1
|
Castle AR, Westaway D. Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease. J Neurochem 2025; 169:e16310. [PMID: 39874431 PMCID: PMC11774512 DOI: 10.1111/jnc.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Highly abundant in neurons, the cellular prion protein (PrPC) is an obligatory precursor to the disease-associated misfolded isoform denoted PrPSc that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrPC to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrPC are referred to as α- and β-cleavages, and in this review we outline the sites within PrPC at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology. Although the association of α-cleavage with neuroprotection is well-supported, we identify open questions regarding the importance of β-cleavage in TSEs and suggest experimental approaches that could provide clarification. We also combine findings from in vitro cleavage assays and mass spectrometry-based studies of prion protein fragments in the brain to present an updated view in which α- and β-cleavages may represent two distinct clusters of proteolytic events that occur at multiple neighbouring sites rather than at single positions. Furthermore, we highlight the candidate proteolytic mechanisms best supported by the literature; currently, despite several proteases identified as capable of processing PrPC in vitro, in cell-based models and in some cases, in vivo, none have been shown conclusively to cleave PrPC in the brain. Addressing this knowledge gap will be crucial for developing therapeutic interventions to drive PrPC endoproteolysis in a neuroprotective direction. Finally, we end this review by briefly addressing other cleavage events, specifically ectodomain shedding, γ-cleavage, the generation of atypical pathological fragments in the familial prion disorder Gerstmann-Sträussler-Scheinker syndrome and the possibility of an additional form of endoproteolysis close to the PrPC N-terminus.
Collapse
Affiliation(s)
- Andrew R. Castle
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - David Westaway
- Centre for Prions and Protein Folding DiseasesUniversity of AlbertaEdmontonCanada
| |
Collapse
|
2
|
Kalmouni M, Oh Y, Alata W, Magzoub M. Designed Cell-Penetrating Peptide Constructs for Inhibition of Pathogenic Protein Self-Assembly. Pharmaceutics 2024; 16:1443. [PMID: 39598566 PMCID: PMC11597747 DOI: 10.3390/pharmaceutics16111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Peptides possess a number of pharmacologically desirable properties, including greater chemical diversity than other biomolecule classes and the ability to selectively bind to specific targets with high potency, as well as biocompatibility, biodegradability, and ease and low cost of production. Consequently, there has been considerable interest in developing peptide-based therapeutics, including amyloid inhibitors. However, a major hindrance to the successful therapeutic application of peptides is their poor delivery to target tissues, cells or subcellular organelles. To overcome these issues, recent efforts have focused on engineering cell-penetrating peptide (CPP) antagonists of amyloidogenesis, which combine the attractive intrinsic properties of peptides with potent therapeutic effects (i.e., inhibition of amyloid formation and the associated cytotoxicity) and highly efficient delivery (to target tissue, cells, and organelles). This review highlights some promising CPP constructs designed to target amyloid aggregation associated with a diverse range of disorders, including Alzheimer's disease, transmissible spongiform encephalopathies (or prion diseases), Parkinson's disease, and cancer.
Collapse
Affiliation(s)
| | | | | | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates; (Y.O.)
| |
Collapse
|
3
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 PMCID: PMC11561462 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
6
|
Simmons SM, Bartz JC. Strain-Specific Targeting and Destruction of Cells by Prions. BIOLOGY 2024; 13:57. [PMID: 38275733 PMCID: PMC10813089 DOI: 10.3390/biology13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Prion diseases are caused by the disease-specific self-templating infectious conformation of the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is tropism within and between tissues. A defining feature of prion strains is the regional distribution of PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical target areas are prion strain-specific populations of neurons within the CNS that are susceptible to neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific, this has led to the hypothesis that the distribution of prion formation cofactors can influence prion tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a unified theory has yet to emerge.
Collapse
Affiliation(s)
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
7
|
Schilling KM, Jorwal P, Ubilla-Rodriguez NC, Assafa TE, Gatdula JRP, Vultaggio JS, Harris DA, Millhauser GL. N-glycosylation is a potent regulator of prion protein neurotoxicity. J Biol Chem 2023; 299:105101. [PMID: 37507020 PMCID: PMC10469999 DOI: 10.1016/j.jbc.2023.105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
The C-terminal domain of the cellular prion protein (PrPC) contains two N-linked glycosylation sites, the occupancy of which impacts disease pathology. In this study, we demonstrate that glycans at these sites are required to maintain an intramolecular interaction with the N-terminal domain, mediated through a previously identified copper-histidine tether, which suppresses the neurotoxic activity of PrPC. NMR and electron paramagnetic resonance spectroscopy demonstrate that the glycans refine the structure of the protein's interdomain interaction. Using whole-cell patch-clamp electrophysiology, we further show that cultured cells expressing PrP molecules with mutated glycosylation sites display large, spontaneous inward currents, a correlate of PrP-induced neurotoxicity. Our findings establish a structural basis for the role of N-linked glycans in maintaining a nontoxic, physiological fold of PrPC.
Collapse
Affiliation(s)
- Kevin M Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Pooja Jorwal
- Department of Biochemistry, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | | | - Tufa E Assafa
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Jean R P Gatdula
- Department of Biochemistry, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Janelle S Vultaggio
- Department of Biochemistry, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - David A Harris
- Department of Biochemistry, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA.
| |
Collapse
|
8
|
Gunnels T, Shikiya RA, York TC, Block AJ, Bartz JC. Evidence for preexisting prion substrain diversity in a biologically cloned prion strain. PLoS Pathog 2023; 19:e1011632. [PMID: 37669293 PMCID: PMC10503715 DOI: 10.1371/journal.ppat.1011632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Prion diseases are a group of inevitably fatal neurodegenerative disorders affecting numerous mammalian species, including Sapiens. Prions are composed of PrPSc, the disease specific conformation of the host encoded prion protein. Prion strains are operationally defined as a heritable phenotype of disease under controlled transmission conditions. Treatment of rodents with anti-prion drugs results in the emergence of drug-resistant prion strains and suggest that prion strains are comprised of a dominant strain and substrains. While much experimental evidence is consistent with this hypothesis, direct observation of substrains has not been observed. Here we show that replication of the dominant strain is required for suppression of a substrain. Based on this observation we reasoned that selective reduction of the dominant strain may allow for emergence of substrains. Using a combination of biochemical methods to selectively reduce drowsy (DY) PrPSc from biologically-cloned DY transmissible mink encephalopathy (TME)-infected brain resulted in the emergence of strains with different properties than DY TME. The selection methods did not occur during prion formation, suggesting the substrains identified preexisted in the DY TME-infected brain. We show that DY TME is biologically stable, even under conditions of serial passage at high titer that can lead to strain breakdown. Substrains therefore can exist under conditions where the dominant strain does not allow for substrain emergence suggesting that substrains are a common feature of prions. This observation has mechanistic implications for prion strain evolution, drug resistance and interspecies transmission.
