1
|
Grandjenette C, Schnekenburger M, Gaigneaux A, Gérard D, Christov C, Mazumder A, Dicato M, Diederich M. Human telomerase reverse transcriptase depletion potentiates the growth-inhibitory activity of imatinib in chronic myeloid leukemia stem cells. Cancer Lett 2019; 469:468-480. [PMID: 31734352 DOI: 10.1016/j.canlet.2019.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/03/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Although tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), resistance against TKIs and leukemia stem cell (LSC) persistence remain a clinical concern. Therefore, new therapeutic strategies combining conventional and novel therapies are urgently needed. Since telomerase is involved in oncogenesis and tumor progression but is silent in most human normal somatic cells, it may be an interesting target for CML therapy by selectively targeting cancer cells while minimizing effects on normal cells. Here, we report that hTERT expression is associated with CML disease progression. We also provide evidence that hTERT-deficient K-562 cells do not display telomere shortening and that telomere length is maintained through the ALT pathway. Furthermore, we show that hTERT depletion exerts a growth-inhibitory effect in K-562 cells and potentiates imatinib through alteration of cell cycle progression leading to a senescence-like phenotype. Finally, we demonstrate that hTERT depletion potentiates the imatinib-induced reduction of the ALDH+-LSC population. Altogether, our results suggest that the combination of telomerase and TKI should be considered as an attractive strategy to treat CML patients to eradicate cancer cells and prevent relapse by targeting LSCs.
Collapse
Affiliation(s)
- Cindy Grandjenette
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Anthoula Gaigneaux
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Christo Christov
- Service Commun de Microscopie, Université de Lorraine, 54000, Nancy, France
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, South Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire Du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08626, South Korea.
| |
Collapse
|
2
|
Li FQ, Chiriboga L, Black MA, Takemaru KI, Raffaniello RD. Chibby is a weak regulator of β-catenin activity in gastric epithelium. J Cell Physiol 2018; 234:1871-1879. [PMID: 30063079 DOI: 10.1002/jcp.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/26/2018] [Indexed: 11/06/2022]
Abstract
The canonical Wnt-β-catenin pathway is important in normal development. Mutations in β-catenin or proteins involved with regulating its phosphorylation or localization result in its nuclear accumulation where it activates its target genes and stimulates cell proliferation. This pathway is dysregulated in many different types of cancer, including gastric cancer (GC). Chibby (Cby) is a 14-kDa protein that inhibits β-catenin localization to the nucleus and represses β-catenin-induced transcriptional activity. In the current study, we examined the expression and function of Cby in normal and cancerous human gastric tissue. Reverse-transcription polymerase chain reaction and immunohistochemistry revealed that Cby is expressed in human stomach and localized to glandular elements. Immunohistochemical staining intensity of Cby was decreased in GC tissue when compared with normal gastric epithelium. In AGS cells, a human gastric carcinoma cell line, Cby expression was low. Stable AGS cell transfectants overexpressing Cby were prepared. Cby overexpression did not affect proliferation rates or β-catenin levels. However, confocal microscopy and subcellular fractionation studies revealed that Cby overexpression resulted in a small decrease in nuclear β-catenin. Moreover, Cby overexpression caused a molecular weight shift in nuclear β-catenin and resulted in decreased β-catenin signaling in AGS cells as measured by the TopFlash assay. However, Cby overexpression did not affect c-Myc protein levels. To conclude, Cby expression was decreased in GC samples and Cby expression altered β-catenin localization in cultured GC cells. However, Cby did not affect cell proliferation rates or β-catenin-induced protein expression. Cby may be involved in the early events in the pathogenesis of GC.
