1
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
2
|
Sepela RJ, Stewart RG, Valencia LA, Thapa P, Wang Z, Cohen BE, Sack JT. The AMIGO1 adhesion protein activates Kv2.1 voltage sensors. Biophys J 2022; 121:1395-1416. [PMID: 35314141 PMCID: PMC9072587 DOI: 10.1016/j.bpj.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/11/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Kv2 voltage-gated potassium channels are modulated by amphoterin-induced gene and open reading frame (AMIGO) neuronal adhesion proteins. Here, we identify steps in the conductance activation pathway of Kv2.1 channels that are modulated by AMIGO1 using voltage-clamp recordings and spectroscopy of heterologously expressed Kv2.1 and AMIGO1 in mammalian cell lines. AMIGO1 speeds early voltage-sensor movements and shifts the gating charge-voltage relationship to more negative voltages. The gating charge-voltage relationship indicates that AMIGO1 exerts a larger energetic effect on voltage-sensor movement than is apparent from the midpoint of the conductance-voltage relationship. When voltage sensors are detained at rest by voltage-sensor toxins, AMIGO1 has a greater impact on the conductance-voltage relationship. Fluorescence measurements from voltage-sensor toxins bound to Kv2.1 indicate that with AMIGO1, the voltage sensors enter their earliest resting conformation, yet this conformation is less stable upon voltage stimulation. We conclude that AMIGO1 modulates the Kv2.1 conductance activation pathway by destabilizing the earliest resting state of the voltage sensors.
Collapse
Affiliation(s)
- Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Robert G Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Luis A Valencia
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Zeming Wang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California; Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California; Department of Anesthesiology and Pain Medicine, University of California, Davis, California.
| |
Collapse
|
3
|
Thapa P, Stewart R, Sepela RJ, Vivas O, Parajuli LK, Lillya M, Fletcher-Taylor S, Cohen BE, Zito K, Sack JT. EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues. J Gen Physiol 2021; 153:212666. [PMID: 34581724 PMCID: PMC8480965 DOI: 10.1085/jgp.202012858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane–endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.
Collapse
Affiliation(s)
- Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Robert Stewart
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Rebecka J Sepela
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Oscar Vivas
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Laxmi K Parajuli
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Mark Lillya
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Sebastian Fletcher-Taylor
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
4
|
Cowgill J, Chanda B. Mapping Electromechanical Coupling Pathways in Voltage-Gated Ion Channels: Challenges and the Way Forward. J Mol Biol 2021; 433:167104. [PMID: 34139217 PMCID: PMC8579740 DOI: 10.1016/j.jmb.2021.167104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
Inter- and intra-molecular allosteric interactions underpin regulation of activity in a variety of biological macromolecules. In the voltage-gated ion channel superfamily, the conformational state of the voltage-sensing domain regulates the activity of the pore domain via such long-range allosteric interactions. Although the overall structure of these channels is conserved, allosteric interactions between voltage-sensor and pore varies quite dramatically between the members of this superfamily. Despite the progress in identifying key residues and structural interfaces involved in mediating electromechanical coupling, our understanding of the biophysical mechanisms remains limited. Emerging new structures of voltage-gated ion channels in various conformational states will provide a better three-dimensional view of the process but to conclusively establish a mechanism, we will also need to quantitate the energetic contribution of various structural elements to this process. Using rigorous unbiased metrics, we want to compare the efficiency of electromechanical coupling between various sub-families in order to gain a comprehensive understanding. Furthermore, quantitative understanding of the process will enable us to correctly parameterize computational approaches which will ultimately enable us to predict allosteric activation mechanisms from structures. In this review, we will outline the challenges and limitations of various experimental approaches to measure electromechanical coupling and highlight the best practices in the field.
Collapse
Affiliation(s)
- John Cowgill
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States; Center for Investigations of Membrane Excitability Disorders (CIMED), Washington University, St. Louis, MO 63110, United States
| | - Baron Chanda
- Department of Anesthesiology, Washington University, St. Louis, MO 63110, United States; Center for Investigations of Membrane Excitability Disorders (CIMED), Washington University, St. Louis, MO 63110, United States.
