1
|
Valenzuela-Gómez F, Arechaga I, Cabezón E. Nanopore sensing reveals a preferential pathway for the co-translocational unfolding of a conjugative relaxase-DNA complex. Nucleic Acids Res 2023; 51:6857-6869. [PMID: 37264907 PMCID: PMC10359608 DOI: 10.1093/nar/gkad492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Bacterial conjugation is the main mechanism for the dissemination of antibiotic resistance genes. A single DNA strand of the conjugative plasmid is transferred across bacterial membranes covalently bound to a large multi-domain protein, named relaxase, which must be unfolded to traverse the secretion channel. Two tyrosine residues of the relaxase (Y18 and Y26 in relaxase TrwC) play an important role in the processing of conjugative DNA. We have used nanopore technology to uncover the unfolding states that take place during translocation of the relaxase-DNA complex. We observed that the relaxase unfolding pathway depends on the tyrosine residue involved in conjugative DNA binding. Transfer of the nucleoprotein complex is faster when DNA is bound to residue Y18. This is the first time in which a protein-DNA complex that is naturally translocated through bacterial membranes has been analyzed by nanopore sensing, opening new horizons to apply this technology to study protein secretion.
Collapse
Affiliation(s)
- Fernando Valenzuela-Gómez
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| | - Elena Cabezón
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria- CSIC, 39011 Santander, Spain
| |
Collapse
|
2
|
Murthy AC, Aleksanyan N, Morton GM, Toyoda HC, Kalashyan M, Chen S, Ragucci AE, Broulidakis MP, Swerdlow KJ, Bui MNN, Muccioli M, Berkmen MB. Characterization of ConE, the VirB4 Homolog of the Integrative and Conjugative Element ICE Bs1 of Bacillus subtilis. J Bacteriol 2023; 205:e0003323. [PMID: 37219457 PMCID: PMC10294652 DOI: 10.1128/jb.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Conjugation is a major form of horizontal gene transfer, contributing to bacterial evolution and the acquisition of new traits. During conjugation, a donor cell transfers DNA to a recipient through a specialized DNA translocation channel classified as a type IV secretion system (T4SS). Here, we focused on the T4SS of ICEBs1, an integrative and conjugative element in Bacillus subtilis. ConE, encoded by ICEBs1, is a member of the VirB4 family of ATPases, the most conserved component of T4SSs. ConE is required for conjugation and localizes to the cell membrane, predominantly at the cell poles. In addition to Walker A and B boxes, VirB4 homologs have conserved ATPase motifs C, D, and E. Here, we created alanine substitutions in five conserved residues within or near ATPase motifs in ConE. Mutations in all five residues drastically decreased conjugation frequency but did not affect ConE protein levels or localization, indicating that an intact ATPase domain is critical for DNA transfer. Purified ConE is largely monomeric with some oligomers and lacks enzymatic activity, suggesting that ATP hydrolysis may be regulated or require special solution conditions. Finally, we investigated which ICEBs1 T4SS components interact with ConE using a bacterial two-hybrid assay. ConE interacts with itself, ConB, and ConQ, but these interactions are not required to stabilize ConE protein levels and largely do not depend on conserved residues within the ATPase motifs of ConE. The structure-function characterization of ConE provides more insight into this conserved component shared by all T4SSs. IMPORTANCE Conjugation is a major form of horizontal gene transfer and involves the transfer of DNA from one bacterium to another through the conjugation machinery. Conjugation contributes to bacterial evolution by disseminating genes involved in antibiotic resistance, metabolism, and virulence. Here, we characterized ConE, a protein component of the conjugation machinery of the conjugative element ICEBs1 of the bacterium Bacillus subtilis. We found that mutations in the conserved ATPase motifs of ConE disrupt mating but do not alter ConE localization, self-interaction, or levels. We also explored which conjugation proteins ConE interacts with and whether these interactions contribute to stabilizing ConE. Our work contributes to the understanding of the conjugative machinery of Gram-positive bacteria.