Collapse
Affiliation(s)
- Tess Gunnels
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Taylor C. York
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Alyssa J. Block
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| |
Collapse
|
9
|
Reimann RR, Puzio M, Rosati A, Emmenegger M, Schneider BL, Valdés P, Huang D, Caflisch A, Aguzzi A. Rapid ex vivo reverse genetics identifies the essential determinants of prion protein toxicity. Brain Pathol 2022; 33:e13130. [PMID: 36329611 PMCID: PMC10041163 DOI: 10.1111/bpa.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein PrPC mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrPC (GDL) can also initiate neurotoxicity by inducing an intramolecular R208 -H140 hydrogen bond ("H-latch") between the α2-α3 and β2-α2 loops of PrPC . Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways. To define the structural underpinnings of these phenomena, we transduced 19 individual PrPC variants to PrPC -deficient cerebellar organotypic cultured slices using adenovirus-associated viral vectors (AAV). We report that GDL toxicity requires a single N-proximal cationic residue (K27 or R27 ) within PrPC . Alanine substitution of K27 also prevented the toxicity of PrPC mutants that induce Shmerling syndrome, a neurodegenerative disease that is suppressed by co-expression of wild-type PrPC . K27 may represent an actionable target for compounds aimed at preventing prion-related neurodegeneration.
Collapse
Affiliation(s)
| | - Martina Puzio
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Antonella Rosati
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Pamela Valdés
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Danzhi Huang
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Zurich Switzerland
| |
Collapse
|
10
|
Mercer RCC, Harris DA. Mechanisms of prion-induced toxicity. Cell Tissue Res 2022; 392:81-96. [PMID: 36070155 DOI: 10.1007/s00441-022-03683-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are devastating neurodegenerative diseases caused by the structural conversion of the normally benign prion protein (PrPC) to an infectious, disease-associated, conformer, PrPSc. After decades of intense research, much is known about the self-templated prion conversion process, a phenomenon which is now understood to be operative in other more common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide the current state of knowledge concerning a relatively poorly understood aspect of prion diseases: mechanisms of neurotoxicity. We provide an overview of proposed functions of PrPC and its interactions with other extracellular proteins in the central nervous system, in vivo and in vitro models used to delineate signaling events downstream of prion propagation, the application of omics technologies, and the emerging appreciation of the role played by non-neuronal cell types in pathogenesis.
Collapse
Affiliation(s)
- Robert C C Mercer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Yagita K, Noguchi H, Koyama S, Hamasaki H, Komori T, Aishima S, Kosaka T, Ueda M, Komohara Y, Watanabe A, Sasagasako N, Ninomiya T, Oda Y, Honda H. Chronological Changes in the Expression Pattern of Hippocampal Prion Proteins During Disease Progression in Sporadic Creutzfeldt-Jakob Disease MM1 Subtype. J Neuropathol Exp Neurol 2022; 81:900-909. [PMID: 36063412 DOI: 10.1093/jnen/nlac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The differential effects of sporadic Creutzfeldt-Jakob disease (sCJD) on the hippocampus and other neocortical areas are poorly understood. We aimed to reveal the histological patterns of cellular prion protein (PrPC) and abnormal prion protein (PrPSc) in hippocampi of sCJD patients and normal controls (NCs). Our study examined 18 postmortem sCJD patients (MM1, 14 cases; MM1 + 2c, 3 cases; MM1 + 2t, 1 case) and 12 NCs. Immunohistochemistry was conducted using 4 primary antibodies, of which 3 targeted the N-terminus of the prion protein (PrP), and 1 (EP1802Y) targeted the C-terminal domain. PrPC expression was abundant in the hippocampus of NCs, and the distribution of PrPC at CA3/4 was reminiscent of synaptic complexes. In sCJD cases with a disease history of <2 years, antibodies against the N-terminus could not detect synapse-like PrP expression at CA4; however, EP1802Y could characterize the synapse-like expression. PrPSc accumulation and spongiform changes became evident after 2 years of illness, when PrPSc deposits were more noticeably detected by N-terminal-specific antibodies. Our findings highlighted the chronology of histopathological alterations in the CA4 region in sCJD patients.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, University of Saga, Saga, Japan
| | - Takayuki Kosaka
- Department of Neurology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihiro Watanabe
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Naokazu Sasagasako
- Department of Neurology, Neuro-Muscular Center, National Omuta Hospital, Omuta, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Ilie IM, Bacci M, Vitalis A, Caflisch A. Antibody binding modulates the dynamics of the membrane-bound prion protein. Biophys J 2022; 121:2813-2825. [PMID: 35672948 PMCID: PMC9382331 DOI: 10.1016/j.bpj.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with lethal neurodegeneration. PrPC consists of a flexible tail (residues 23-123) and a globular domain (residues 124-231) whose C-terminal end is anchored to the cell membrane. The neurotoxic antibody POM1 and the innocuous antibody POM6 recognize the globular domain. Experimental evidence indicates that POM1 binding to PrPC emulates the influence on PrPC of the misfolded prion protein (PrPSc) while the binding of POM6 has the opposite biological response. Little is known about the potential interactions between flexible tail, globular domain, and the membrane. Here, we used atomistic simulations to investigate how these interactions are modulated by the binding of the Fab fragments of POM1 and POM6 to PrPC and by interstitial sequence truncations to the flexible tail. The simulations show that the binding of the antibodies restricts the range of orientations of the globular domain with respect to the membrane and decreases the distance between tail and membrane. Five of the six sequence truncations influence only marginally this distance and the contact patterns between tail and globular domain. The only exception is a truncation coupled to a charge inversion mutation of four N-terminal residues, which increases the distance of the flexible tail from the membrane. The interactions of the flexible tail and globular domain are modulated differently by the two antibodies.
Collapse
Affiliation(s)
- Ioana M Ilie
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Marco Bacci
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Andreas Vitalis
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
Kim SY, Zhang F, Harris DA, Linhardt RJ. Structural Features of Heparin and Its Interactions With Cellular Prion Protein Measured by Surface Plasmon Resonance. Front Mol Biosci 2020; 7:594497. [PMID: 33324681 PMCID: PMC7726446 DOI: 10.3389/fmolb.2020.594497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023] Open
Abstract
Self-propagating form of the prion protein (PrP Sc ) causes many neurodegenerative diseases, such as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Scheinker syndrome (GSS). Heparin is a highly sulfated linear glycosaminoglycan (GAG) and is composed of alternating D-glucosamine and L-iduronic acid or D-glucuronic acid sugar residues. The interactions of heparin with various proteins in a domain-specific or charged-dependent manner provide key roles on many physiological and pathological processes. While GAG-PrP interactions had been previously reported, the specific glycan structures that facilitate interactions with different regions of PrP and their binding kinetics have not been systematically investigated. In this study, we performed direct binding surface plasmon resonance (SPR) assay to characterize the kinetics of heparin binding to four recombinant murine PrP constructs including full length (M23-230), a deletion mutant lacking the four histidine-containing octapeptide repeats (M23-230 Δ59-90), the isolated N-terminal domain (M23-109), and the isolated C-terminal domain (M90-230). Additionally, we found the specific structural determinants required for GAG binding to the four PrP constructs with chemically defined derivatives of heparin and other GAGs by an SPR competition assay. Our findings may be instrumental in developing designer GAGs for specific targets within the PrP to fine-tune biological and pathophysiological activities of PrP.
Collapse
Affiliation(s)
- So Young Kim
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, Medical and Research Sections, San Diego, CA, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Chemistry and Chemical Biology, Biological Science and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
14
|
Hara H, Sakaguchi S. N-Terminal Regions of Prion Protein: Functions and Roles in Prion Diseases. Int J Mol Sci 2020; 21:ijms21176233. [PMID: 32872280 PMCID: PMC7504422 DOI: 10.3390/ijms21176233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.