| |
Collapse
|
5
|
Kv2.1 channels play opposing roles in regulating membrane potential, Ca 2+ channel function, and myogenic tone in arterial smooth muscle. Proc Natl Acad Sci U S A 2020; 117:3858-3866. [PMID: 32015129 PMCID: PMC7035623 DOI: 10.1073/pnas.1917879117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The accepted role of the protein Kv2.1 in arterial smooth muscle cells is to form K+ channels in the sarcolemma. Opening of Kv2.1 channels causes membrane hyperpolarization, which decreases the activity of L-type CaV1.2 channels, lowering intracellular Ca2+ ([Ca2+]i) and causing smooth muscle relaxation. A limitation of this model is that it is based exclusively on data from male arterial myocytes. Here, we used a combination of electrophysiology as well as imaging approaches to investigate the role of Kv2.1 channels in male and female arterial myocytes. We confirmed that Kv2.1 plays a canonical conductive role but found it also has a structural role in arterial myocytes to enhance clustering of CaV1.2 channels. Less than 1% of Kv2.1 channels are conductive and induce membrane hyperpolarization. Paradoxically, by enhancing the structural clustering and probability of CaV1.2-CaV1.2 interactions within these clusters, Kv2.1 increases Ca2+ influx. These functional impacts of Kv2.1 depend on its level of expression, which varies with sex. In female myocytes, where expression of Kv2.1 protein is higher than in male myocytes, Kv2.1 has conductive and structural roles. Female myocytes have larger CaV1.2 clusters, larger [Ca2+]i, and larger myogenic tone than male myocytes. In contrast, in male myocytes, Kv2.1 channels regulate membrane potential but not CaV1.2 channel clustering. We propose a model in which Kv2.1 function varies with sex: in males, Kv2.1 channels control membrane potential but, in female myocytes, Kv2.1 plays dual electrical and CaV1.2 clustering roles. This contributes to sex-specific regulation of excitability, [Ca2+]i, and myogenic tone in arterial myocytes.
Collapse
|
6
|
Tilley DC, Angueyra JM, Eum KS, Kim H, Chao LH, Peng AW, Sack JT. The tarantula toxin GxTx detains K + channel gating charges in their resting conformation. J Gen Physiol 2018; 151:292-315. [PMID: 30397012 PMCID: PMC6400525 DOI: 10.1085/jgp.201812213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Allosteric ligands modulate protein activity by altering the energy landscape of conformational space in ligand-protein complexes. Here we investigate how ligand binding to a K+ channel's voltage sensor allosterically modulates opening of its K+-conductive pore. The tarantula venom peptide guangxitoxin-1E (GxTx) binds to the voltage sensors of the rat voltage-gated K+ (Kv) channel Kv2.1 and acts as a partial inverse agonist. When bound to GxTx, Kv2.1 activates more slowly, deactivates more rapidly, and requires more positive voltage to reach the same K+-conductance as the unbound channel. Further, activation kinetics are more sigmoidal, indicating that multiple conformational changes coupled to opening are modulated. Single-channel current amplitudes reveal that each channel opens to full conductance when GxTx is bound. Inhibition of Kv2.1 channels by GxTx results from decreased open probability due to increased occurrence of long-lived closed states; the time constant of the final pore opening step itself is not impacted by GxTx. When intracellular potential is less than 0 mV, GxTx traps the gating charges on Kv2.1's voltage sensors in their most intracellular position. Gating charges translocate at positive voltages, however, indicating that GxTx stabilizes the most intracellular conformation of the voltage sensors (their resting conformation). Kinetic modeling suggests a modulatory mechanism: GxTx reduces the probability of voltage sensors activating, giving the pore opening step less frequent opportunities to occur. This mechanism results in K+-conductance activation kinetics that are voltage-dependent, even if pore opening (the rate-limiting step) has no inherent voltage dependence. We conclude that GxTx stabilizes voltage sensors in a resting conformation, and inhibits K+ currents by limiting opportunities for the channel pore to open, but has little, if any, direct effect on the microscopic kinetics of pore opening. The impact of GxTx on channel gating suggests that Kv2.1's pore opening step does not involve movement of its voltage sensors.