Collapse
Affiliation(s)
- Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Luis Chiriboga
- Department of Pathology, New York University Langone Medical Center, New York
| | - Margaret A Black
- Department of Pathology, New York University Langone Medical Center, New York
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Robert D Raffaniello
- Department of Medical Laboratory Sciences, Hunter College, School of Arts and Sciences, New York
| |
Collapse
|
3
|
Zhu X, Wu X, Cheng J, Liao H, Di X, Li L, Li R, Zhou Y, Zhang X. Dalbinol, a rotenoid from Amorpha fruticosa L., exerts anti-proliferative activity by facilitating β-catenin degradation in hepatocellular carcinoma cells. Oncotarget 2017; 8:47755-47766. [PMID: 28548956 PMCID: PMC5564602 DOI: 10.18632/oncotarget.17766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor, and the main cause of treatment failure is malignant proliferation. Aberrations in Wnt/β-catenin signaling are associated with HCC development. Despite the improvements in overall survival made over the past decade from the advent of molecularly targeted therapies, these treatments do not have efficacy in all patients with different pathogeneses. Therefore, there is a demand for novel chemotherapeutic agents for HCC. To this end, we built a natural compound library and screened out a rotenoid named dalbinol from the seeds of Amorpha fruticosa L. Our data demonstrated that dalbinol inhibited the growth of HepG2, HepG2/ADM and Huh7 cells in a concentration-dependent manner. Pharmacological experiments also showed that dalbinol suppressed growth and induced apoptosis in these HCC cell lines in vitro. Furthermore, we found that dalbinol promoted β-catenin degradation, which was mediated by the ubiquitin-proteasome pathway. To summarize, our results illustrate that dalbinol inhibited HCC cell growth by facilitating β-catenin degradation through the ubiquitin-proteasome pathway. Hence, we propose that dalbinol will be a promising agent for the treatment of HCC subtypes with aberrant Wnt/β-catenin pathway activation.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Xin Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jing Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hongbo Liao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Xiaoqing Di
- Department of Pathology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Lili Li
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Rong Li
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
4
|
Misztal K, Brozko N, Nagalski A, Szewczyk LM, Krolak M, Brzozowska K, Kuznicki J, Wisniewska MB. TCF7L2 mediates the cellular and behavioral response to chronic lithium treatment in animal models. Neuropharmacology 2016; 113:490-501. [PMID: 27793772 DOI: 10.1016/j.neuropharm.2016.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 11/15/2022]
Abstract
The mechanism of lithium's therapeutic action remains obscure, hindering the discovery of safer treatments for bipolar disorder. Lithium can act as an inhibitor of the kinase GSK3α/β, which in turn negatively regulates β-catenin, a co-activator of LEF1/TCF transcription factors. However, unclear is whether therapeutic levels of lithium activate β-catenin in the brain, and whether this activation could have a therapeutic significance. To address this issue we chronically treated mice with lithium. Although the level of non-phospho-β-catenin increased in all of the brain areas examined, β-catenin translocated into cellular nuclei only in the thalamus. Similar results were obtained when thalamic and cortical neurons were treated with a therapeutically relevant concentration of lithium in vitro. We tested if TCF7L2, a member of LEF1/TCF family that is highly expressed in the thalamus, facilitated the activation of β-catenin. Silencing of Tcf7l2 in thalamic neurons prevented β-catenin from entering the nucleus, even when the cells were treated with lithium. Conversely, when Tcf7l2 was ectopically expressed in cortical neurons, β-catenin shifted to the nucleus, and lithium augmented this process. Lastly, we silenced tcf7l2 in zebrafish and exposed them to lithium for 3 days, to evaluate whether TCF7L2 is involved in the behavioral response. Lithium decreased the dark-induced activity of control zebrafish, whereas the activity of zebrafish with tcf7l2 knockdown was unaltered. We conclude that therapeutic levels of lithium activate β-catenin selectively in thalamic neurons. This effect is determined by the presence of TCF7L2, and potentially contributes to the therapeutic response.
Collapse
Affiliation(s)
- Katarzyna Misztal
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland
| | - Nikola Brozko
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Andrzej Nagalski
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland
| | - Lukasz M Szewczyk
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Marta Krolak
- University of Warsaw, College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Poland
| | - Katarzyna Brzozowska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland; Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland
| | - Marta B Wisniewska
- International Institute of Molecular and Cell Biology, Laboratory of Neurodegeneration, Warsaw, Poland; University of Warsaw, Centre of New Technologies, Laboratory of Molecular Neurobiology, Poland.
| |
Collapse
|
5
|
Jamieson C, Mills KM, Lui C, Semaan C, Molloy MP, Sharma M, Forwood JK, Henderson BR. Characterization of a beta-catenin nuclear localization defect in MCF-7 breast cancer cells. Exp Cell Res 2016; 341:196-206. [PMID: 26844628 DOI: 10.1016/j.yexcr.2016.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
Beta-catenin plays a key role in transducing Wnt signals from the plasma membrane to the nucleus. Here we characterize an unusual subcellular distribution of beta-catenin in MCF-7 breast cancer cells, wherein beta-catenin localizes to the cytoplasm and membrane but atypically did not relocate to the nucleus after Wnt treatment. The inability of Wnt or the Wnt agonist LiCl to induce nuclear localization of beta-catenin was not due to defective nuclear transport, as the transport machinery was intact and ectopic GFP-beta-catenin displayed rapid nuclear entry in living cells. The mislocalization is explained by a shift in the retention of beta-catenin from nucleus to cytoplasm. The reduced nuclear retention is caused by unusually low expression of lymphoid enhancer factor/T-cell factor (LEF/TCF) transcription factors. The reconstitution of LEF-1 or TCF4 expression rescued nuclear localization of beta-catenin in Wnt treated cells. In the cytoplasm, beta-catenin accumulated in recycling endosomes, golgi and beta-COP-positive coatomer complexes. The peripheral association with endosomes diminished after Wnt treatment, potentially releasing β-catenin into the cytoplasm for nuclear entry. We propose that in MCF-7 and perhaps other breast cancer cells, beta-catenin may contribute to cytoplasmic functions such as ER-golgi transport, in addition to its transactivation role in the nucleus.
