1
|
Maksoud S, Ortega JT, Hidalgo M, Rangel HR. Leishmania donovani and HIV co-infection in vitro: Identification and characterization of main molecular players. Acta Trop 2022; 228:106248. [PMID: 34822851 DOI: 10.1016/j.actatropica.2021.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
The incidence of Leishmania/HIV co-infection is growing and few studies detail the cellular processes and macromolecules participating in co-infection. Thus, the goal of this study was to partially describe the Leishmania/HIV co-infection events by measuring molecular and functional parameters associated with both pathogens in vitro. MT-4 cells (human T-lymphocytes), primary monocytes, and peripheral blood mononuclear cells were exposed to HIV and/or Leishmania donovani. The cytopathic effects generated by the pathogens were observed through microscopy. Viral replication was assessed by monitoring p24 protein levels and parasitic proliferation/infectivity was determined using Giemsa staining. Changes in molecular markers were evaluated by ELISA and fluorescence assays. Our results showed that our system reassembles the main parameters previously described for Leishmania/HIV co-infection in patients in terms of potentiation of parasitic and viral replication/infectivity, amplification of syncytia induction, and alterations of cell viability. In addition, an amplification in NF-κB activation, changes in CXCR4/CCR5 surface expression, and a Th1→Th2 variation in cytokine/chemokine secretion were demonstrated. Altogether, this study could contribute to gain a deep understanding of the molecular events associated with Leishmania/HIV co-infection.
Collapse
Affiliation(s)
- S Maksoud
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J T Ortega
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - H R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
2
|
Olvera A, Martinez JP, Casadellà M, Llano A, Rosás M, Mothe B, Ruiz-Riol M, Arsequell G, Valencia G, Noguera-Julian M, Paredes R, Meyerhans A, Brander C. Benzyl-2-Acetamido-2-Deoxy-α-d-Galactopyranoside Increases Human Immunodeficiency Virus Replication and Viral Outgrowth Efficacy In Vitro. Front Immunol 2018; 8:2010. [PMID: 29472913 PMCID: PMC5810283 DOI: 10.3389/fimmu.2017.02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Glycosylation of host and viral proteins is an important posttranslational modification needed to ensure correct function of glycoproteins. For this reason, we asked whether inhibition of O-glycosylation during human immunodeficiency virus (HIV) in vitro replication could affect HIV infectivity and replication rates. We used benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside (BAGN), a compound that has been widely used to inhibit O-glycosylation in several cell lines. Pretreatment and culture of PHA-blast target cells with BAGN increased the percentage of HIV-infected cells (7.6-fold, p = 0.0115), the per-cell amount of HIV p24 protein (1.3-fold, p = 0.2475), and the viral particles in culture supernatants (7.1-fold, p = 0.0029) compared to BAGN-free cultures. Initiating infection with virus previously grown in the presence of BAGN further increased percentage of infected cells (30-fold, p < 0.0001), intracellular p24 (1.5-fold, p = 0.0433), and secreted viral particles (74-fold, p < 0.0001). BAGN-treated target cells showed less CD25 and CCR5 expression, but increased HLA-DR surface expression, which positively correlated with the number of infected cells. Importantly, BAGN improved viral outgrowth kinetics in 66% of the samples tested, including samples from HIV controllers and subjects in whom no virus could be expanded in the absence of BAGN. Sequencing of the isolated virus indicated no skewing of viral quasi-species populations when compared to BAGN-free culture conditions. BAGN also increased virus production in the ACH2 latency model when used together with latency-reversing agents. Taken together, our results identify BAGN treatment as a simple strategy to improve viral outgrowth in vitro and may provide novel insights into host restriction mechanisms and O-glycosylation-related therapeutic targets for HIV control strategies.
Collapse
Affiliation(s)
- Alex Olvera
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Maria Casadellà
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Anuska Llano
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Míriam Rosás
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Beatriz Mothe
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain.,Unitat VIH, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Gregorio Valencia
- Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Marc Noguera-Julian
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| | - Roger Paredes
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain.,Unitat VIH, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain.,Universitat Autonoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain.,Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Wang X, Tan J, Biswas S, Zhao J, Devadas K, Ye Z, Hewlett I. Pandemic Influenza A (H1N1) Virus Infection Increases Apoptosis and HIV-1 Replication in HIV-1 Infected Jurkat Cells. Viruses 2016; 8:E33. [PMID: 26848681 PMCID: PMC4776188 DOI: 10.3390/v8020033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection has a significant impact on public health, since it is a major cause of morbidity and mortality. It is not well-known whether influenza virus infection affects cell death and human immunodeficiency virus (HIV)-1 replication in HIV-1-infected patients. Using a lymphoma cell line, Jurkat, we examined the in vitro effects of pandemic influenza A (H1N1) virus (pH1N1) infection on cell death and HIV-1 RNA production in infected cells. We found that pH1N1 infection increased apoptotic cell death through Fas and Bax-mediated pathways in HIV-1-infected Jurkat cells. Infection with pH1N1 virus could promote HIV-1 RNA production by activating host transcription factors including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein 1 (AP-1) through mitogen-activated protein kinases (MAPK) pathways and T-cell antigen receptor (TCR)-related pathways. The replication of HIV-1 latent infection could be reactivated by pH1N1 infection through TCR and apoptotic pathways. These data indicate that HIV-1 replication can be activated by pH1N1 virus in HIV-1-infected cells resulting in induction of cell death through apoptotic pathways.