Collapse
Affiliation(s)
- Drew C Tilley
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA
| | - Juan M Angueyra
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Kenneth S Eum
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA.,Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Heesoo Kim
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Luke H Chao
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Anthony W Peng
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA
| | - Jon T Sack
- Department of Physiology & Membrane Biology, University of California, Davis, Davis, CA .,Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
7
|
Gas Signaling Molecules and Mitochondrial Potassium Channels. Int J Mol Sci 2018; 19:ijms19103227. [PMID: 30340432 PMCID: PMC6214077 DOI: 10.3390/ijms19103227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have been of increasing interest due to their beneficial effects at low concentrations. These so-called gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection, oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically their respiratory complexes, constitute an important target for these gases. On the other hand, increasing evidence of a cytoprotective role for mitochondrial potassium channels provides motivation for the analysis of the role of gasotransmitters in the regulation of channel function. A number of potassium channels have been shown to exhibit activity within the inner mitochondrial membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3). The effects of these channels include the regulation of mitochondrial respiration and membrane potential. Additionally, they may modulate the synthesis of reactive oxygen species within mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection, while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying the action of H2S, NO, and CO on potassium channels present within mitochondria.
Collapse
|
8
|
Gessner G, Sahoo N, Swain SM, Hirth G, Schönherr R, Mede R, Westerhausen M, Brewitz HH, Heimer P, Imhof D, Hoshi T, Heinemann SH. CO-independent modification of K + channels by tricarbonyldichlororuthenium(II) dimer (CORM-2). Eur J Pharmacol 2017; 815:33-41. [PMID: 28987271 DOI: 10.1016/j.ejphar.2017.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
Although toxic when inhaled in high concentrations, the gas carbon monoxide (CO) is endogenously produced in mammals, and various beneficial effects are reported. For potential medicinal applications and studying the molecular processes underlying the pharmacological action of CO, so-called CO-releasing molecules (CORMs), such as tricabonyldichlororuthenium(II) dimer (CORM-2), have been developed and widely used. Yet, it is not readily discriminated whether an observed effect of a CORM is caused by the released CO gas, the CORM itself, or any of its intermediate or final breakdown products. Focusing on Ca2+- and voltage-dependent K+ channels (KCa1.1) and voltage-gated K+ channels (Kv1.5, Kv11.1) relevant for cardiac safety pharmacology, we demonstrate that, in most cases, the functional impacts of CORM-2 on these channels are not mediated by CO. Instead, when dissolved in aqueous solutions, CORM-2 has the propensity of forming Ru(CO)2 adducts, preferentially to histidine residues, as demonstrated with synthetic peptides using mass-spectrometry analysis. For KCa1.1 channels we show that H365 and H394 in the cytosolic gating ring structure are affected by CORM-2. For Kv11.1 channels (hERG1) the extracellularly accessible histidines H578 and H587 are CORM-2 targets. The strong CO-independent action of CORM-2 on Kv11.1 and Kv1.5 channels can be completely abolished when CORM-2 is applied in the presence of an excess of free histidine or human serum albumin; cysteine and methionine are further potential targets. Off-site effects similar to those reported here for CORM-2 are found for CORM-3, another ruthenium-based CORM, but are diminished when using iron-based CORM-S1 and absent for manganese-based CORM-EDE1.
Collapse
Affiliation(s)
- Guido Gessner
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Nirakar Sahoo
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Sandip M Swain
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Gianna Hirth
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | - Ralf Mede
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Henning Brewitz
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| |
Collapse
|
9
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
10
|
Nielsen VG, Bazzell CM. Carbon monoxide releasing molecule-2 inhibition of snake venom thrombin-like activity: novel biochemical "brake"? J Thromb Thrombolysis 2017; 43:203-208. [PMID: 27787696 DOI: 10.1007/s11239-016-1442-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A complication of defibrinogenation therapy with snake venom enzymes such as ancrod is hypofibrinogenemia associated bleeding secondary to no human-derived inhibitor being available to inactivate or diminish the activity of such enzymes. Of interest, ancrod contains a critical histidine residue without which enzymatic activity is inhibited, and carbon monoxide has been demonstrated to inhibit biomolecular function by interacting with histidine moieties in ion channels. We tested the hypothesis that exposure of three different snake venoms containing serine proteases with thrombin-like activity (which included ancrod) to carbon monoxide derived from carbon monoxide releasing molecule-2 would diminish their effects on plasmatic coagulation as assessed by thrombelastography. In the case of the Malayan pit viper and Eastern diamondback rattlesnake venoms, carbon monoxide diminished the effects of thrombin-like activity. In contrast, timber rattlesnake venom demonstrated enhancement of "thrombin-generating" activity with simultaneous loss of thrombin-like activity in response to carbon monoxide exposure. These findings may serve as the rational basis for not just continuing to investigate the potential of snake venom enzymes as clinical defibrinogenating agents, but to also to assess the potential to stop such agents from becoming a catalytic "runaway train" by judicious application of a biochemical "brake" such as carbon monoxide.