Collapse
Affiliation(s)
- Cara Jamieson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kate M Mills
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Christina Lui
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Crystal Semaan
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Manisha Sharma
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
6
|
Jamieson C, Lui C, Brocardo MG, Martino-Echarri E, Henderson BR. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci 2015; 128:3933-46. [PMID: 26403202 PMCID: PMC4657330 DOI: 10.1242/jcs.167742] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/17/2015] [Indexed: 12/29/2022] Open
Abstract
β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1-β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin-lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin-LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cara Jamieson
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Christina Lui
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Mariana G Brocardo
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Estefania Martino-Echarri
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Beric R Henderson
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
7
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
8
|
Morgan RG, Ridsdale J, Tonks A, Darley RL. Factors Affecting the Nuclear Localization of β-Catenin in Normal and Malignant Tissue. J Cell Biochem 2014; 115:1351-61. [DOI: 10.1002/jcb.24803] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Rhys G. Morgan
- School of Cellular and Molecular Medicine; University of Bristol; University Walk; Clifton Bristol BS8 1TD UK
| | - Jenna Ridsdale
- Department of Haematology; Institute of Cancer & Genetics; School of Medicine; Cardiff University; S Wales CF14 4XN UK
| | - Alex Tonks
- Department of Haematology; Institute of Cancer & Genetics; School of Medicine; Cardiff University; S Wales CF14 4XN UK
| | - Richard L. Darley
- Department of Haematology; Institute of Cancer & Genetics; School of Medicine; Cardiff University; S Wales CF14 4XN UK
| |
Collapse
|
9
|
Jamieson C, Sharma M, Henderson BR. Targeting the β-catenin nuclear transport pathway in cancer. Semin Cancer Biol 2014; 27:20-9. [PMID: 24820952 DOI: 10.1016/j.semcancer.2014.04.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022]
Abstract
The nuclear localization of specific proteins is critical for cellular processes such as cell division, and in recent years perturbation of the nuclear transport cycle of key proteins has been linked to cancer. In particular, specific gene mutations can alter nuclear transport of tumor suppressing and oncogenic proteins, leading to cell transformation or cancer progression. This review will focus on one such factor, β-catenin, a key mediator of the canonical wnt signaling pathway. In response to a wnt stimulus or specific gene mutations, β-catenin is stabilized and translocates to the nucleus where it binds TCF/LEF-1 transcription factors to transactivate genes that drive tumor formation. Moreover, the nuclear import and accumulation of β-catenin correlates with clinical tumor grade. Recent evidence suggests that the primary nuclear transport route of β-catenin is independent of the classical Ran/importin import machinery, and that β-catenin directly contacts the nuclear pore complex to self-regulate its own entry into the nucleus. Here we propose that the β-catenin nuclear import pathway may provide an opportunity for identification of specific drug targets and inhibition of β-catenin nuclear function, much like the current screening of drugs that block binding of β-catenin to LEF-1/TCFs. Here we will discuss the diverse mechanisms regulating nuclear localization of β-catenin and their potential as targets for anticancer agent development.
