1
|
Dhurua S, Maity S, Maity B, Jana M. Comparative Bindings of Glycosaminoglycans with CXCL8 Monomer and Dimer: Insights from Conformational Dynamics and Kinetics of Hydrogen Bonds. J Phys Chem B 2024; 128:10348-10362. [PMID: 39405497 DOI: 10.1021/acs.jpcb.4c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
GAGs bind to both the monomeric and dimeric forms of CXCL8, helping to form a concentration gradient of the chemokine that facilitates the recruitment of neutrophils to an injury site and supports other biological functions. In this study, atomistic molecular dynamics simulations were conducted to investigate the binding behavior of two hexameric GAGs sulfated at two different positions, chondroitin sulfate (CS) and heparan sulfate (HS), with the monomer (SIL8) and dimer (DIL8) forms of the CXCL8 protein. The results support that the conformational diversity of CS and HS appeared to be more when binding with monomer SIL8 than dimer DIL8. CS gained more configurational entropy from glycosidic linkage flexibility when bound to SIL8 than DIL8, with a higher energy barrier, whereas HS exhibited a lower energy barrier for configurational entropy when bound to SIL8 and DIL8. The monomer SIL8 exhibited more favorable and preferential binding with GAGs compared to DIL8. Formation of hydrogen bonds with the basic amino acids of SIL8 and GAG was more rigid and required higher activation energy to break than the other identified hydrogen bondings. Water molecules involved in hydrogen bonding with GAGs, excluding those with basic amino acids of DIL8, showed longer lifetimes and slower relaxation compared to SIL8. This suggests that water-mediated interactions also favor binding of DIL8 with GAGs. Despite having more basic amino acids, DIL8 did not display stronger binding than SIL8, indicating the significant role of basic residues in stabilizing the GAG-protein interactions in the monomers. The reason could be that the greater number of nonbasic amino acids in dimeric CXCL8 stabilizes the complex by forming water-mediated hydrogen bonds, reducing the conformational preferences for binding with GAGs. In contrast, the monomeric form of CXCL8 exhibits a higher conformational preference for protein-GAG interactions.
Collapse
Affiliation(s)
- Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Sankar Maity
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Bilash Maity
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
2
|
Beccati D, Lech M, Ozug J, Gunay NS, Wang J, Sun EY, Pradines JR, Farutin V, Shriver Z, Kaundinya GV, Capila I. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure. Glycoconj J 2016; 34:107-117. [PMID: 27771794 PMCID: PMC5266780 DOI: 10.1007/s10719-016-9734-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.
Collapse
Affiliation(s)
- Daniela Beccati
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Miroslaw Lech
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Jennifer Ozug
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Nur Sibel Gunay
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Jing Wang
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Elaine Y Sun
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Joël R Pradines
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Victor Farutin
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Zachary Shriver
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Ganesh V Kaundinya
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA
| | - Ishan Capila
- Momenta Pharmaceuticals Inc., 675 West Kendall Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Wright DW, Perkins SJ. SCT: a suite of programs for comparing atomistic models with small-angle scattering data. J Appl Crystallogr 2015; 48:953-961. [PMID: 26089768 PMCID: PMC4453981 DOI: 10.1107/s1600576715007062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Small-angle X-ray and neutron scattering techniques characterize proteins in solution and complement high-resolution structural studies. They are of particular utility when large proteins cannot be crystallized or when the structure is altered by solution conditions. Atomistic models of the averaged structure can be generated through constrained modelling, a technique in which known domain or subunit structures are combined with linker models to produce candidate global conformations. By randomizing the configuration adopted by the different elements of the model, thousands of candidate structures are produced. Next, theoretical scattering curves are generated for each model for trial-and-error fits to the experimental data. From these, a small family of best-fit models is identified. In order to facilitate both the computation of theoretical scattering curves from atomistic models and their comparison with experiment, the SCT suite of tools was developed. SCT also includes programs that provide sequence-based estimates of protein volume (either incorporating hydration or not) and add a hydration layer to models for X-ray scattering modelling. The original SCT software, written in Fortran, resulted in the first atomistic scattering structures to be deposited in the Protein Data Bank, and 77 structures for antibodies, complement proteins and anionic oligosaccharides were determined between 1998 and 2014. For the first time, this software is publicly available, alongside an easier-to-use reimplementation of the same algorithms in Python. Both versions of SCT have been released as open-source software under the Apache 2 license and are available for download from https://github.com/dww100/sct.