Collapse
|
15
|
Roseman GP, Wu B, Wadolkowski MA, Harris DA, Millhauser GL. Intrinsic toxicity of the cellular prion protein is regulated by its conserved central region. FASEB J 2020; 34:8734-8748. [PMID: 32385908 DOI: 10.1096/fj.201902749rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.
Collapse
Affiliation(s)
- Graham P Roseman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark A Wadolkowski
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
16
|
Mohammadi B, Linsenmeier L, Shafiq M, Puig B, Galliciotti G, Giudici C, Willem M, Eden T, Koch-Nolte F, Lin YH, Tatzelt J, Glatzel M, Altmeppen HC. Transgenic Overexpression of the Disordered Prion Protein N1 Fragment in Mice Does Not Protect Against Neurodegenerative Diseases Due to Impaired ER Translocation. Mol Neurobiol 2020; 57:2812-2829. [PMID: 32367491 PMCID: PMC7253391 DOI: 10.1007/s12035-020-01917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The structurally disordered N-terminal half of the prion protein (PrPC) is constitutively released into the extracellular space by an endogenous proteolytic cleavage event. Once liberated, this N1 fragment acts neuroprotective in ischemic conditions and interferes with toxic peptides associated with neurodegenerative diseases, such as amyloid-beta (Aβ) in Alzheimer’s disease. Since analog protective effects of N1 in prion diseases, such as Creutzfeldt-Jakob disease, have not been studied, and given that the protease releasing N1 has not been identified to date, we have generated and characterized transgenic mice overexpressing N1 (TgN1). Upon intracerebral inoculation of TgN1 mice with prions, no protective effects were observed at the levels of survival, clinical course, neuropathological, or molecular assessment. Likewise, primary neurons of these mice did not show protection against Aβ toxicity. Our biochemical and morphological analyses revealed that this lack of protective effects is seemingly due to an impaired ER translocation of the disordered N1 resulting in its cytosolic retention with an uncleaved signal peptide. Thus, TgN1 mice represent the first animal model to prove the inefficient ER translocation of intrinsically disordered domains (IDD). In contrast to earlier studies, our data challenge roles of cytoplasmic N1 as a cell penetrating peptide or as a potent “anti-prion” agent. Lastly, our study highlights both the importance of structured domains in the nascent chain for proteins to be translocated and aspects to be considered when devising novel N1-based therapeutic approaches against neurodegenerative diseases.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Camilla Giudici
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yu-Hsuan Lin
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Institute of Biochemistry and Pathobiochemistry, Biochemistry of Neurodegenerative Diseases, Ruhr University Bochum, Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
17
|
Biggi S, Pancher M, Stincardini C, Luotti S, Massignan T, Dalle Vedove A, Astolfi A, Gatto P, Lolli G, Barreca ML, Bonetto V, Adami V, Biasini E. Identification of compounds inhibiting prion replication and toxicity by removing PrP C from the cell surface. J Neurochem 2019; 152:136-150. [PMID: 31264722 DOI: 10.1111/jnc.14805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The vast majority of therapeutic approaches tested so far for prion diseases, transmissible neurodegenerative disorders of human and animals, tackled PrPSc , the aggregated and infectious isoform of the cellular prion protein (PrPC ), with largely unsuccessful results. Conversely, targeting PrPC expression, stability or cell surface localization are poorly explored strategies. We recently characterized the mode of action of chlorpromazine, an anti-psychotic drug known to inhibit prion replication and toxicity by inducing the re-localization of PrPC from the plasma membrane. Unfortunately, chlorpromazine possesses pharmacokinetic properties unsuitable for chronic use in vivo, namely low specificity and high toxicity. Here, we employed HEK293 cells stably expressing EGFP-PrP to carry out a semi-automated high content screening (HCS) of a chemical library directed at identifying non-cytotoxic molecules capable of specifically relocalizing PrPC from the plasma membrane as well as inhibiting prion replication in N2a cell cultures. We identified four candidate hits inducing a significant reduction in cell surface PrPC , one of which also inhibited prion propagation and toxicity in cell cultures in a strain-independent fashion. This study defines a new screening method and novel anti-prion compounds supporting the notion that removing PrPC from the cell surface could represent a viable therapeutic strategy for prion diseases.
Collapse
Affiliation(s)
- Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael Pancher
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Luotti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Tania Massignan
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Dalle Vedove
- Laboratory of Protein Crystallography and Structure-Based Drug Design, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pamela Gatto
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Graziano Lolli
- Laboratory of Protein Crystallography and Structure-Based Drug Design, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Adami
- HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
18
|
McDonald AJ, Leon DR, Markham KA, Wu B, Heckendorf CF, Schilling K, Showalter HD, Andrews PC, McComb ME, Pushie MJ, Costello CE, Millhauser GL, Harris DA. Altered Domain Structure of the Prion Protein Caused by Cu 2+ Binding and Functionally Relevant Mutations: Analysis by Cross-Linking, MS/MS, and NMR. Structure 2019; 27:907-922.e5. [PMID: 30956132 DOI: 10.1016/j.str.2019.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The cellular isoform of the prion protein (PrPC) serves as precursor to the infectious isoform (PrPSc), and as a cell-surface receptor, which binds misfolded protein oligomers as well as physiological ligands such as Cu2+ ions. PrPC consists of two domains: a flexible N-terminal domain and a structured C-terminal domain. Both the physiological and pathological functions of PrP depend on intramolecular interactions between these two domains, but the specific amino acid residues involved have proven challenging to define. Here, we employ a combination of chemical cross-linking, mass spectrometry, NMR, molecular dynamics simulations, and functional assays to identify residue-level contacts between the N- and C-terminal domains of PrPC. We also determine how these interdomain contacts are altered by binding of Cu2+ ions and by functionally relevant mutations. Our results provide a structural basis for interpreting both the normal and toxic activities of PrP.
Collapse
Affiliation(s)
- Alex J McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Deborah R Leon
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kathleen A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christian F Heckendorf
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kevin Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, Department of Chemistry, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark E McComb
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
19
|
Mercer RC, Harris DA. Identification of anti-prion drugs and targets using toxicity-based assays. Curr Opin Pharmacol 2019; 44:20-27. [PMID: 30684854 DOI: 10.1016/j.coph.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023]
Abstract
Prion diseases are untreatable and invariably fatal, making the discovery of effective therapeutic interventions a priority. Most candidate molecules have been discovered based on their ability to reduce the levels of PrPSc, the infectious form of the prion protein, in cultured neuroblastoma cells. We have employed an alternative assay, based on an abnormal cellular phenotype associated with a mutant prion protein, to discover a novel class of anti-prion compounds, the phenethyl piperidines. Using an assay that monitors the acute toxic effects of PrPSc on the synapses of cultured hippocampal neurons, we have identified p38 MAPK as a druggable pharmacological target that is already being pursued for the treatment of other human diseases. Organotypic brain slices, which can propagate prions and mimic several neuropathological features of the disease, have also been used to test inhibitory compounds. An effective anti-prion regimen will involve synergistic combination of drugs acting at multiple steps of the pathogenic process, resulting not only in reduction in prion levels but also suppression of neurotoxic signaling.
Collapse
Affiliation(s)
- Robert Cc Mercer
- Boston University School of Medicine, Boston, MA 02118, United States
| | - David A Harris
- Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
20
|
Le NTT, Wu B, Harris DA. Prion neurotoxicity. Brain Pathol 2019; 29:263-277. [PMID: 30588688 DOI: 10.1111/bpa.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.