Collapse
Affiliation(s)
- Vance G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA.
| | - Charles M Bazzell
- Department of Anesthesiology, The University of Arizona College of Medicine, 1501 North Campbell Avenue, P.O. Box 245114, Tucson, AZ, 85724-5114, USA
| |
Collapse
|
11
|
Nielsen VG, Losada PA. Direct Inhibitory Effects of Carbon Monoxide on Six Venoms Containing Fibrinogenolytic Metalloproteinases. Basic Clin Pharmacol Toxicol 2016; 120:207-212. [PMID: 27546530 DOI: 10.1111/bcpt.12654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
Abstract
Since the introduction of antivenom administration over a century ago to treat venomous snake bite, it has been the most effective therapy for saving life and limb. However, this treatment is not always effective and not without potential life-threatening side effects. We tested a new paradigm to abrogate the plasmatic anticoagulant effects of fibrinogenolytic snake venom metalloproteinases (SVMP) by inhibiting these Zn+2 -dependent enzymes directly with carbon monoxide (CO) exposure. Assessment of the fibrinogenolytic effects of venoms collected from the Arizona black rattlesnake, Northern Pacific rattlesnake, Western cottonmouth, Eastern cottonmouth, Broad-banded copperhead and Southern copperhead on human plasmatic coagulation kinetics was performed with thrombelastography in vitro. Isolated exposure of all but one venom (Southern copperhead) to CO significantly decreased the ability of the venoms to compromise coagulation. These results demonstrated that direct inhibition of transition metal-containing venom enzymes by yet to be elucidated mechanisms (e.g. CO, binding to Zn+2 or displacing Zn+2 from the catalytic site, CO binding to histidine residues) can in many instances significantly decrease fibrinogenolytic activity. This new paradigm of CO-based inhibition of the anticoagulant effects of SVMP could potentially diminish haemostatic compromise in envenomed patients until antivenom can be administered.
Collapse
Affiliation(s)
- Vance G Nielsen
- The Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Philip A Losada
- The Department of Anesthesiology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
12
|
Nielsen VG, Bazzell CM. Carbon monoxide attenuates the effects of snake venoms containing metalloproteinases with fibrinogenase or thrombin-like activity on plasmatic coagulation. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00336b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon monoxide released from CORM-2 inhibitsCrotalus atroxsnake venom metalloproteinase mediated decreases in human plasma velocity of coagulation.
Collapse
Affiliation(s)
- Vance G. Nielsen
- Department of Anesthesiology
- The University of Arizona College of Medicine
- Tucson
- USA
| | - Charles M. Bazzell
- Department of Anesthesiology
- The University of Arizona College of Medicine
- Tucson
- USA
| |
Collapse
|
13
|
Alkanols inhibit voltage-gated K(+) channels via a distinct gating modifying mechanism that prevents gate opening. Sci Rep 2015; 5:17402. [PMID: 26616025 PMCID: PMC4663795 DOI: 10.1038/srep17402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022] Open
Abstract
Alkanols are small aliphatic compounds that inhibit voltage-gated K+ (Kv) channels through a yet unresolved gating mechanism. Kv channels detect changes in the membrane potential with their voltage-sensing domains (VSDs) that reorient and generate a transient gating current. Both 1-Butanol (1-BuOH) and 1-Hexanol (1-HeOH) inhibited the ionic currents of the Shaker Kv channel in a concentration dependent manner with an IC50 value of approximately 50 mM and 3 mM, respectively. Using the non-conducting Shaker-W434F mutant, we found that both alkanols immobilized approximately 10% of the gating charge and accelerated the deactivating gating currents simultaneously with ionic current inhibition. Thus, alkanols prevent the final VSD movement(s) that is associated with channel gate opening. Applying 1-BuOH and 1-HeOH to the Shaker-P475A mutant, in which the final gating transition is isolated from earlier VSD movements, strengthened that neither alkanol affected the early VSD movements. Drug competition experiments showed that alkanols do not share the binding site of 4-aminopyridine, a drug that exerts a similar effect at the gating current level. Thus, alkanols inhibit Shaker-type Kv channels via a unique gating modifying mechanism that stabilizes the channel in its non-conducting activated state.