Collapse
Affiliation(s)
- David W. Wright
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
4
|
Anish C, Schumann B, Pereira CL, Seeberger PH. Chemical biology approaches to designing defined carbohydrate vaccines. ACTA ACUST UNITED AC 2015; 21:38-50. [PMID: 24439205 DOI: 10.1016/j.chembiol.2014.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 01/08/2023]
Abstract
Carbohydrate antigens have shown promise as important targets for developing effective vaccines and pathogen detection strategies. Modifying purified microbial glycans through synthetic routes or completely synthesizing antigenic motifs are attractive options to advance carbohydrate vaccine development. However, limited knowledge on structure-property correlates hampers the discovery of immunoprotective carbohydrate epitopes. Recent advancements in tools for glycan modification, high-throughput screening of biological samples, and 3D structural analysis may facilitate antigen discovery process. This review focuses on advances that accelerate carbohydrate-based vaccine development and various technologies that are driving these efforts. Herein we provide a critical overview of approaches and resources available for rational design of better carbohydrate antigens. Structurally defined and fully synthetic oligosaccharides, designed based on molecular understanding of antigen-antibody interactions, offer a promising alternative for developing future carbohydrate vaccines.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | - Benjamin Schumann
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Claney Lebev Pereira
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Perkins SJ, Fung KW, Khan S. Molecular Interactions between Complement Factor H and Its Heparin and Heparan Sulfate Ligands. Front Immunol 2014; 5:126. [PMID: 24744754 PMCID: PMC3978290 DOI: 10.3389/fimmu.2014.00126] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/12/2013] [Indexed: 11/13/2022] Open
Abstract
Complement factor H (CFH) is the major regulator of the central complement protein C3b in the alternative pathway of complement activation. A molecular view of the CFH interaction with native heparan sulfate (HS) is central for understanding the mechanism of how surface-bound CFH interacts with C3b bound to host cell surfaces. HS is composed of sulfated heparin-like S-regions that alternate with desulfated NA-regions. Solution structural studies of heparin (equivalent to the S-regions) and desulfated HS (the NA-regions) by scattering and ultracentrifugation showed that each structure was mostly extended and partially bent, but with greater bending and flexibility in the NA-regions compared to the S-regions. Their solution structures have been deposited in the Protein Data Bank. The largest HS oligosaccharides showed more bent and flexible structures than those for heparin. A folded-back domain structure for the solution structure of the 20 domains in CFH was determined likewise. CFH binds to the S-regions but less so to the NA-regions of HS. The bivalent interaction of CFH–heparin was observed by ultracentrifugation, and binding studies of CFH fragments with heparin-coated sensor chips. In common with other CFH interactions with its physiological and pathophysiological ligands, the CFH–heparin and CFH–C3b interactions have moderate micromolar dissociation constants KD, meaning that these complexes do not fully form in vivo. The combination of the solution structures and binding studies indicated a two-site interaction model of CFH with heparin at cell surfaces. By this, the bivalent binding of CFH to a cell surface is co-operative. Defective interactions at either of the two independent CFH–heparin sites reduce the CFH interaction with surface-bound C3b and lead to immune disorders.
Collapse
Affiliation(s)
- Stephen J Perkins
- Department of Structural and Molecular Biology, University College London , London , UK
| | - Ka Wai Fung
- Department of Structural and Molecular Biology, University College London , London , UK
| | - Sanaullah Khan
- Department of Structural and Molecular Biology, University College London , London , UK
| |
Collapse
|
6
|
Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging. Infect Immun 2013; 82:594-606. [PMID: 24478075 DOI: 10.1128/iai.01146-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ~70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania.