Collapse
Affiliation(s)
- Anastasia C. Murthy
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Naira Aleksanyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Georgeanna M. Morton
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Hunter C. Toyoda
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Meri Kalashyan
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Sirui Chen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Adelyn E. Ragucci
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
- Cancer Immunology and Virology Department, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew P. Broulidakis
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Kyle J. Swerdlow
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Minh N. N. Bui
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Maria Muccioli
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| | - Melanie B. Berkmen
- Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Carranza G, Menguiano T, Valenzuela-Gómez F, García-Cazorla Y, Cabezón E, Arechaga I. Monitoring Bacterial Conjugation by Optical Microscopy. Front Microbiol 2021; 12:750200. [PMID: 34671336 PMCID: PMC8521088 DOI: 10.3389/fmicb.2021.750200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main mechanism for horizontal gene transfer, conferring plasticity to the genome repertoire. This process is also the major instrument for the dissemination of antibiotic resistance genes. Hence, gathering primary information of the mechanism underlying this genetic transaction is of a capital interest. By using fluorescent protein fusions to the ATPases that power conjugation, we have been able to track the localization of these proteins in the presence and absence of recipient cells. Moreover, we have found that more than one copy of the conjugative plasmid is transferred during mating. Altogether, these findings provide new insights into the mechanism of such an important gene transfer device.
Collapse
Affiliation(s)
- Gerardo Carranza
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Tamara Menguiano
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Fernando Valenzuela-Gómez
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Yolanda García-Cazorla
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| |
Collapse
|
4
|
Spectrophotometric Assays to Quantify the Activity of T4SS ATPases. Methods Mol Biol 2019. [PMID: 31584160 DOI: 10.1007/978-1-4939-9877-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Biogenesis of T4SS apparatus and substrate transport require energy. Conjugative T4SS have three ATPases that enable DNA processing and transport of the nucleoprotein complex to the recipient cell. In the conjugative plasmid R388, these ATPases are named TrwB, TrwK, and TrwD. Here, three different spectrophotometric assays to measure the enzymatic properties of these ATPases are described. The choice of the assay will depend on the specific requirements of each enzyme.
Collapse
|
5
|
Cabezón E, de la Cruz F, Arechaga I. Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Front Microbiol 2017; 8:2329. [PMID: 29255449 PMCID: PMC5723004 DOI: 10.3389/fmicb.2017.02329] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance has become one of the most challenging problems in health care. Bacteria conjugation is one of the main mechanisms whereby bacteria become resistant to antibiotics. Therefore, the search for specific conjugation inhibitors (COINs) is of interest in the fight against the spread of antibiotic resistances in a variety of laboratory and natural environments. Several compounds, discovered as COINs, are promising candidates in the fight against plasmid dissemination. In this review, we survey the effectiveness and toxicity of the most relevant compounds. Particular emphasis has been placed on unsaturated fatty acid derivatives, as they have been shown to be efficient in preventing plasmid invasiveness in bacterial populations. Biochemical and structural studies have provided insights concerning their potential molecular targets and inhibitory mechanisms. These findings open a new avenue in the search of new and more effective synthetic inhibitors. In this pursuit, the use of structure-based drug design methods will be of great importance for the screening of ligands and binding sites of putative targets.
Collapse
Affiliation(s)
- Elena Cabezón
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Arechaga
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria and Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
6
|
Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. Biochem J 2016; 473:2471-83. [DOI: 10.1042/bcj20160154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) transport a wide range of substrates across both membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC (ATP-binding cassette) transporter. The ABC transporter HlyB (haemolysin B) is part of a T1SS catalysing the export of the toxin HlyA in E. coli. HlyB consists of the canonical transmembrane and nucleotide-binding domains. Additionally, HlyB contains an N-terminal CLD (C39-peptidase-like domain) that interacts with the transport substrate, but its functional relevance is still not precisely defined. In the present paper, we describe the purification and biochemical characterization of detergent-solubilized HlyB in the presence of its transport substrate. Our results exhibit a positive co-operativity in ATP hydrolysis. We characterized further the influence of the CLD on kinetic parameters by using an HlyB variant lacking the CLD (HlyB∆CLD). The biochemical parameters of HlyB∆CLD revealed an increased basal maximum velocity but no change in substrate-binding affinity in comparison with full-length HlyB. We also assigned a distinct interaction of the CLD and a transport substrate (HlyA1), leading to an inhibition of HlyB hydrolytic activity at low HlyA1 concentrations. At higher HlyA1 concentrations, we observed a stimulation of the hydrolytic activities of both HlyB and HlyB∆CLD, which was completely independent of the interaction of HlyA1 with the CLD. Notably, all observed effects on ATPase activity, which were also analysed in detail by mass spectrometry, were independent of the HlyA1 secretion signal. These results assign an interdomain regulatory role for the CLD modulating the hydrolytic activity of HlyB.