Collapse
Affiliation(s)
- Nhat T T Le
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
21
|
Markham KA, Roseman GP, Linsley RB, Lee HW, Millhauser GL. Molecular Features of the Zn 2+ Binding Site in the Prion Protein Probed by 113Cd NMR. Biophys J 2019; 116:610-620. [PMID: 30678993 DOI: 10.1016/j.bpj.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
The cellular prion protein (PrPC) is a zinc-binding protein that contributes to the regulation of Zn2+ and other divalent species of the central nervous system. Zn2+ coordinates to the flexible, N-terminal repeat region of PrPC and drives a tertiary contact between this repeat region and a well-defined cleft of the C-terminal domain. The tertiary structure promoted by Zn2+ is thought to regulate inherent PrPC toxicity. Despite the emerging consensus regarding the interaction between Zn2+ and PrPC, there is little direct spectroscopic confirmation of the metal ion's coordination details. Here, we address this conceptual gap by using Cd2+ as a surrogate for Zn2+. NMR finds that Cd2+ binds exclusively to the His imidazole side chains of the repeat segment, with a dissociation constant of ∼1.2 mM, and promotes an N-terminal-C-terminal cis interaction very similar to that observed with Zn2+. Analysis of 113Cd NMR spectra of PrPC, along with relevant control proteins and peptides, suggests that coordination of Cd2+ in the full-length protein is consistent with a three- or four-His geometry. Examination of the mutation E199K in mouse PrPC (E200K in humans), responsible for inherited Creutzfeldt-Jakob disease, finds that the mutation lowers metal ion affinity and weakens the cis interaction. These findings not only provide deeper insight into PrPC metal ion coordination but they also suggest new perspectives on the role of familial mutations in prion disease.
Collapse
Affiliation(s)
- Kate A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Richard B Linsley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California.
| |
Collapse
|
22
|
Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS One 2017; 12:e0188340. [PMID: 29261664 PMCID: PMC5737884 DOI: 10.1371/journal.pone.0188340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
Collapse
|
23
|
McDonald AJ, Wu B, Harris DA. An inter-domain regulatory mechanism controls toxic activities of PrP C. Prion 2017; 11:388-397. [PMID: 28960140 DOI: 10.1080/19336896.2017.1384894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The normal function of PrPC, the cellular prion protein, has remained mysterious since its first description over 30 years ago. Amazingly, although complete deletion of the gene encoding PrPC has little phenotypic consequence, expression in transgenic mice of PrP molecules carrying certain internal deletions produces dramatic neurodegenerative phenotypes. In our recent paper, 1 we have demonstrated that the flexible, N-terminal domain of PrPC possesses toxic effector functions, which are regulated by a docking interaction with the structured, C-terminal domain. Disruption of this inter-domain interaction, for example by deletions of the hinge region or by binding of antibodies to the C-terminal domain, results in abnormal ionic currents and degeneration of dendritic spines in cultured neuronal cells. This mechanism may contribute to the neurotoxicity of PrPSc and possibly other protein aggregates, and could play a role in the physiological activity of PrPC. These results also provide a warning about the potential toxic side effects of PrP-directed antibody therapies for prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Alex J McDonald
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| | - Bei Wu
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| | - David A Harris
- a Department of Biochemistry , Boston University School of Medicine , Boston , MA , USA
| |
Collapse
|
24
|
Stincardini C, Massignan T, Biggi S, Elezgarai SR, Sangiovanni V, Vanni I, Pancher M, Adami V, Moreno J, Stravalaci M, Maietta G, Gobbi M, Negro A, Requena JR, Castilla J, Nonno R, Biasini E. An antipsychotic drug exerts anti-prion effects by altering the localization of the cellular prion protein. PLoS One 2017; 12:e0182589. [PMID: 28787011 PMCID: PMC5546605 DOI: 10.1371/journal.pone.0182589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/20/2017] [Indexed: 02/01/2023] Open
Abstract
Prion diseases are neurodegenerative conditions characterized by the conformational conversion of the cellular prion protein (PrPC), an endogenous membrane glycoprotein of uncertain function, into PrPSc, a pathological isoform that replicates by imposing its abnormal folding onto PrPC molecules. A great deal of evidence supports the notion that PrPC plays at least two roles in prion diseases, by acting as a substrate for PrPSc replication, and as a mediator of its toxicity. This conclusion was recently supported by data suggesting that PrPC may transduce neurotoxic signals elicited by other disease-associated protein aggregates. Thus, PrPC may represent a convenient pharmacological target for prion diseases, and possibly other neurodegenerative conditions. Here, we sought to characterize the activity of chlorpromazine (CPZ), an antipsychotic previously shown to inhibit prion replication by directly binding to PrPC. By employing biochemical and biophysical techniques, we provide direct experimental evidence indicating that CPZ does not bind PrPC at biologically relevant concentrations. Instead, the compound exerts anti-prion effects by inducing the relocalization of PrPC from the plasma membrane. Consistent with these findings, CPZ also inhibits the cytotoxic effects delivered by a PrP mutant. Interestingly, we found that the different pharmacological effects of CPZ could be mimicked by two inhibitors of the GTPase activity of dynamins, a class of proteins involved in the scission of newly formed membrane vesicles, and recently reported as potential pharmacological targets of CPZ. Collectively, our results redefine the mechanism by which CPZ exerts anti-prion effects, and support a primary role for dynamins in the membrane recycling of PrPC, as well as in the propagation of infectious prions.
Collapse
Affiliation(s)
- Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tania Massignan
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saioa R. Elezgarai
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Michael Pancher
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Valentina Adami
- HTS Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giulia Maietta
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Medical Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, Rome, Italy
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- * E-mail:
| |
Collapse
|
25
|
Wu B, McDonald AJ, Markham K, Rich CB, McHugh KP, Tatzelt J, Colby DW, Millhauser GL, Harris DA. The N-terminus of the prion protein is a toxic effector regulated by the C-terminus. eLife 2017; 6:e23473. [PMID: 28527237 PMCID: PMC5469617 DOI: 10.7554/elife.23473] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
PrPC, the cellular isoform of the prion protein, serves to transduce the neurotoxic effects of PrPSc, the infectious isoform, but how this occurs is mysterious. Here, using a combination of electrophysiological, cellular, and biophysical techniques, we show that the flexible, N-terminal domain of PrPC functions as a powerful toxicity-transducing effector whose activity is tightly regulated in cis by the globular C-terminal domain. Ligands binding to the N-terminal domain abolish the spontaneous ionic currents associated with neurotoxic mutants of PrP, and the isolated N-terminal domain induces currents when expressed in the absence of the C-terminal domain. Anti-PrP antibodies targeting epitopes in the C-terminal domain induce currents, and cause degeneration of dendrites on murine hippocampal neurons, effects that entirely dependent on the effector function of the N-terminus. NMR experiments demonstrate intramolecular docking between N- and C-terminal domains of PrPC, revealing a novel auto-inhibitory mechanism that regulates the functional activity of PrPC.