Collapse
Affiliation(s)
- Cara Jamieson
- Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Manisha Sharma
- Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Beric R Henderson
- Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
10
|
Elfert S, Weise A, Bruser K, Biniossek ML, Jägle S, Senghaas N, Hecht A. Acetylation of human TCF4 (TCF7L2) proteins attenuates inhibition by the HBP1 repressor and induces a conformational change in the TCF4::DNA complex. PLoS One 2013; 8:e61867. [PMID: 23613959 PMCID: PMC3626699 DOI: 10.1371/journal.pone.0061867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/19/2013] [Indexed: 02/01/2023] Open
Abstract
The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was shown that several aspects of TCF/LEF protein function are regulated by post-translational modification. The association of TCF/LEF family members with acetyltransferases and deacetylases prompted us to investigate whether vertebrate TCF/LEF proteins are subject to acetylation. Through co-expression with p300 and CBP and subsequent analyses using mass spectrometry and immunodetection with anti-acetyl-lysine antibodies we show that TCF4 can be acetylated at lysine K₁₅₀ by CBP. K₁₅₀ acetylation is restricted to TCF4E splice variants and requires the simultaneous presence of β-catenin and the unique TCF4E C-terminus. To examine the functional consequences of K₁₅₀ acetylation we substituted K₁₅₀ with amino acids representing the non-acetylated and acetylated states. Reporter gene assays based on Wnt/β-catenin-responsive promoter regions did not indicate a general role of K₁₅₀ acetylation in transactivation by TCF4E. However, in the presence of CBP, non-acetylatable TCF4E with a K₁₅₀R substitution was more susceptible to inhibition by the HBP-1 repressor protein compared to wild-type TCF4E. Acetylation of K₁₅₀ using a bacterial expression system or amino acid substitutions at K₁₅₀ alter the electrophoretic properties of TCF4E::DNA complexes. This result suggests that K₁₅₀ acetylation leads to a conformational change that may also represent the mechanism whereby acetylated TCF4E acquires resistance against HBP1. In summary, TCF4 not only recruits acetyltransferases but is also a substrate for these enzymes. The fact that acetylation affects only a subset of TCF4 splice variants and is mediated preferentially by CBP suggests that the conditional acetylation of TCF4E is a novel regulatory mechanism that diversifies the transcriptional output of Wnt/β-catenin signaling in response to changing intracellular signaling milieus.
Collapse
Affiliation(s)
- Susanne Elfert
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas Weise
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Katja Bruser
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sabine Jägle
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Niklas Senghaas
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
11
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
12
|
Wnt signaling from membrane to nucleus: β-catenin caught in a loop. Int J Biochem Cell Biol 2012; 44:847-50. [PMID: 22433990 DOI: 10.1016/j.biocel.2012.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/14/2022]
Abstract
β-catenin is the central nuclear effector of the Wnt signaling pathway, and regulates other cellular processes including cell adhesion. Wnt stimulation of cells culminates in the nuclear translocation of β-catenin and transcriptional activation of target genes that function during both normal and malignant development. Constitutive activation of the Wnt pathway leads to inappropriate nuclear accumulation of β-catenin and gene transactivation, an important step in cancer progression. This has generated interest in the mechanisms regulating β-catenin nuclear accumulation and retention. Here we discuss recent advances in understanding feedback loops that trap β-catenin in the nucleus and provide potential insights into Wnt signaling and the development of anti-cancer drugs.
Collapse
|
13
|
Jamieson C, Sharma M, Henderson BR. Regulation of β-Catenin Nuclear Dynamics by GSK-3β Involves a LEF-1 Positive Feedback Loop. Traffic 2011; 12:983-99. [DOI: 10.1111/j.1600-0854.2011.01207.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Mutational inactivation of the tumor suppressor gene APC (Adenomatous polyposis coli) is thought to be an initiating step in the progression of the vast majority ofcolorectal cancers. Attempts to understand APC function have revealed more than a dozen binding partners as well as several subcellular localizations including at cell-cell junctions, associated with microtubules at the leading edge of migrating cells, at the apical membrane, in the cytoplasm and in the nucleus. The present chapter focuses on APC localization and functions in the nucleus. APC contains two classical nuclear localization signals, with a third domain that can enhance nuclear import. Along with two sets of nuclear export signals, the nuclear localization signals enable the large APC protein to shuttle between the nucleus and cytoplasm. Nuclear APC can oppose beta-catenin-mediated transcription. This down-regulation of nuclear beta-catenin activity by APC most likely involves nuclear sequestration of beta-catenin from the transcription complex as well as interaction of APC with transcription corepressor CtBP. Additional nuclear binding partners for APC include transcription factor activator protein AP-2alpha, nuclear export factor Crm1, protein tyrosine phosphatase PTP-BL and perhaps DNA itself. Interaction of APC with polymerase beta and PCNA, suggests a role for APC in DNA repair. The observation that increases in the cytoplasmic distribution of APC correlate with colon cancer progression suggests that disruption of these nuclear functions of APC plays an important role in cancer progression. APC prevalence in the cytoplasm of quiescent cells points to a potential function for nuclear APC in control of cell proliferation. Clear definition of APC's nuclear function(s) will expand the possibilities for early colorectal cancer diagnostics and therapeutics targeted to APC.