Collapse
|
7
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
8
|
Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A, Finer-Moore J, Holton J, Cheng Y, Stroud RM, Cox JS. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion. Cell 2015; 161:501-512. [PMID: 25865481 DOI: 10.1016/j.cell.2015.03.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/10/2014] [Accepted: 02/11/2015] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.
Collapse
Affiliation(s)
- Oren S Rosenberg
- Division of Infectious Diseases, Department of Medicine, UCSF Medical Center, University of California, San Francisco, San Francisco, CA 94143-0654, USA
| | - Dustin Dovala
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xueming Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lynn Connolly
- Division of Infectious Diseases, Department of Medicine, UCSF Medical Center, University of California, San Francisco, San Francisco, CA 94143-0654, USA; Achaogen, Inc., South San Francisco, CA 94080, USA
| | - Anastasia Bendebury
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Janet Finer-Moore
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Holton
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Lawrence Berkeley National Laboratory, MS6-2100, Berkeley, CA 94720, USA
| | - Yifan Cheng
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert M Stroud
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffery S Cox
- Department of Microbiology and Immunology, Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I. Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 2014; 39:81-95. [PMID: 25154632 DOI: 10.1111/1574-6976.12085] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation is one of the main mechanisms for horizontal gene transfer. It constitutes a key element in the dissemination of antibiotic resistance and virulence genes to human pathogenic bacteria. DNA transfer is mediated by a membrane-associated macromolecular machinery called Type IV secretion system (T4SS). T4SSs are involved not only in bacterial conjugation but also in the transport of virulence factors by pathogenic bacteria. Thus, the search for specific inhibitors of different T4SS components opens a novel approach to restrict plasmid dissemination. This review highlights recent biochemical and structural findings that shed new light on the molecular mechanisms of DNA and protein transport by T4SS. Based on these data, a model for pilus biogenesis and substrate transfer in conjugative systems is proposed. This model provides a renewed view of the mechanism that might help to envisage new strategies to curb the threating expansion of antibiotic resistance.
Collapse
Affiliation(s)
- Elena Cabezón
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Alejandro Peña
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, (Universidad de Cantabria, CSIC) Santander, Spain
| |
Collapse
|
10
|
Abstract
Secretion of effectors across bacterial membranes is usually mediated by large multisubunit complexes. In most cases, the secreted effectors are virulent factors normally associated to pathogenic diseases. The biogenesis of these secretion systems and the transport of the effectors are processes that require energy. This energy could be directly obtained by using the proton motive force, but in most cases the energy associated to these processes is derived from ATP hydrolysis. Here, a description of the machineries involved in generating the energy required for system biogenesis and substrate transport by type II, III and IV secretion systems is provided, with special emphasis on highlighting the structural similarities and evolutionary relationships among the secretion ATPases.
Collapse
Affiliation(s)
- Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria, UC-CSIC-SODERCAN, Santander, Spain
| | | |
Collapse
|
11
|
Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 2013; 195:4195-201. [PMID: 23852869 DOI: 10.1128/jb.00437-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pilus biogenesis and substrate transport by type IV secretion systems require energy, which is provided by three molecular motors localized at the base of the secretion channel. One of these motors, VirB11, belongs to the superfamily of traffic ATPases, which includes members of the type II secretion system and the type IV pilus and archaeal flagellar assembly apparatus. Here, we report the functional interactions between TrwD, the VirB11 homolog of the conjugative plasmid R388, and TrwK and TrwB, the motors involved in pilus biogenesis and DNA transport, respectively. Although these interactions remained standing upon replacement of the traffic ATPase by a homolog from a phylogenetically related conjugative system, namely, TraG of plasmid pKM101, this homolog could not replace the TrwD function for DNA transfer. This result suggests that VirB11 works as a switch between pilus biogenesis and DNA transport and reinforces a mechanistic model in which VirB11 proteins act as traffic ATPases by regulating both events in type IV secretion systems.