Collapse
|
14
|
Carbon monoxide modulates electrical activity of murine myocardium via cGMP-dependent mechanisms. J Physiol Biochem 2015; 71:107-19. [PMID: 25670496 DOI: 10.1007/s13105-015-0387-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/25/2015] [Indexed: 10/24/2022]
Abstract
Carbon monoxide (CO) is critical in cell signaling, and inhalation of gaseous CO can impact cardiovascular physiology. We have investigated electrophysiological effects of CO and their potential cGMP-dependent mechanism in isolated preparations of murine myocardium. The standard microelectrode technique was used to record myocardial action potentials (APs). Exogenous CO (0.96 × 10(-4)-4.8 × 10(-4) M) decreased AP duration in atrial and ventricular tissue and accelerated pacemaking activity in sinoatrial node. Inhibitors of heme oxygenases (zinc and tin protoporphyrin IX), which are responsible for endogenous CO production, induced the opposite effects. Inhibitor of soluble guanylate cyclase (sGC), ODQ (10(-5) M) halved CO-induced AP shortening, while sGC activator azosidnone (10(-5) M-3 × 10(-4) M) and cGMP analog BrcGMP (3 × 10(-4) M) induced the same effects as CO. To see if CO effects are attributed to differential regulation of phosphodiesterase 2 (PDE2) and 3 (PDE3), we used inhibitors of these enzymes. Milrinone (2 × 10(-6) M), selective inhibitor of cGMP-downregulated PDE3, blocked CO-induced rhythm acceleration. EHNA(2 × 10(-6) M), which inhibits cGMP-upregulated PDE2, attenuated CO-induced AP shortening, but failed to induce any positive chronotropic effect. Our findings indicate that PDE2 activity prevails in working myocardium, while PDE3 is more active in sinoatrial node. The results suggest that cardiac effects of CO are at least partly attributed to activation of sGC and subsequent elevation of cGMP intracellular content. In sinoatrial node, this leads to PDE3 inhibition, increased cAMP content, and positive chronotropy, while it also causes PDE2 stimulation in working myocardium, thereby enhancing cAMP degradation and producing AP shortening. Thus, CO induces significant alterations of cardiac electrical activity via cGMP-dependent mechanism and should be considered as a novel regulator of cardiac electrophysiology.
Collapse
|
15
|
Pillozzi S, Gasparoli L, Stefanini M, Ristori M, D'Amico M, Alessio E, Scaletti F, Becchetti A, Arcangeli A, Messori L. NAMI-A is highly cytotoxic toward leukaemia cell lines: evidence of inhibition of KCa 3.1 channels. Dalton Trans 2014; 43:12150-5. [DOI: 10.1039/c4dt01356e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anticancer ruthenium(iii) complex NAMI-A induces potent and unexpected cytotoxic effects in leukaemia cells causing selective inhibition of KCa 3.1 channels.
Collapse
Affiliation(s)
- Serena Pillozzi
- Department of Experimental and Clinical Medicine
- University of Florence
- 50134 Firenze, Italy
| | - Luca Gasparoli
- Department of Experimental and Clinical Medicine
- University of Florence
- 50134 Firenze, Italy
| | - Matteo Stefanini
- Department of Experimental and Clinical Medicine
- University of Florence
- 50134 Firenze, Italy
| | - Mirco Ristori
- Department of Experimental and Clinical Medicine
- University of Florence
- 50134 Firenze, Italy
| | - Massimo D'Amico
- Department of Experimental and Clinical Medicine
- University of Florence
- 50134 Firenze, Italy
| | - Enzo Alessio
- Department of Chemical Sciences
- University of Trieste
- 34127 Trieste, Italy
| | - Federica Scaletti
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences
- University of Milano-Bicocca
- Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine
- University of Florence
- 50134 Firenze, Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”
- University of Florence
- 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
16
|
Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest 2013; 124:437-47. [PMID: 24334457 DOI: 10.1172/jci71362] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
The protective role of hemeoxygenase-1 (HO-1) in various inflammatory conditions is mediated in part by its products, carbon monoxide (CO) and biliverdin. Here we investigated a therapeutic role for CO and CO-primed cells in acute pancreatitis (AP). In a mouse model of AP, treatment with CO-releasing molecule-2 (CORM-2) decreased mortality, pancreatic damage, and lung injury. CORM-2 decreased systemic inflammatory cytokines, suppressed systemic and pancreatic macrophage TNF-α secretion, and inhibited macrophage TLR4 receptor complex expression. In both human and mouse cells, CORM-2 inhibited endogenous and exogenous ligand-dependent TLR4 activation, which indicates that CORM-2 could be therapeutic for both early and late stages of AP, which involve sterile- and endotoxin-mediated inflammation, respectively. Mice engrafted with TLR4-deficient hematopoietic cells were protected against caerulein-induced AP. In the absence of leukocyte TLR4 expression, CORM-2 did not confer additional protection, which indicates that CORM-2-dependent effects are mediated via suppression of macrophage TLR4 activation. We determined that CO was directly responsible for the protective effects of CORM-2 in AP, as inactive forms of CORM-2 were ineffective. Importantly, adoptive transfer of CORM-2-primed cells reduced AP. Such a therapeutic approach would translate the beneficial effects of CO-based therapies, avoiding CO- or CO-RM-mediated toxicities in AP and a wide range of diseases.