Collapse
|
15
|
Parker DS, Blauwkamp T, Cadigan KM. Wnt/β‐catenin‐mediated transcriptional regulation. WNT SIGNALING IN EMBRYONIC DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(06)17001-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Xiang D, Wang D, He Y, Xie J, Zhong Z, Li Z, Xie J. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs 2006; 17:753-62. [PMID: 16926625 DOI: 10.1097/01.cad.0000224441.01082.bb] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Caffeic acid phenethyl ester, an active component of propolis, has been implicated in the regulation of cell growth and apoptosis, although the exact mechanism of this activity has not been elucidated. In this study, we explored the effects of caffeic acid phenethyl ester on growth, cell cycle, apoptosis and beta-catenin/T-cell factor signaling in human colon cancer cells. Using two human sporadic colon cancer cell lines (HCT116 and SW480), we assayed for cell growth inhibition, cell cycle and apoptosis induction. We also assayed for beta-catenin and downstream target genes (cyclin D1 and c-myc) mRNA and protein expression by reverse transcriptase-polymerase chain reaction and Western blot analysis. Beta-catenin localization was detected by indirect immunofluorescence. Beta-catenin/T-cell factor transcriptional activity was determined by transient transfection and reporter gene assay. Caffeic acid phenethyl ester completely inhibited growth, and induced G1 phase arrest and apoptosis in a dose-dependent manner in both HCT116 and SW480 cells. Treatment of human colon cancer cells with apoptotic concentrations of caffeic acid phenethyl ester resulted in a dose-dependent and time-dependent loss of total beta-Catenin protein, associated with decreased nuclear beta-catenin. Caffeic acid phenethyl ester reduced the expression of cyclin D1 and c-myc in a dose-dependent and time-dependent manner. We proved that caffeic acid phenethyl ester markedly suppressed the transcriptional activity of beta-catenin/T-cell factor in both HCT116 and SW480 cells depending on the concentration of caffeic acid phenethyl ester. These results indicate that caffeic acid phenethyl ester is an excellent inhibitor of beta-catenin/T-cell factor signaling in colon cancer cell lines and suggest that caffeic acid phenethyl ester merits further study as an agent against colorectal cancers.
Collapse
Affiliation(s)
- Debing Xiang
- Cancer Center, Daping Hospital and Institute of Surgery, Third Military Medical University, Chongqing, PRC
| | | | | | | | | | | | | |
Collapse
|
17
|
Kawada M, Seno H, Uenoyama Y, Sawabu T, Kanda N, Fukui H, Shimahara Y, Chiba T. Signal transducers and activators of transcription 3 activation is involved in nuclear accumulation of beta-catenin in colorectal cancer. Cancer Res 2006; 66:2913-7. [PMID: 16540637 DOI: 10.1158/0008-5472.can-05-3460] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear accumulation of beta-catenin is a key event for the development of colorectal cancer. Little is known, however, about the mechanisms underlying translocation of beta-catenin from the cytoplasm or the membrane to the nucleus. The present study examined whether signal transducers and activators of transcription 3 (STAT3) activation is involved in the nuclear accumulation of beta-catenin in colorectal cancer cells. Of the 90 primary colorectal cancer tissues, 40 (44.4%) were positive for nuclear staining of p-STAT3 and 63 (70.0%) were positive for nuclear staining of beta-catenin. The nuclear staining of both p-STAT3 and beta-catenin were observed predominantly in the periphery of the cancer tissues. Importantly, of the 40 tumors with p-STAT3 nuclear staining, 37 (92.5%) were also positive for nuclear beta-catenin staining and there was a significant correlation between p-STAT3 and beta-catenin nuclear staining (P < 0.01). Coexpression of nuclear p-STAT3 and beta-catenin was associated with lower patient survival (P < 0.01). In an in vitro study using a human colon cancer cell line, SW480, inhibition of STAT3 by dominant negative STAT3 or the Janus kinase inhibitor, AG490, induced translocation of beta-catenin from the nucleus to the cytoplasm or membrane. Luciferase assays revealed that STAT3 inhibition resulted in significant suppression of beta-catenin/T-cell factor transcription in association with significant inhibition of cell proliferation (P < 0.05). These findings suggest that in colorectal cancer, STAT3 activation is involved in the nuclear accumulation of beta-catenin, resulting in poor patient survival.