Collapse
Affiliation(s)
- Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Alex J McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kathleen Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Kyle P McHugh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Neurobiochemistry, Adolf Butenandt Institute, Ludwig Maximilians University, Munich, Germany
| | - David W Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
26
|
Nyeste A, Stincardini C, Bencsura P, Cerovic M, Biasini E, Welker E. The prion protein family member Shadoo induces spontaneous ionic currents in cultured cells. Sci Rep 2016; 6:36441. [PMID: 27819308 PMCID: PMC5098206 DOI: 10.1038/srep36441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023] Open
Abstract
Some mutant forms of the cellular prion protein (PrPC) carrying artificial deletions or point mutations associated with familial human prion diseases are capable of inducing spontaneous ionic currents across the cell membrane, conferring hypersensitivity to certain antibiotics to a wide range of cultured cells and primary cerebellar granular neurons (CGNs). These effects are abrogated when the wild type (WT) form is co-expressed, suggesting that they might be related to a physiological activity of PrPC. Interestingly, the prion protein family member Shadoo (Sho) makes cells hypersensitive to the same antibiotics as mutant PrP-s, an effect that is diminished by the co-expression of WT-PrP. Here, we report that Sho engages in another mutant PrP-like activity: it spontaneously induces large ionic currents in cultured SH-SY5Y cells, as detected by whole-cell patch clamping. These currents are also decreased by the co-expression of WT-PrP. Furthermore, deletion of the N-terminal (RXXX)8 motif of Sho, mutation of the eight arginine residues of this motif to glutamines, or replacement of the hydrophobic domain by that of PrP, also diminish Sho-induced ionic currents. Our results suggest that the channel activity that is also characteristic to some pathogenic PrP mutants may be linked to a physiological function of Sho.
Collapse
Affiliation(s)
- Antal Nyeste
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Claudia Stincardini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, ITALY
| | - Petra Bencsura
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, ITALY
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Center for Integrative Biology (CIBIO), University of Trento, 38123 Trento, ITALY
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milano, ITALY
| | - Ervin Welker
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
27
|
Mukundan V, Maksoudian C, Vogel MC, Chehade I, Katsiotis MS, Alhassan SM, Magzoub M. Cytotoxicity of prion protein-derived cell-penetrating peptides is modulated by pH but independent of amyloid formation. Arch Biochem Biophys 2016; 613:31-42. [PMID: 27818203 DOI: 10.1016/j.abb.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
Prion diseases are associated with conversion of cellular prion protein (PrPC) into an abnormally folded and infectious scrapie isoform (PrPSc). We previously showed that peptides derived from the unprocessed N-termini of mouse and bovine prion proteins, mPrP1-28 and bPrP1-30, function as cell-penetrating peptides (CPPs), and destabilize model membrane systems, which could explain the infectivity and toxicity of prion diseases. However, subsequent studies revealed that treatment with mPrP1-28 or bPrP1-30 significantly reduce PrPSc levels in prion-infected cells. To explain these seemingly contradictory results, we correlated the aggregation, membrane perturbation and cytotoxicity of the peptides with their cellular uptake and intracellular localization. Although the peptides have a similar primary sequence, mPrP1-28 is amyloidogenic, whereas bPrP1-30 forms smaller oligomeric or non-fibrillar aggregates. Surprisingly, bPrP1-30 induces much higher cytotoxicity than mPrP1-28, indicating that amyloid formation and toxicity are independent. The toxicity is correlated with prolonged residence at the plasma membrane and membrane perturbation. Both ordered aggregation and toxicity of the peptides are inhibited by low pH. Under non-toxic conditions, the peptides are internalized by lipid-raft dependent macropinocytosis and localize to acidic lysosomal compartments. Our results shed light on the antiprion mechanism of the prion protein-derived CPPs and identify a potential site for PrPSc formation.
Collapse
Affiliation(s)
- Vineeth Mukundan
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Christy Maksoudian
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Maria C Vogel
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Marios S Katsiotis
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Saeed M Alhassan
- Department of Chemical Engineering, The Petroleum Institute, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA. Identification of Anti-prion Compounds using a Novel Cellular Assay. J Biol Chem 2016; 291:26164-26176. [PMID: 27803163 DOI: 10.1074/jbc.m116.745612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are devastating neurodegenerative disorders with no known cure. One strategy for developing therapies for these diseases is to identify compounds that block conversion of the cellular form of the prion protein (PrPC) into the infectious isoform (PrPSc). Most previous efforts to discover such molecules by high-throughput screening methods have utilized, as a read-out, a single kind of cellular assay system: neuroblastoma cells that are persistently infected with scrapie prions. Here, we describe the use of an alternative cellular assay based on suppressing the spontaneous cytotoxicity of a mutant form of PrP (Δ105-125). Using this assay, we screened 75,000 compounds, and identified a group of phenethyl piperidines (exemplified by LD7), which reduces the accumulation of PrPSc in infected neuroblastoma cells by >90% at low micromolar doses, and inhibits PrPSc-induced synaptotoxicity in hippocampal neurons. By analyzing the structure-activity relationships of 35 chemical derivatives, we defined the pharmacophore of LD7, and identified a more potent derivative. Active compounds do not alter total or cell-surface levels of PrPC, and do not bind to recombinant PrP in surface plasmon resonance experiments, although at high concentrations they inhibit PrPSc-seeded conversion of recombinant PrP to a misfolded state in an in vitro reaction (RT-QuIC). This class of small molecules may provide valuable therapeutic leads, as well as chemical biological tools to identify cellular pathways underlying PrPSc metabolism and PrPC function.
Collapse
Affiliation(s)
- Thibaut Imberdis
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - James T Heeres
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Han Yueh
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Cheng Fang
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jessie Zhen
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - Celeste B Rich
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Marcie Glicksman
- the Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
| | - Aaron B Beeler
- the Department of Chemistry, Boston University, Boston, Massachusetts 02115, and
| | - David A Harris
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
29
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
30
|
A Neuronal Culture System to Detect Prion Synaptotoxicity. PLoS Pathog 2016; 12:e1005623. [PMID: 27227882 PMCID: PMC4881977 DOI: 10.1371/journal.ppat.1005623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 12/02/2022] Open
Abstract
Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents. Prion diseases are fatal neurodegenerative disorders that cause memory loss, impaired coordination, and abnormal movements. The molecular culprit in prion diseases is PrPSc, an infectious isoform of a host-encoded glycoprotein (PrPC) that can propagate itself by a self-templating mechanism. Whether PrPSc itself is toxic to neurons, and if so, the cellular mechanisms by which it produces neuronal pathology are largely unknown, in part because of the absence of suitable cell culture models. We describe here a hippocampal neuronal cultural system to detect the toxic effect of PrPSc on dendritic spines, which are postsynaptic elements responsible for excitatory synaptic transmission, and which are implicated in learning, memory, and the earliest stages of neurodegenerative diseases. We found that purified, exogenously applied PrPSc causes acute retraction of dendritic spines, an effect that is entirely dependent on expression of PrPC by target neurons, and on the on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic retraction. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents.
Collapse
|
31
|
Massignan T, Cimini S, Stincardini C, Cerovic M, Vanni I, Elezgarai SR, Moreno J, Stravalaci M, Negro A, Sangiovanni V, Restelli E, Riccardi G, Gobbi M, Castilla J, Borsello T, Nonno R, Biasini E. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci Rep 2016; 6:23180. [PMID: 26976106 PMCID: PMC4791597 DOI: 10.1038/srep23180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity.