Collapse
|
17
|
De-la-Rosa V, Rangel-Yescas GE, Ladrón-de-Guevara E, Rosenbaum T, Islas LD. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer. J Biol Chem 2013; 288:29506-17. [PMID: 23965996 DOI: 10.1074/jbc.m113.479618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.
Collapse
|
18
|
Wilson JL, Jesse HE, Hughes B, Lund V, Naylor K, Davidge KS, Cook GM, Mann BE, Poole RK. Ru(CO)3Cl(Glycinate) (CORM-3): a carbon monoxide-releasing molecule with broad-spectrum antimicrobial and photosensitive activities against respiration and cation transport in Escherichia coli. Antioxid Redox Signal 2013; 19. [PMID: 23186316 PMCID: PMC3704104 DOI: 10.1089/ars.2012.4784] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS Carbon monoxide (CO) delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas. The metal carbonyl Ru(CO)3Cl(glycinate) (CORM-3) is a novel, potent antimicrobial agent. Here, we established its mode of action. RESULTS CORM-3 inhibits respiration in several bacterial and yeast pathogens. In anoxic Escherichia coli suspensions, CORM-3 first stimulates, then inhibits respiration, but much higher concentrations of CORM-3 than of a classic protonophore are required for stimulation. Proton translocation measurements (H(+)/O quotients, i.e., H(+) extrusion on pulsing anaerobic cells with O2) show that respiratory stimulation cannot be attributed to true "uncoupling," that is, dissipation of the protonmotive force, or to direct stimulation of oxidase activity. Our data are consistent with CORM-3 facilitating the electrogenic transmembrane movement of K(+) (or Na(+)), causing a stimulation of respiration and H(+) pumping to compensate for the transient drop in membrane potential (ΔΨ). The effects on respiration are not mimicked by CO gas or control Ru compounds that do not release CO. Inhibition of respiration and loss of bacterial viability elicited by CORM-3 are reversible by white light, unambiguously identifying heme-containing oxidase(s) as target(s). INNOVATION This is the most complete study to date of the antimicrobial action of a CO-RM. Noteworthy are the demonstration of respiratory stimulation, electrogenic ion transport, and photosensitive activity, establishing terminal oxidases and ion transport as primary targets. CONCLUSION CORM-3 has multifaceted effects: increased membrane permeability, inhibition of terminal oxidases, and perhaps other unidentified mechanisms underlie its effectiveness in tackling microbial pathogenesis.