Collapse
Affiliation(s)
- Mayumi Kawada
- Department of Gastroenterology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sharma M, Leung L, Brocardo M, Henderson J, Flegg C, Henderson BR. Membrane localization of adenomatous polyposis coli protein at cellular protrusions: targeting sequences and regulation by beta-catenin. J Biol Chem 2006; 281:17140-17149. [PMID: 16621792 DOI: 10.1074/jbc.m513027200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenomatous polyposis coli protein (APC) translocates to, and stabilizes, the plus-ends of microtubules. In microtubule-dependent cellular protrusions, APC frequently accumulates in peripheral clusters at the basal membrane. APC targeting to membrane clusters is important for cell migration, but the localization mechanism is poorly understood. In this study, we performed deletion mapping and defined a minimal sequence (amino acids 1-2226) that efficiently targets APC to membrane clusters. This sequence lacks DLG-1 and EB1 binding sites, suggesting that these partners are not absolutely required for APC membrane targeting. A series of APC sequences were transiently expressed in cells and compared for their ability to compete endogenous APC at the membrane; potent inhibition of endogenous APC targeting was elicited by the Armadillo- (binds KAP3A, B56alpha, and ASEF) and beta-catenin-binding domains. The Armadillo domain was predicted to inhibit APC membrane localization through sequestration of the kinesin-KAP3A complex. The role of beta-catenin in APC membrane localization was unexpected but affirmed by overexpressing the APC binding sequence of beta-catenin, which similarly reduced APC membrane staining. Furthermore, we used RNA interference to show that loss of beta-catenin reduced APC at membrane clusters in migrating cells. In addition, we report that transiently expressed APC-yellow fluorescent protein co-localized with beta-catenin, KAP3A, EB1, and DLG-1 at membrane clusters, but only beta-catenin stimulated APC anchorage at the membrane. Our findings identify beta-catenin as a regulator of APC targeting to membrane clusters and link these two proteins to cell migration.
Collapse
Affiliation(s)
- Manisha Sharma
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Louie Leung
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Mariana Brocardo
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Jasmine Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Cameron Flegg
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Beric R Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
19
|
Ki H, Jung HC, Park JH, Kim JS, Lee KY, Kim TS, Kim K. Overexpressed LEF-1 proteins display different nuclear localization patterns of beta-catenin in normal versus tumor cells. Cell Biol Int 2006; 30:253-61. [PMID: 16378739 DOI: 10.1016/j.cellbi.2005.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/01/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Beta-catenin not only plays a role in cadherin-dependent cell adhesion, but also interacts with T-cell factor (TCF)/lymphoid enhancer factor-1 (LEF-1) to affect gene expression. In this report, we describe the effects of exogenous LEF-1 and of treatment with leptomycin B (LMB), a specific inhibitor of CRM1-medicated nuclear export, on the nuclear localization and export of beta-catenin. Normal epithelial cells overexpressing LEF-1 accumulate nuclear beta-catenin in a LEF-1 concentration-dependent manner. Nuclear beta-catenin, once imported from the cytoplasm, is rapidly removed from the nucleus. Treatment with LMB results in dramatic retention of nuclear beta-catenin in normal epithelial cells transfected with LEF-1, and this effect is intensified by treatment of N-Acetyl-leucyl-leucyl-norleucinal together with LMB. Colon carcinoma cells containing an adenomatous polyposis coli mutation retain significant amounts of LEF-1 induced nuclear beta-catenin considerably after the time-point when beta-catenin disappears from the nuclei of LEF-1 transfected normal epithelial cells. beta-Catenin binds directly to CRM1, and overexpression of CRM1 reduces nuclear beta-catenin-mediated transactivation function.
Collapse
Affiliation(s)
- Hyunkyoung Ki
- College of Pharmacy, Chonnam National University, 300 Yongbong-dong, Kwangju, South Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Park CH, Hahm ER, Park S, Kim HK, Yang CH. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. FEBS Lett 2006; 579:2965-71. [PMID: 15893313 DOI: 10.1016/j.febslet.2005.04.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/25/2005] [Accepted: 04/01/2005] [Indexed: 12/18/2022]
Abstract
Genetic and biochemical de-regulation of Wnt signaling is correlated with breast and other cancers. Our goal was to identify compounds that block Wnt signaling as a first step toward investigating new strategies for suppression of invasive and other breast cancers. In a limited phytonutrient screen, EGCG ((-)-epigallocatechin 3-gallate), the major phytochemical in green tea, emerged as an intriguing candidate. Epidemiological studies have associated green tea consumption with reduced recurrence of invasive and other breast cancers. Wnt signaling was inhibited by EGCG in a dose-dependent manner in breast cancer cells. The apparent mechanism targeted the HBP1 transcriptional repressor, which we had previously characterized as a suppressor of Wnt signaling. EGCG treatment induced HBP1 transcriptional repressor levels through an increase in HBP1 mRNA stability, but not transcriptional initiation. To test functionality, DNA-based short hairpin RNA (shRNA) was used to knockdown the endogenous HBP1 gene. Consistently, the HBP1 knockdown lines had reduced sensitivity to EGCG in the suppression of Wnt signaling and of a target gene (c-MYC). Because our ongoing studies clinically link abrogation of HBP1 with invasive breast cancer, we tested if EGCG also regulated biological functions associated with de-regulated Wnt signaling and with invasive breast cancer. EGCG reduced both breast cancer cell tumorigenic proliferation and invasiveness in an HBP1-dependent manner. Together, the emerging mechanism is that EGCG blocks Wnt signaling by inducing the HBP1 transcriptional repressor and inhibits aspects of invasive breast cancer. These studies provide a framework for considering future studies in breast cancer treatment and prevention.