Collapse
|
7
|
Ballut L, Sapay N, Chautard E, Imberty A, Ricard-Blum S. Mapping of heparin/heparan sulfate binding sites on αvβ3 integrin by molecular docking. J Mol Recognit 2013; 26:76-85. [PMID: 23334915 DOI: 10.1002/jmr.2250] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
Abstract
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD-dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD-independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf-I domain of the α subunit, and the top of the β subunit of RGD-dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD-dependent but not of RGD-independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies.
Collapse
Affiliation(s)
- Lionel Ballut
- UMR 5086 CNRS-Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
8
|
Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ. The solution structure of heparan sulfate differs from that of heparin: implications for function. J Biol Chem 2013; 288:27737-51. [PMID: 23921391 PMCID: PMC3784691 DOI: 10.1074/jbc.m113.492223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/02/2013] [Indexed: 11/29/2022] Open
Abstract
The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments dp6-dp24 corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s20,w of HS dp6-dp24 showed a small rotor speed dependence, where similar s20,w values of 0.82-1.26 S (absorbance optics) and 1.05-1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6-dp24 gave radii of gyration RG values from 1.03 to 2.82 nm, cross-sectional radii of gyration RXS values from 0.31 to 0.65 nm, and maximum lengths L from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5,000 to 12,000 conformationally randomized HS structures gave best fit dp6-dp24 molecular structures that were longer and more bent than their equivalents in heparin. Alternative fits were obtained for HS dp18 and dp24, indicating their higher bending and flexibility. We conclude that HS displays bent conformations that are significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin.
Collapse
Affiliation(s)
- Sanaullah Khan
- From the Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom and
| | - Ka Wai Fung
- From the Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom and
| | - Elizabeth Rodriguez
- From the Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom and
| | - Rima Patel
- From the Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom and
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom and
| | - Barbara Mulloy
- the Glycosciences Laboratory, Imperial College London, Department of Medicine, London W12 0NN, United Kingdom
| | - Stephen J. Perkins
- From the Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom and
| |
Collapse
|
9
|
Zhang Y, Wang N, Raab RW, McKown RL, Irwin JA, Kwon I, van Kuppevelt TH, Laurie GW. Targeting of heparanase-modified syndecan-1 by prosecretory mitogen lacritin requires conserved core GAGAL plus heparan and chondroitin sulfate as a novel hybrid binding site that enhances selectivity. J Biol Chem 2013; 288:12090-101. [PMID: 23504321 DOI: 10.1074/jbc.m112.422717] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell surface heparan sulfate (HS) proteoglycans shape organogenesis and homeostasis by capture and release of morphogens through mechanisms largely thought to exclude the core protein domain. Nevertheless, heparanase deglycanation of the N-terminal HS-rich domain of syndecan-1 (SDC1), but not SDC2 or -4, is a prerequisite for binding of the prosecretory mitogen lacritin (Ma, P., Beck, S. L., Raab, R. W., McKown, R. L., Coffman, G. L., Utani, A., Chirico, W. J., Rapraeger, A. C., and Laurie, G. W. (2006) Heparanase deglycanation of syndecan-1 is required for binding of the epithelial-restricted prosecretory mitogen lacritin. J. Cell Biol. 174, 1097-1106). We now report that the conserved and hydrophobic GAGAL domain in SDC1, adjacent to predicted HS substitution sites, is necessary to ligate and substantially enhance the α-helicity of the amphipathic C terminus of lacritin. Swapping out GAGAL for GADED in SDC2 or for GDLDD in SDC4 (both less hydrophobic) abrogated binding. HS and chondroitin sulfate are also essential. Both are detected in the N terminus, and when incubated with antibodies HS4C3 (anti-HS) or IO3H10 (anti-chondroitin sulfate), binding was absent, as occurred when all three N-terminal glycosaminoglycan substitution sites were mutated to alanine or when cells were treated with 4-methylumbelliferyl-β-d-xylopyranoside or chlorate to suppress glycosaminoglycan substitution or sulfation, respectively. SDC1 interacts with the hydrophobic face of lacritin via Leu-108/Leu-109/Phe-112 as well as with Glu-103/Lys-107 and Lys-111 of the largely cationic face. Carving a hybrid hydrophobic/electrostatic docking site out of SDC1 in a manner dependent on endogenous heparanase is a dynamic process appropriate for subtle or broad epithelial regulation in morphogenesis, health, and disease.
