present in the common ancestor of all surveyed species. However, the pattern of evolution varied across subfamilies. At one extreme, members of the SSB subfamily evolved under concerted evolution. At the other extreme, SSA and SSC subfamilies exhibited a high degree of copy number dynamics, consistent with a birth–death mode of evolution. KAR, SSE, SSZ, and LHS subfamilies evolved in a simple divergent mode with little copy number dynamics. Together, our data revealed that the evolutionary history of this highly conserved and ubiquitous protein family was surprising complex and dynamic.
Collapse
Affiliation(s)
- Jacek Kominek
- Laboratory of Evolutionary Biochemistry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Kladki, Poland
| | | | | | | | | |
Collapse
|
7
|
Samaddar M, Goswami AV, Purushotham J, Hegde P, D'Silva P. Role of the loop L4,5 in allosteric regulation in mtHsp70s: in vivo significance of domain communication and its implications in protein translocation. Mol Biol Cell 2014; 25:2129-42. [PMID: 24829379 PMCID: PMC4091826 DOI: 10.1091/mbc.e14-03-0821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SBD loop L4,5 in mtHsp70s functions synergistically with the linker region to maintain the interdomain interface governing protein translocation and mitochondrial biogenesis. Intragenic suppressors of a communication-impaired L4,5 mutant reveal molecular insights into the allosteric regulation of mtHsp70s at the in vivo level. Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L4,5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L4,5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L4,5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein–bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Madhuja Samaddar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jaya Purushotham
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpa Hegde
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Unraveling the intricate organization of mammalian mitochondrial presequence translocases: existence of multiple translocases for maintenance of mitochondrial function. Mol Cell Biol 2014; 34:1757-75. [PMID: 24636990 DOI: 10.1128/mcb.01527-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.
Collapse
|
9
|
Molecular insights revealing interaction of Tim23 and channel subunits of presequence translocase. Mol Cell Biol 2013; 33:4641-59. [PMID: 24061477 DOI: 10.1128/mcb.00876-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tim23 is an essential channel-forming subunit of the presequence translocase recruiting multiple components for assembly of the core complex, thereby regulating the protein translocation process. However, understanding of the precise interaction of subunits associating with Tim23 remains largely elusive. Our findings highlight that transmembrane helix 1 (TM1) is required for homodimerization of Tim23, while, together with TM2, it is involved in preprotein binding within the channel. Based on our evidence, we predict that the TM1 and TM2 from each dimer are involved in the formation of the central translocation pore, aided by Tim17. Furthermore, TM2 is also involved in the recruitment of Tim21 and the presequence-associated motor (PAM) subcomplex to the Tim23 channel, while the matrix-exposed loop L1 generates specificity in their association with the core complex. Strikingly, our findings indicate that the C-terminal sequence of Tim23 is dispensable for growth and functions as an inhibitor for binding of Tim21. Our model conceptually explains the cooperative function between Tam41 and Pam17 subunits, while the antagonistic activity of Tim21 predominantly determines the bound and free forms of the PAM subcomplex during import.
Collapse
|
10
|
Martínez-Salgado JL, León-Ramírez CG, Pacheco AB, Ruiz-Herrera J, de la Rosa APB. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes. J Proteomics 2013; 79:251-62. [PMID: 23305952 DOI: 10.1016/j.jprot.2012.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/23/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022]
Abstract
Ustilago maydis is a dimorphic corn pathogenic basidiomycota whose haploid cells grow in yeast form at pH7, while at pH3 they grow in the mycelial form. Two-dimensional gel electrophoresis (2-DE) coupled with LC-ESI/MS-MS was used to analyze the differential accumulation of proteins in yeast against mycelial morphologies. 2-DE maps were obtained in the pH range of 5-8 and 404 total protein spots were separated. From these, 43 were differentially accumulated when comparing strains FB2wt, constitutive yeast CL211, and constitutive mycelial GP25 growing at pH7 against pH3. Differentially accumulated proteins in response to pH are related with defense against reactive oxygen species or toxic compounds. Up-accumulation of CipC and down-accumulation of Hmp1 were specifically related with mycelial growth. Changes in proteins that were affected by mutation in the gene encoding the adaptor of a MAPK pathway (CL211 strain) were UM521* and transcription factors Btf3, Sol1 and Sti1. Mutation of GCN5 (GP25 strain) affected the accumulation of Rps19-ribosomal protein, Mge1-heath shock protein, and Lpd1-dihydrolipoamide dehydrogenase. Our results complement the information about the genes and proteins related with the dimorphic transition in U. maydis and changes in proteins affected by mutations in a MAPK pathway and GCN5 gene.
Collapse
Affiliation(s)
- José L Martínez-Salgado
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica. Camino a La Presa San José No. 2055, Lomas 4ª Sección, 78216, San Luis Potosí, SLP, Mexico
| | | | | | | | | |
Collapse
|
11
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
12
|
Goswami AV, Samaddar M, Sinha D, Purushotham J, D'Silva P. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease. Hum Mol Genet 2012; 21:3317-32. [PMID: 22544056 PMCID: PMC3392108 DOI: 10.1093/hmg/dds162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.
Collapse
Affiliation(s)
| | | | | | | | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Thakur A, Chitoor B, Goswami AV, Pareek G, Atreya HS, D'Silva P. Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4. J Biol Chem 2012; 287:13194-205. [PMID: 22367199 PMCID: PMC3339945 DOI: 10.1074/jbc.m112.339655] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved "physiological functions" are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient "iron storage protein," thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.
Collapse
Affiliation(s)
- Anushikha Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|
14
|
Vu MT, Zhai P, Lee J, Guerra C, Liu S, Gustin MC, Silberg JJ. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9. Protein Sci 2012; 21:258-67. [PMID: 22162012 DOI: 10.1002/pro.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/04/2011] [Accepted: 11/27/2011] [Indexed: 01/20/2023]
Abstract
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones.
Collapse
Affiliation(s)
- Michael T Vu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | | | | | | | | | | | | |
Collapse
|