Collapse
Affiliation(s)
- Jayne Louise Wilson
- Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Blunck R, Batulan Z. Mechanism of electromechanical coupling in voltage-gated potassium channels. Front Pharmacol 2012; 3:166. [PMID: 22988442 PMCID: PMC3439648 DOI: 10.3389/fphar.2012.00166] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/24/2012] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion - sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
Collapse
Affiliation(s)
- Rikard Blunck
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
- Department of Physics, Université de MontréalMontreal, QC, Canada
| | - Zarah Batulan
- Groupe d’étude des protéines membranairesMontreal, QC, Canada
- Department of Physiology, Université de MontréalMontreal, QC, Canada
| |
Collapse
|
20
|
Lang E, Qadri SM, Jilani K, Zelenak C, Lupescu A, Schleicher E, Lang F. Carbon monoxide-sensitive apoptotic death of erythrocytes. Basic Clin Pharmacol Toxicol 2012; 111:348-55. [PMID: 22726235 DOI: 10.1111/j.1742-7843.2012.00915.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/19/2012] [Indexed: 11/29/2022]
Abstract
Carbon monoxide (CO) intoxication severely interferes with the oxygen-transporting function of haemoglobin. Beyond that, CO participates in the regulation of apoptosis. CO could be generated from CO-releasing molecules (CORM), such as the tricarbonyl-dichlororuthenium (II) dimer (CORM-2), which is presently considered for the treatment of vascular dysfunction, inflammation, tissue ischaemia and organ rejection. CORM-2 is at least partially effective by modifying gene expression and mitochondrial potential. Erythrocytes lack nuclei and mitochondria but may undergo suicidal cell death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis is triggered by the increase in cytosolic Ca²⁺ activity ([Ca²⁺](i)). The present study explored whether CORM-2 influences eryptosis. To this end, [Ca²⁺](i) was estimated from Fluo-3-fluorescence, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding and haemolysis from haemoglobin release. CO-binding haemoglobin (COHb) was estimated utilizing a blood gas analyser. As a result, exposure of erythrocytes for 24 hr to CORM-2 (≥5 μM) significantly increased COHb, [Ca²⁺](i) , forward scatter, annexin-V-binding and haemolysis. Annexin-V-binding was significantly blunted by 100% oxygen and was virtually abolished in the nominal absence of Ca²⁺. In conclusion, CORM-2 stimulates cell membrane scrambling of erythrocytes, an effect largely due to Ca²⁺ entry and partially reversed by O₂.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Decaluwé K, Pauwels B, Boydens C, Van de Voorde J. Divergent molecular mechanisms underlay CO- and CORM-2-induced relaxation of corpora cavernosa. J Sex Med 2012; 9:2284-92. [PMID: 22759233 DOI: 10.1111/j.1743-6109.2012.02831.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Similar to nitric oxide (NO), the principal mediator of penile erection, carbon monoxide (CO) possesses vasodilator capacities. However, whether CO could be a therapeutic target for treating erectile dysfunction (ED) is unexplored. The danger associated with systemic administration of CO has led to the development of CO-releasing molecules (CORMs), releasing CO in a local, safe and controlled way. These CORMs have shown positive outcomes in cardiovascular studies. More knowledge on the (patho)physiological functions of CO in erectile function and the potential therapeutic role of CORMs is required. AIM The present study aims the assessment of the effect of CO and CO donor CORM-2 on the corporal tension and the underlying molecular mechanisms. METHODS Organ bath studies were performed measuring isometric tension on isolated mice corpora cavernosa (CC) strips. Responses to CO (10-300 µmol/L) and CORM-2 (10-100 µmol/L) were measured in the presence/absence of activators/inhibitors of different molecular pathways. MAIN OUTCOME MEASURES CO and CORM-2 relax corporal strips concentration dependently, although the molecular mechanisms behind the corporal relaxation seem to differ completely. RESULTS CO induces corporal relaxation by activating soluble guanylyl cyclase (sGC), increasing cyclic guanosine monophosphate (cGMP) concentrations. The molecular mechanism involved in CORM-2-induced corporal relaxation is not related to sGC activation and remains obscure. CONCLUSIONS Both CO and CORM-2 induce corporal relaxation, although the underlying molecular mechanisms show no resemblance. That CO induces corporal relaxation through a mechanism similar to that of NO could be of importance as it indirectly offers the possibility that endogenous CO might serve as a backup system for insufficient NO availability in cases of ED. Whether CORM-2 possesses the same capacity remains questionable and requires further research.
Collapse
Affiliation(s)
- Kelly Decaluwé
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
22
|
Abstract
Carbon monoxide is rapidly emerging as an important cellular messenger, regulating a wide range of physiological processes. Crucial to its role in both physiology and disease is its ability differentially to regulate several classes of ion channels, including examples from calcium-activated K(+) (BK(Ca)), voltage-activated K(+) (K(v)) and Ca(2+) channel (L-type) families, ligand-gated P2X receptors (P2X2 and P2X4), tandem P domain K(+) channels (TREK1) and the epithelial Na(+) channel (ENaC). The mechanisms by which CO regulates these ion channels are still unclear and remain somewhat controversial. However, available structure-function studies suggest that a limited range of amino acid residues confer CO sensitivity, either directly or indirectly, to particular ion channels and that cellular redox state appears to be important to the final integrated response. Whatever the molecular mechanism by which CO regulates ion channels, endogenous production of this gasotransmitter has physiologically important roles and is currently being explored as a potential therapeutic.
Collapse
Affiliation(s)
- William J Wilkinson
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | |
Collapse
|