Collapse
Affiliation(s)
- Tania Massignan
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sara Cimini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Claudia Stincardini
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Milica Cerovic
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Saioa R Elezgarai
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Geraldina Riccardi
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan Italy
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Emiliano Biasini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
32
|
Nyeste A, Bencsura P, Vida I, Hegyi Z, Homolya L, Fodor E, Welker E. Expression of the Prion Protein Family Member Shadoo Causes Drug Hypersensitivity That Is Diminished by the Coexpression of the Wild Type Prion Protein. J Biol Chem 2016; 291:4473-86. [PMID: 26721882 DOI: 10.1074/jbc.m115.679035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/06/2022] Open
Abstract
The prion protein (PrP) seems to exert both neuroprotective and neurotoxic activities. The toxic activities are associated with the C-terminal globular parts in the absence of the flexible N terminus, specifically the hydrophobic domain (HD) or the central region (CR). The wild type prion protein (PrP-WT), having an intact flexible part, exhibits neuroprotective qualities by virtue of diminishing many of the cytotoxic effects of these mutant prion proteins (PrPΔHD and PrPΔCR) when coexpressed. The prion protein family member Doppel, which possesses a three-dimensional fold similar to the C-terminal part of PrP, is also harmful to neuronal and other cells in various models, a phenotype that can also be eliminated by the coexpression of PrP-WT. In contrast, another prion protein family member, Shadoo (Sho), a natively disordered protein possessing structural features similar to the flexible N-terminal tail of PrP, exhibits PrP-WT-like protective properties. Here, we report that, contrary to expectations, Sho expression in SH-SY5Y or HEK293 cells induces the same toxic phenotype of drug hypersensitivity as PrPΔCR. This effect is exhibited in a dose-dependent manner and is also counteracted by the coexpression of PrP-WT. The opposing effects of Shadoo in different model systems revealed here may be explored to help discern the relationship of the various toxic activities of mutant PrPs with each other and the neurotoxic effects seen in neurodegenerative diseases, such as transmissible spongiform encephalopathy and Alzheimer disease.
Collapse
Affiliation(s)
- Antal Nyeste
- From the Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Petra Bencsura
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| | - István Vida
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and the Institute of Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Zoltán Hegyi
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| | - László Homolya
- the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| | - Elfrieda Fodor
- From the Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Ervin Welker
- From the Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726 Szeged, Hungary, the Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary, and
| |
Collapse
|
33
|
Sempou E, Biasini E, Pinzón-Olejua A, Harris DA, Málaga-Trillo E. Activation of zebrafish Src family kinases by the prion protein is an amyloid-β-sensitive signal that prevents the endocytosis and degradation of E-cadherin/β-catenin complexes in vivo. Mol Neurodegener 2016; 11:18. [PMID: 26860872 PMCID: PMC4748561 DOI: 10.1186/s13024-016-0076-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background Prions and amyloid-β (Aβ) oligomers trigger neurodegeneration by hijacking a poorly understood cellular signal mediated by the prion protein (PrP) at the plasma membrane. In early zebrafish embryos, PrP-1-dependent signals control cell-cell adhesion via a tyrosine phosphorylation-dependent mechanism. Results Here we report that the Src family kinases (SFKs) Fyn and Yes act downstream of PrP-1 to prevent the endocytosis and degradation of E-cadherin/β-catenin adhesion complexes in vivo. Accordingly, knockdown of PrP-1 or Fyn/Yes cause similar zebrafish gastrulation phenotypes, whereas Fyn/Yes expression rescues the PrP-1 knockdown phenotype. We also show that zebrafish and mouse PrPs positively regulate the activity of Src kinases and that these have an unexpected positive effect on E-cadherin-mediated cell adhesion. Interestingly, while PrP knockdown impairs β-catenin adhesive function, PrP overexpression enhances it, thereby antagonizing its nuclear, wnt-related signaling activity and disturbing embryonic dorsoventral specification. The ability of mouse PrP to influence these events in zebrafish embryos requires its neuroprotective, polybasic N-terminus but not its neurotoxicity-associated central region. Remarkably, human Aβ oligomers up-regulate the PrP-1/SFK/E-cadherin/β-catenin pathway in zebrafish embryonic cells, mimicking a PrP gain-of-function scenario. Conclusions Our gain- and loss-of-function experiments in zebrafish suggest that PrP and SFKs enhance the cell surface stability of embryonic adherens junctions via the same complex mechanism through which they over-activate neuroreceptors that trigger synaptic damage. The profound impact of this pathway on early zebrafish development makes these embryos an ideal model to study the cellular and molecular events affected by neurotoxic PrP mutations and ligands in vivo. In particular, our finding that human Aβ oligomers activate the zebrafish PrP/SFK/E-cadherin pathway opens the possibility of using fish embryos to rapidly screen for novel therapeutic targets and compounds against prion- and Alzheimer's-related neurodegeneration. Altogether, our data illustrate PrP-dependent signals relevant to embryonic development, neuronal physiology and neurological disease. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Sempou
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Present address: Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Emiliano Biasini
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA. .,Present address: Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Alejandro Pinzón-Olejua
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Present address: Max PIanck Institute for Brain Research, Department of Synaptic Plasticity, 60438, Frankfurt/Main, Germany.
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Edward Málaga-Trillo
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Department of Biology, Universidad Peruana Cayetano Heredia, Lima 31, Perú.
| |
Collapse
|
34
|
Iraci N, Stincardini C, Barreca ML, Biasini E. Decoding the function of the N-terminal tail of the cellular prion protein to inspire novel therapeutic avenues for neurodegenerative diseases. Virus Res 2015; 207:62-8. [DOI: 10.1016/j.virusres.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
|
35
|
Vilches S, Vergara C, Nicolás O, Mata Á, Del Río JA, Gavín R. Domain-Specific Activation of Death-Associated Intracellular Signalling Cascades by the Cellular Prion Protein in Neuroblastoma Cells. Mol Neurobiol 2015; 53:4438-48. [PMID: 26250617 DOI: 10.1007/s12035-015-9360-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ágata Mata
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
36
|
Affiliation(s)
- Roberto Chiesa
- Department of Neuroscience, IRCCS–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- * E-mail:
| |
Collapse
|
37
|
Cheng CJ, Daggett V. Different misfolding mechanisms converge on common conformational changes: human prion protein pathogenic mutants Y218N and E196K. Prion 2015; 8:125-35. [PMID: 24509603 DOI: 10.4161/pri.27807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prion diseases are caused by misfolding and aggregation of the prion protein (PrP). Pathogenic mutations such as Y218N and E196K are known to cause Gerstmann-Sträussler-Scheinker syndrome and Creutzfeldt-Jakob disease, respectively. Here we describe molecular dynamics simulations of these mutant proteins to better characterize the detailed conformational effects of these sequence substitutions. Our results indicate that the mutations disrupt the wild-type native PrP(C) structure and cause misfolding. Y218N reduced hydrophobic packing around the X-loop (residues 165-171), and E196K abolished an important wild-type salt bridge. While differences in the mutation site led PrP mutants to misfold along different pathways, we observed multiple traits of misfolding that were common to both mutants. Common traits of misfolding included: 1) detachment of the short helix (HA) from the PrP core; 2) exposure of side chain F198; and 3) formation of a nonnative strand at the N-terminus. The effect of the E196K mutation directly abolished the wild-type salt bridge E196-R156, which further destabilized the F198 hydrophobic pocket and HA. The Y218N mutation propagated its effect by increasing the HB-HC interhelical angle, which in turn disrupted the packing around F198. Furthermore, a nonnative contact formed between E221 and S132 on the S1-HA loop, which offered a direct mechanism for disrupting the hydrophobic packing between the S1-HA loop and HC. While there were common misfolding features shared between Y218N and E196K, the differences in the orientation of HB and HC and the X-loop conformation might provide a structural basis for identifying different prion strains.