Collapse
Affiliation(s)
- Chi Hoon Park
- Division of Chemistry and Molecular Engineering, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
21
|
Brocardo M, Näthke IS, Henderson BR. Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep 2005; 6:184-90. [PMID: 15678162 PMCID: PMC1299239 DOI: 10.1038/sj.embor.7400329] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 11/05/2004] [Accepted: 11/25/2004] [Indexed: 11/09/2022] Open
Abstract
Adenomatous polyposis coli (APC) is a tumour suppressor involved in colon cancer progression. We and others previously described nuclear-cytoplasmic shuttling of APC. However, there are conflicting reports concerning the localization of endogenous wild-type and tumour-associated, truncated APC. To resolve this issue, we compared APC localization using immunofluorescence (IF) microscopy and cell fractionation with nine different APC antibodies. We found that three commonly used APC antibodies showed nonspecific nuclear staining by IF and validated this conclusion in cells where APC was inactivated using small interfering RNA or Cre/Flox. Fractionation showed that wild-type and truncated APC from colon cancer cells were primarily cytoplasmic, but increased in the nucleus after leptomycin B treatment, consistent with CRM1-dependent nuclear export. In contrast to recent reports, our biochemical data indicate that APC nuclear localization is not regulated by changes in cell density, and that APC nuclear export is not prevented by truncating mutations in cancer. These results verify that the bulk of APC resides in the cytoplasm and indicate the need for caution when evaluating the nuclear accumulation of APC.
Collapse
Affiliation(s)
- Mariana Brocardo
- Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, Darcy Road (PO Box 412), Westmead, New South Wales 2145, Australia
| | - Inke S Näthke
- Department of Cell & Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Beric R Henderson
- Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, Darcy Road (PO Box 412), Westmead, New South Wales 2145, Australia
- Tel: +61 2 9845 9057; Fax: +61 2 9845 9102; E-mail:
| |
Collapse
|
22
|
|
23
|
Cordray P, Satterwhite DJ. TGF-? induces novel Lef-1 splice variants through a Smad-independent signaling pathway. Dev Dyn 2005; 232:969-78. [PMID: 15736165 DOI: 10.1002/dvdy.20275] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The lymphoid enhancer-binding factor (Lef-1) transcription factor is best known for the ability to transduce Wnt signals during development and to mediate excessive Wnt signaling in certain types of cancer. We recently identified and characterized a novel Wnt-like effect of transforming growth factor-beta (TGF-beta) on beta-catenin, the binding partner of Lef-1. Therefore, we sought to determine the effect of TGF-beta on expression of the Lef/T-cell-specific transcription factor (TCF) components of the Wnt pathway. We found that TGF-beta markedly induced Lef-1 mRNA expression in cell lines originating from fetal lung (Mv1Lu) and newborn skin (Balb/MK), tissues that normally express Lef-1 during development. Lef-1 induction was temporally related to but independent of TGF-beta-induced G1 cell cycle arrest. Furthermore, the induction of Lef-1 was independent of both new protein synthesis and Smad-mediated signaling. Using TGF-beta-treated Mv1Lu cells, we identified multiple splice forms of Lef-1, including novel variants that lack both exons 2 and 3. We conclude that the induction of Lef-1 has permissive effects on the well-characterized TGF-beta signal that inhibits c-myc expression and induces a G1 arrest.
Collapse
Affiliation(s)
- Pauline Cordray
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | | |
Collapse
|
24
|
Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1653:1-24. [PMID: 12781368 DOI: 10.1016/s0304-419x(03)00005-2] [Citation(s) in RCA: 631] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wnt signaling pathway, named for its most upstream ligands, the Wnts, is involved in various differentiation events during embryonic development and leads to tumor formation when aberrantly activated. Molecular studies have pinpointed activating mutations of the Wnt signaling pathway as the cause of approximately 90% of colorectal cancer (CRC), and somewhat less frequently in cancers at other sites, such as hepatocellular carcinoma (HCC). Ironically, Wnts themselves are only rarely involved in the activation of the pathway during carcinogenesis. Mutations mimicking Wnt stimulation-generally inactivating APC mutations or activating beta-catenin mutations-result in nuclear accumulation of beta-catenin which subsequently complexes with T-cell factor/lymphoid enhancing factor (TCF/LEF) transcription factors to activate gene transcription. Recent data identifying target genes has revealed a genetic program regulated by beta-catenin/TCF controlling the transcription of a suite of genes promoting cellular proliferation and repressing differentiation during embryogenesis, carcinogenesis, and in the post-embryonic regulation of cell positioning in the intestinal crypts. This review considers the spectra of tumors arising from active Wnt signaling and attempts to place perspective on recent data that begin to elucidate the mechanisms prompting uncontrolled cell growth following induction of Wnt signaling.