Collapse
|
12
|
Structural independence of conjugative coupling protein TrwB from its Type IV secretion machinery. Plasmid 2013; 70:146-53. [PMID: 23583564 DOI: 10.1016/j.plasmid.2013.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/21/2022]
Abstract
The stability of components of multiprotein complexes often relies on the presence of the functional complex. To assess structural dependence among the components of the R388 Type IV secretion system (T4SS), the steady-state level of several Trw proteins was determined in the absence of other Trw components. While several Trw proteins were affected by the lack of others, we found that the coupling protein TrwB is not affected by the absence of other T4SS components, nor did its absence alter significantly the levels of integral components of the complex, underscoring the independent role of the coupling protein on the T4SS architecture. The cytoplasmic ATPases TrwK (VirB4) and TrwD (VirB11) were affected by the absence of several core complex components, while the pilus component TrwJ (VirB5) required the presence of all other Trw proteins (except for TrwB) to be detectable. Overall, the results delineate a possible assembly pathway for the T4SS of R388. We have also tested structural complementation of TrwD (VirB11) and TrwJ (VirB5) by their homologues in the highly related Trw system of Bartonella tribocorum (Bt). The results reveal a correlation with the functional complementation data previously reported.
Collapse
|
13
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
14
|
Peña A, Matilla I, Martín-Benito J, Valpuesta JM, Carrascosa JL, de la Cruz F, Cabezón E, Arechaga I. The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 2012; 287:39925-32. [PMID: 23035111 DOI: 10.1074/jbc.m112.413849] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VirB4 proteins are ATPases essential for pilus biogenesis and protein transport in type IV secretion systems. These proteins contain a motor domain that shares structural similarities with the motor domains of DNA translocases, such as the VirD4/TrwB conjugative coupling proteins and the chromosome segregation pump FtsK. Here, we report the three-dimensional structure of full-length TrwK, the VirB4 homologue in the conjugative plasmid R388, determined by single-particle electron microscopy. The structure consists of a hexameric double ring with a barrel-shaped structure. The C-terminal half of VirB4 proteins shares a striking structural similarity with the DNA translocase TrwB. Docking the atomic coordinates of the crystal structures of TrwB and FtsK into the EM map revealed a better fit for FtsK. Interestingly, we have found that like TrwB, TrwK is able to bind DNA with a higher affinity for G4 quadruplex structures than for single-stranded DNA. Furthermore, TrwK exerts a dominant negative effect on the ATPase activity of TrwB, which reflects an interaction between the two proteins. Our studies provide new insights into the structure-function relationship and the evolution of these DNA and protein translocases.
Collapse
Affiliation(s)
- Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), UC-CSIC-SODERCAN, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Guglielmini J, de la Cruz F, Rocha EPC. Evolution of conjugation and type IV secretion systems. Mol Biol Evol 2012; 30:315-31. [PMID: 22977114 PMCID: PMC3548315 DOI: 10.1093/molbev/mss221] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic exchange by conjugation is responsible for the spread of resistance, virulence,
and social traits among prokaryotes. Recent works unraveled the functioning of the
underlying type IV secretion systems (T4SS) and its distribution and recruitment for other
biological processes (exaptation), notably pathogenesis. We analyzed the phylogeny of key
conjugation proteins to infer the evolutionary history of conjugation and T4SS. We show
that single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) conjugation, while both
based on a key AAA+ ATPase, diverged before the last common ancestor of
bacteria. The two key ATPases of ssDNA conjugation are monophyletic, having diverged at an
early stage from dsDNA translocases. Our data suggest that ssDNA conjugation arose first
in diderm bacteria, possibly Proteobacteria, and then spread to other bacterial phyla,
including bacterial monoderms and Archaea. Identifiable T4SS fall within the eight
monophyletic groups, determined by both taxonomy and structure of the cell envelope.
Transfer to monoderms might have occurred only once, but followed diverse adaptive paths.