Collapse
|
38
|
Söderberg KL, Guterstam P, Langel U, Gräslund A. Targeting prion propagation using peptide constructs with signal sequence motifs. Arch Biochem Biophys 2014; 564:254-61. [PMID: 25447819 DOI: 10.1016/j.abb.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022]
Abstract
Synthetic peptides with sequences derived from the cellular prion protein (PrP(C)) unprocessed N-terminus are able to counteract the propagation of proteinase K resistant prions (PrP(Res), indicating the presence of the prion isoform of the prion protein) in cell cultures (Löfgren et al., 2008). The anti-prion peptides have characteristics like cell penetrating peptides (CPPs) and consist of the prion protein hydrophobic signal sequence followed by a polycationic motif (residues KKRPKP), in mouse PrP(C) corresponding to residues 1-28. Here we analyze the sequence elements required for the anti-prion effect of KKRPKP-conjugates. Neuronal GT1-1 cells were infected with either prion strain RML or 22L. Variable peptide constructs originating from the mPrP1-28 sequence were analyzed for anti-prion effects, measured as disappearance of proteinase K resistant prions (PrP(Res)) in the infected cell cultures. We find that even a 5 amino acid N-terminal shortening of the signal peptide abolishes the anti-prion effect. We show that the signal peptide from PrP(C) can be replaced with the signal peptide from the Neural cell adhesion molecule-1; NCAM11-19, with a retained capacity to reduce PrP(Res) levels. The anti-prion effect is lost if the polycationic N-terminal PrP(C)-motif is conjugated to any conventional CPP, such as TAT48-60, transportan-10 or penetratin. We propose a mechanism by which a signal peptide from a secretory or cell surface protein acts to promote the transport of a prion-binding polycationic PrP(C)-motif to a subcellular location where prion conversion occurs (most likely the Endosome Recycling Compartment), thereby targeting prion propagation.
Collapse
Affiliation(s)
- Kajsa Löfgren Söderberg
- The Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Guterstam
- The Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ulo Langel
- The Department of Neurochemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Astrid Gräslund
- The Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
39
|
Chu NK, Shabbir W, Bove-Fenderson E, Araman C, Lemmens-Gruber R, Harris DA, Becker CFW. A C-terminal membrane anchor affects the interactions of prion proteins with lipid membranes. J Biol Chem 2014; 289:30144-60. [PMID: 25217642 DOI: 10.1074/jbc.m114.587345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Membrane attachment via a C-terminal glycosylphosphatidylinositol anchor is critical for conversion of PrP(C) into pathogenic PrP(Sc). Therefore the effects of the anchor on PrP structure and function need to be deciphered. Three PrP variants, including full-length PrP (residues 23-231, FL_PrP), N-terminally truncated PrP (residues 90-231, T_PrP), and PrP missing its central hydrophobic region (Δ105-125, ΔCR_PrP), were equipped with a C-terminal membrane anchor via a semisynthesis strategy. Analyses of the interactions of lipidated PrPs with phospholipid membranes demonstrated that C-terminal membrane attachment induces a different binding mode of PrP to membranes, distinct from that of non-lipidated PrPs, and influences the biochemical and conformational properties of PrPs. Additionally, fluorescence-based assays indicated pore formation by lipidated ΔCR_PrP, a variant that is known to be highly neurotoxic in transgenic mice. This finding was supported by using patch clamp electrophysiological measurements of cultured cells. These results provide new evidence for the role of the membrane anchor in PrP-lipid interactions, highlighting the importance of the N-terminal and the central hydrophobic domain in these interactions.
Collapse
Affiliation(s)
- Nam K Chu
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - Erin Bove-Fenderson
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Can Araman
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria, and
| | - David A Harris
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Christian F W Becker
- From the Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria,
| |
Collapse
|
40
|
Mercer RCC, Ma L, Watts JC, Strome R, Wohlgemuth S, Yang J, Cashman NR, Coulthart MB, Schmitt-Ulms G, Jhamandas JH, Westaway D. The prion protein modulates A-type K+ currents mediated by Kv4.2 complexes through dipeptidyl aminopeptidase-like protein 6. J Biol Chem 2013; 288:37241-55. [PMID: 24225951 DOI: 10.1074/jbc.m113.488650] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Widely expressed in the adult central nervous system, the cellular prion protein (PrP(C)) is implicated in a variety of processes, including neuronal excitability. Dipeptidyl aminopeptidase-like protein 6 (DPP6) was first identified as a PrP(C) interactor using in vivo formaldehyde cross-linking of wild type (WT) mouse brain. This finding was confirmed in three cell lines and, because DPP6 directs the functional assembly of K(+) channels, we assessed the impact of WT and mutant PrP(C) upon Kv4.2-based cell surface macromolecular complexes. Whereas a Gerstmann-Sträussler-Scheinker disease version of PrP with eight extra octarepeats was a loss of function both for complex formation and for modulation of Kv4.2 channels, WT PrP(C), in a DPP6-dependent manner, modulated Kv4.2 channel properties, causing an increase in peak amplitude, a rightward shift of the voltage-dependent steady-state inactivation curve, a slower inactivation, and a faster recovery from steady-state inactivation. Thus, the net impact of wt PrP(C) was one of enhancement, which plays a critical role in the down-regulation of neuronal membrane excitability and is associated with a decreased susceptibility to seizures. Insofar as previous work has established a requirement for WT PrP(C) in the Aβ-dependent modulation of excitability in cholinergic basal forebrain neurons, our findings implicate PrP(C) regulation of Kv4.2 channels as a mechanism contributing to the effects of oligomeric Aβ upon neuronal excitability and viability.
Collapse
|
41
|
Chapron Y, Charlet L, Sahai N. Fate of pathological prion (PrP(sc)92-138) in soil and water: prion-clay nanoparticle molecular dynamics. J Biomol Struct Dyn 2013; 32:1802-16. [PMID: 24152238 DOI: 10.1080/07391102.2013.836461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pathogenic prion protein scrapie (PrP(sc)) may contaminate soils for decades and remain in water in colloidal suspension, providing infection pathways for animals through the inhalation of ingested dust and soil particles, and drinking water. We used molecular dynamics simulations to understand the strong binding mechanism of this pathogenic peptide with clay mineral surfaces and compared our results to experimental works. We restricted our model to the moiety PrP(92-138), which is a portion of the whole PrP(sc) molecule responsible for infectivity and modeled it using explicit solvating water molecules in contact with a pyrophyllite cleavage plane. Pyrophyllite is taken as a model for common soil clay, but it has no permanent structural charge. However, partial residual negative charges occur on the cleavage plane slab surface due to a slab charge unbalance. The charge is isotropic in 2D and it was balanced with K(+) ions. After partially removing potassium ions, the peptide anchors to the clay surface via up to 10 hydrogen bonds, between protonated lysine or histidine residues and the oxygen atoms of the siloxane cavities. Our results provide insight to the mechanism responsible for the strong association between the PrP(sc) peptide and clay nanoparticles and the associations present in contaminated soil and water which may lead to the infection of animals.