Collapse
Affiliation(s)
- Rachel H Giles
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
25
|
Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M. Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J 2003; 22:1101-13. [PMID: 12606575 PMCID: PMC150338 DOI: 10.1093/emboj/cdg105] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The adenomatous polyposis coli (APC) protein is inactivated in most colorectal tumours. APC loss is an early event in tumorigenesis, and causes an increase of nuclear beta-catenin and its transcriptional activity. This is thought to be the driving force for tumour progression. APC shuttles in and out of the nucleus, but the functional significance of this has been controversial. Here, we show that APC truncations are nuclear in colorectal cancer cells and adenocarcinomas, and this correlates with loss of centrally located nuclear export signals. These signals confer efficient nuclear export as measured directly by fluorescence loss in photobleaching (FLIP), and they are critical for the function of APC in reducing the transcriptional activity of beta-catenin in complementation assays of APC mutant colorectal cancer cells. Importantly, targeting a functional APC construct to the nucleus causes a striking nuclear accumulation of beta-catenin without changing its transcriptional activity. Our evidence indicates that the rate of nuclear export of APC, rather than its nuclear import or steady-state levels, determines the transcriptional activity of beta-catenin.
Collapse
Affiliation(s)
| | | | - Thomas Brabletz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and
Institute of Pathology, University of Erlangen, Krankenhausstraße 8–10, D-91054 Erlangen, Germany Corresponding author e-mail:
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK and
Institute of Pathology, University of Erlangen, Krankenhausstraße 8–10, D-91054 Erlangen, Germany Corresponding author e-mail:
| |
Collapse
|
26
|
Li G, Iyengar R. Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci U S A 2002; 99:13254-9. [PMID: 12239346 PMCID: PMC130620 DOI: 10.1073/pnas.202355799] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways interact to integrate and regulate information flow in evoking complex cellular responses. We have studied the mechanisms and consequences of interactions between the Gq and Wnt/beta-catenin pathways. In human colon carcinoma SW480 cells, activation of the Gq pathway inhibits beta-catenin signaling as determined by transcriptional reporter and cell proliferation assays. Ca(2+) release from internal stores results in nuclear export and calpain-mediated degradation of beta-catenin in the cytoplasm. Galphaq does not inhibit the effects of constitutively activated DeltaN-XTCF3-VP16 chimera in SW480 cells. Similarly, in HEK293 cells the Gq pathway suppresses beta-catenin-T cell factor/lymphocyte enhancer factor-1 transcriptional activity induced by Wnt/Frizzled interaction or glycogen synthase kinase-3beta-resistant beta-catenin, but not DeltaN-XTCF3-VP16. We conclude that Gq signaling promotes nuclear export and calpain-mediated degradation of beta-catenin, which therefore contributes to the inhibition of Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Guangnan Li
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
27
|
Henderson BR, Fagotto F. The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 2002; 3:834-9. [PMID: 12223464 PMCID: PMC1084234 DOI: 10.1093/embo-reports/kvf181] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2002] [Revised: 07/17/2002] [Accepted: 07/24/2002] [Indexed: 02/06/2023] Open
Abstract
Adenomatous polyposis coli (APC) and beta-catenin, two key interacting proteins implicated in development and cancer, were recently found to traffic into and out of the nucleus in response to internal and external signals. The two proteins can enter and exit the nucleus independently, a discovery that has prompted debate about the previously proposed role of APC as a beta-catenin chaperone. Here, we review the regulation of APC and beta-catenin subcellular localization, in particular in cancer cells. We speculate that, in non-stimulated cells, APC actively exports beta-catenin from the nucleus to the cytoplasm where its levels are regulated by degradation; and, conversely, that, in cancer cells or those stimulated by Wnt signaling, beta-catenin degradation is inhibited and the accruing protein is capable of moving between the nucleus and cytoplasm independently of APC. Models that link APC and beta-catenin transport to function are discussed.
Collapse
Affiliation(s)
- Beric R Henderson
- Westmead Institute for Cancer Research, University of Sydney, Westmead Millennium Institute, NSW, Australia.
| | | |
Collapse
|