Collapse
Affiliation(s)
- Xue Wang
- Lab of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Building 72, Rm 4322, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Jiying Tan
- Lab of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Building 72, Rm 4322, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Santanu Biswas
- Lab of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Building 72, Rm 4322, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Jiangqin Zhao
- Lab of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Building 72, Rm 4322, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Krishnakumar Devadas
- Lab of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Building 72, Rm 4322, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Indira Hewlett
- Lab of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, Building 72, Rm 4322, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA.
| |
Collapse
|
4
|
Argirova R, Nenova R, Ivanov D, Genova-Kalou P, Raleva S. Experimental model to study co-infection of human immunodeficiency virus-type 1 (HIV-1 IIIB) and influenza virus in cell culture. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2015.1091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Gordts SC, Renders M, Férir G, Huskens D, Van Damme EJM, Peumans W, Balzarini J, Schols D. NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J Antimicrob Chemother 2015; 70:1674-85. [PMID: 25700718 PMCID: PMC7537945 DOI: 10.1093/jac/dkv034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES This study aimed to assess the antiviral properties of a unique lectin (NICTABA) produced by the tobacco plant, Nicotiana tabacum. METHODS Cellular assays were used to investigate the antiviral activity of NICTABA and Urtica dioica agglutinin (UDA). Surface plasmon resonance (SPR) studies were performed to study the sugar specificity and the interactions of both lectins with the envelope glycoproteins of HIV-1. RESULTS The N-acetyl-d-glucosamine (GlcNAc)-binding lectins exhibited broad-spectrum activity against several families of enveloped viruses including influenza A/B, Dengue virus type 2, herpes simplex virus types 1 and 2 and HIV-1/2. The IC50 of NICTABA for various HIV-1 strains, clinical isolates and HIV-2 assessed in PBMCs ranged from 5 to 30 nM. Furthermore, NICTABA inhibited syncytium formation between persistently HIV-1-infected T cells and uninfected CD4+ T lymphocytes and prevented DC-SIGN-mediated HIV-1 transmission to CD4+ target T lymphocytes. However, unlike many other antiviral carbohydrate-binding agents (CBAs) described so far, NICTABA did not block HIV-1 capture to DC-SIGN+ cells and it did not interfere with the binding of the human monoclonal antibody 2G12 to gp120. SPR studies with HIV-1 envelope glycoproteins showed that the affinity of NICTABA for gp120 and gp41 was in the low nanomolar range. The specific binding of NICTABA to gp120 could be prevented in the presence of a GlcNAc trimer, but not in the presence of mannose trimers. NICTABA displayed no antiviral activity against non-enveloped viruses. CONCLUSIONS Since CBAs possess a high genetic barrier for the development of viral resistance and NICTABA shows a broad antiviral activity profile, this CBA may qualify as a potential antiviral candidate with a pleiotropic mode of action aimed at targeting the entry of enveloped viruses.
Collapse
Affiliation(s)
- Stephanie C Gordts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Marleen Renders
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Geoffrey Férir
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Dana Huskens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Willy Peumans
- Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Sato S, Ouellet M, St-Pierre C, Tremblay MJ. Glycans, galectins, and HIV-1 infection. Ann N Y Acad Sci 2012; 1253:133-48. [DOI: 10.1111/j.1749-6632.2012.06475.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Enhancement of the influenza A hemagglutinin (HA)-mediated cell-cell fusion and virus entry by the viral neuraminidase (NA). PLoS One 2009; 4:e8495. [PMID: 20041119 PMCID: PMC2795206 DOI: 10.1371/journal.pone.0008495] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 11/19/2009] [Indexed: 11/19/2022] Open
Abstract
Background The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity. Methodology/Principal Findings The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogeneous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA. Conclusion/Significance The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion.
Collapse
|
8
|
Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta Gen Subj 2009; 1790:1599-610. [DOI: 10.1016/j.bbagen.2009.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|