Collapse
Affiliation(s)
- Yves Chapron
- a AIED, Research , 108 rue du puy, La Terrasse , 38660 , France
| | | | | |
Collapse
|
42
|
Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion. PLoS One 2013; 8:e70327. [PMID: 23936187 PMCID: PMC3729945 DOI: 10.1371/journal.pone.0070327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP’s essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP’s ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.
Collapse
|
43
|
Abstract
Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C).
Collapse
|
44
|
Kaiser DM, Acharya M, Leighton PLA, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT. Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 2012; 7:e51305. [PMID: 23236467 PMCID: PMC3517466 DOI: 10.1371/journal.pone.0051305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-β precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.
Collapse
Affiliation(s)
- Darcy M. Kaiser
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moulinath Acharya
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L. A. Leighton
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - W. Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
The N-terminal, polybasic region of PrP(C) dictates the efficiency of prion propagation by binding to PrP(Sc). J Neurosci 2012; 32:8817-30. [PMID: 22745483 DOI: 10.1523/jneurosci.1103-12.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prion propagation involves a templating reaction in which the infectious form of the prion protein (PrP(Sc)) binds to the cellular form (PrP(C)), generating additional molecules of PrP(Sc). While several regions of the PrP(C) molecule have been suggested to play a role in PrP(Sc) formation based on in vitro studies, the contribution of these regions in vivo is unclear. Here, we report that mice expressing PrP deleted for a short, polybasic region at the N terminus (residues 23-31) display a dramatically reduced susceptibility to prion infection and accumulate greatly reduced levels of PrP(Sc). These results, in combination with biochemical data, demonstrate that residues 23-31 represent a critical site on PrP(C) that binds to PrP(Sc) and is essential for efficient prion propagation. It may be possible to specifically target this region for treatment of prion diseases as well as other neurodegenerative disorders due to β-sheet-rich oligomers that bind to PrP(C).
Collapse
|
46
|
Solomon IH, Biasini E, Harris DA. Ion channels induced by the prion protein: mediators of neurotoxicity. Prion 2012; 6:40-5. [PMID: 22453177 DOI: 10.4161/pri.6.1.18627] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases comprise a group of rapidly progressive and invariably fatal neurodegenerative disorders for which there are no effective treatments. While conversion of the cellular prion protein (PrP(C)) to a β-sheet rich isoform (PrP(Sc) ) is known to be a critical event in propagation of infectious prions, the identity of the neurotoxic form of PrP and its mechanism of action remain unclear. Insights into this mechanism have been provided by studying PrP molecules harboring deletions and point mutations in the conserved central region, encompassing residues 105-125. When expressed in transgenic mice, PrP deleted for these residues (Δ105-125) causes a spontaneous neurodegenerative illness that is reversed by co-expression of wild-type PrP. In cultured cells, Δ105-125 PrP confers hypersensitivity to certain cationic antibiotics and induces spontaneous ion channel activity that can be recorded by electrophysiological techniques. We have utilized these drug-hypersensitization and current-inducing activities to identify which PrP domains and subcellular locations are required for toxicity. We present an ion channel model for the toxicity of Δ105-125 PrP and related mutants and speculate how a similar mechanism could mediate PrP(Sc)-associated toxicity. Therapeutic regimens designed to inhibit prion-induced toxicity, as well as formation of PrP(Sc) , may prove to be the most clinically beneficial.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
47
|
Abstract
Prion science has been on a rollercoaster for two decades. In the mid 1990s, the specter of mad cow disease (bovine spongiform encephalopathy, BSE) provoked an unprecedented public scare that was first precipitated by the realization that this animal prion disease could be transmitted to humans and then rekindled by the evidence that BSE-infected humans could pass on the infection through blood transfusions. Along with the gradual disappearance of BSE, the interest in prions has waned with the general public, funding agencies and prospective PhD students. In the past few years, however, a bewildering variety of diseases have been found to share features with prion infections, including cell-to-cell transmission. Here we review these developments and summarize those open questions that we currently deem most interesting in prion biology: how do prions damage their hosts, and how do hosts attempt to neutralize invading prions?
Collapse
|
48
|
Biasini E, Turnbaugh JA, Massignan T, Veglianese P, Forloni G, Bonetto V, Chiesa R, Harris DA. The toxicity of a mutant prion protein is cell-autonomous, and can be suppressed by wild-type prion protein on adjacent cells. PLoS One 2012; 7:e33472. [PMID: 22428057 PMCID: PMC3299791 DOI: 10.1371/journal.pone.0033472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/09/2012] [Indexed: 12/25/2022] Open
Abstract
Insight into the normal function of PrPC, and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105–125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrPC, and the cellular mechanisms underlying the rescuing process.
Collapse
Affiliation(s)
- Emiliano Biasini
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute, Milan, Italy
- * E-mail: (EB); (DAH)
| | - Jessie A. Turnbaugh
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tania Massignan
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Dulbecco Telethon Institute, Milan, Italy
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute, Milan, Italy
| | | | | | - Valentina Bonetto
- Dulbecco Telethon Institute, Milan, Italy
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute, Milan, Italy
| | - Roberto Chiesa
- Dulbecco Telethon Institute, Milan, Italy
- Department of Neuroscience, Mario Negri Institute, Milan, Italy
| | - David A. Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (EB); (DAH)
| |
Collapse
|
49
|
Prion protein at the crossroads of physiology and disease. Trends Neurosci 2011; 35:92-103. [PMID: 22137337 DOI: 10.1016/j.tins.2011.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
Abstract
The presence of the cellular prion protein (PrP(C)) on the cell surface is critical for the neurotoxicity of prions. Although several biological activities have been attributed to PrP(C), a definitive demonstration of its physiological function remains elusive. In this review, we discuss some of the proposed functions of PrP(C), focusing on recently suggested roles in cell adhesion, regulation of ionic currents at the cell membrane and neuroprotection. We also discuss recent evidence supporting the idea that PrP(C) may function as a receptor for soluble oligomers of the amyloid β peptide and possibly other toxic protein aggregates. These data suggest surprising new connections between the physiological function of PrP(C) and its role in neurodegenerative diseases beyond those caused by prions.
Collapse
|
50
|
Abstract
Transgenic mice expressing prion protein (PrP) molecules with several different internal deletions display spontaneous neurodegenerative phenotypes that can be dose-dependently suppressed by coexpression of wild-type PrP. Each of these deletions, including the largest one (Δ32-134), retains 9 aa immediately following the signal peptide cleavage site (residues 23-31; KKRPKPGGW). These residues have been implicated in several biological functions of PrP, including endocytic trafficking and binding of glycosaminoglycans. We report here on our experiments to test the role of this domain in the toxicity of deleted forms of PrP. We find that transgenic mice expressing Δ23-134 PrP display no clinical symptoms or neuropathology, in contrast to mice expressing Δ32-134 PrP, suggesting that residues 23-31 are essential for the toxic phenotype. Using a newly developed cell culture assay, we narrow the essential region to amino acids 23-26, and we show that mutant PrP toxicity is not related to the role of the N-terminal residues in endocytosis or binding to endogenous glycosaminoglycans. However, we find that mutant PrP toxicity is potently inhibited by application of exogenous glycosaminoglycans, suggesting that the latter molecules block an essential interaction between the N terminus of PrP and a membrane-associated target site. Our results demonstrate that a short segment containing positively charged amino acids at the N terminus of PrP plays an essential role in mediating PrP-related neurotoxicity. This finding identifies a protein domain that may serve as a drug target for amelioration of prion neurotoxicity.
Collapse
|