Remarkably, some Firmicutes developed a new conjugation system based on an atypical
relaxase and an ATPase derived from a dsDNA translocase. The observed evolutionary rates
and patterns of presence/absence of specific T4SS proteins show that conjugation systems
are often and independently exapted for other functions. This work brings a natural basis
for the classification of all kinds of conjugative systems, thus tackling a problem that
is growing as fast as genomic databases. Our analysis provides the first global picture of
the evolution of conjugation and shows how a self-transferrable complex multiprotein
system has adapted to different taxa and often been recruited by the host. As conjugation
systems became specific to certain clades and cell envelopes, they may have biased the
rate and direction of gene transfer by conjugation within prokaryotes.
Collapse
Affiliation(s)
- Julien Guglielmini
- Département Génomes et Génétique, Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
16
|
Ripoll-Rozada J, Peña A, Rivas S, Moro F, de la Cruz F, Cabezón E, Arechaga I. Regulation of the type IV secretion ATPase TrwD by magnesium: implications for catalytic mechanism of the secretion ATPase superfamily. J Biol Chem 2012; 287:17408-17414. [PMID: 22467878 DOI: 10.1074/jbc.m112.357905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.
Collapse
Affiliation(s)
- Jorge Ripoll-Rozada
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander
| | - Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander
| | - Susana Rivas
- Unidad de Biofísica (CSIC-UPV/EH) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | - Fernando Moro
- Unidad de Biofísica (CSIC-UPV/EH) y Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | - Fernando de la Cruz
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander
| | - Elena Cabezón
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander.
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Universidad de Cantabria (UC) e Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), 39011 Santander.
| |
Collapse
|
17
|
Cabezon E, Lanza VF, Arechaga I. Membrane-associated nanomotors for macromolecular transport. Curr Opin Biotechnol 2011; 23:537-44. [PMID: 22189002 DOI: 10.1016/j.copbio.2011.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 11/19/2022]
Abstract
Nature has endowed cells with powerful nanomotors to accomplish intricate mechanical tasks, such as the macromolecular transport across membranes occurring in cell division, bacterial conjugation, and in a wide variety of secretion systems. These biological motors couple the chemical energy provided by ATP hydrolysis to the mechanical work needed to transport DNA and/or protein effectors. Here, we review what is known about the molecular mechanisms of these membrane-associated machines. Sequence and structural comparison between these ATPases reveal that they share a similar motor domain, suggesting a common evolutionary ancestor. Learning how these machines operate will lead the design of nanotechnology devices with unique applications in medicine and engineering.
Collapse
Affiliation(s)
- Elena Cabezon
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, UC-SODERCAN-CSIC, C. Herrera Oria s/n, 39011 Santander, Spain.
| | | | | |
Collapse
|
18
|
Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL. An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 2011; 82:1071-85. [PMID: 22066957 PMCID: PMC3245843 DOI: 10.1111/j.1365-2958.2011.07872.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial conjugation is a form of type IV secretion that transports protein and DNA to recipient cells. Specific bacteriophage exploit the conjugative pili and cell envelope spanning protein machinery of these systems to invade bacterial cells. Infection by phage R17 requires F-like pili and coupling protein TraD, which gates the cytoplasmic entrance of the secretion channel. Here we investigate the role of TraD in R17 nucleoprotein uptake and find parallels to secretion mechanisms. The relaxosome of IncFII plasmid R1 is required. A ternary complex of plasmid oriT, TraD and a novel activation domain within the N-terminal 992 residues of TraI contributes a key mechanism involving relaxase-associated properties of TraI, protein interaction and the TraD ATPase. Helicase-associated activities of TraI are dispensable. These findings distinguish for the first time specific protein domains and complexes that process extracellular signals into distinct activation stages in the type IV initiation pathway. The study also provided insights into the evolutionary interplay of phage and the plasmids they exploit. Related plasmid F adapted to R17 independently of TraI. It follows that selection for phage resistance drives not only variation in TraA pilins but diversifies TraD and its binding partners in a plasmid-specific manner.
Collapse
Affiliation(s)
- Silvia Lang
- University of Graz, Institute of Molecular Biosciences, Humboldtstrasse 50, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|