Collapse
Affiliation(s)
- Yinghui Zhang
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sattelle BM, Shakeri J, Almond A. Does Microsecond Sugar Ring Flexing Encode 3D-Shape and Bioactivity in the Heparanome? Biomacromolecules 2013; 14:1149-59. [DOI: 10.1021/bm400067g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Benedict M. Sattelle
- Faculty of Life Sciences, University of Manchester, Manchester
Institute of Biotechnology,
131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Javad Shakeri
- Faculty of Life Sciences, University of Manchester, Manchester
Institute of Biotechnology,
131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Andrew Almond
- Faculty of Life Sciences, University of Manchester, Manchester
Institute of Biotechnology,
131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
11
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
12
|
Muñoz-García JC, López-Prados J, Angulo J, Díaz-Contreras I, Reichardt N, de Paz JL, Martín-Lomas M, Nieto PM. Effect of the substituents of the neighboring ring in the conformational equilibrium of iduronate in heparin-like trisaccharides. Chemistry 2012; 18:16319-31. [PMID: 23143902 DOI: 10.1002/chem.201202770] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Indexed: 12/22/2022]
Abstract
Based on the structure of the regular heparin, we have prepared a smart library of heparin-like trisaccharides by incorporating some sulfate groups in the sequence α-D-GlcNS- (1-4)-α-L-Ido2S-(1-4)-α-D-GlcN. According to the 3D structure of heparin, which features one helix turn every four residues, this fragment corresponds to the minimum binding motif. We have performed a complete NMR study and found that the trisaccharides have a similar 3D structure to regular heparin itself, but their spectral properties are such that allow to extract very detailed information about distances and coupling constants as they are isotropic molecules. The characteristic conformational equilibrium of the central iduronate ring has been analyzed combining NMR and molecular dynamics and the populations of the conformers of the central iduronate ring have been calculated. We have found that in those compounds lacking the sulfate group at position 6 of the reducing end glucosamine, the population of (2)S(0) of the central iduronate residue is sensitive to the temperature decreasing to 19% at 278 K. On the contrary, the trisaccharides with 6-O-sulfate in the reducing end glucosamine keep the level of population constant with temperature circa 40% of (2)S(0) similar to that observed at room temperature. Another structural feature that has been revealed through this analysis is the larger flexibility of the L-IdoAS- D-GlcN glycosidic linkage, compared with the D-GlcNS-L-IdoA. We propose that this is the point where the heparin chain is bended to form structures far from the regular helix known as kink that have been proposed to play an important role in the specificity of the heparin-protein interaction.
Collapse
Affiliation(s)
- Juan Carlos Muñoz-García
- Glycosystems Laboratory, Instituto de Investigaciones Quimicas, CSIC-US, Americo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Decarlo AA, Belousova M, Ellis AL, Petersen D, Grenett H, Hardigan P, O'Grady R, Lord M, Whitelock JM. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis. BMC Biotechnol 2012; 12:60. [PMID: 22967000 PMCID: PMC3485628 DOI: 10.1186/1472-6750-12-60] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Background Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™). Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.
Collapse
Affiliation(s)
- Arthur A Decarlo
- Agenta Biotechnologies, Inc, 1500 1st Ave, N, Unit 31, Birmingham, AL 35203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bivalent and co-operative binding of complement factor H to heparan sulfate and heparin. Biochem J 2012; 444:417-28. [PMID: 22471560 DOI: 10.1042/bj20120183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FH (Factor H) with 20 SCR (short complement regulator) domains is a major serum regulator of complement, and genetic defects in this are associated with inflammatory diseases. Heparan sulfate is a cell-surface glycosaminoglycan composed of sulfated S-domains and unsulfated NA-domains. To elucidate the molecular mechanism of binding of FH to glycosaminoglycans, we performed ultracentrifugation, X-ray scattering and surface plasmon resonance with FH and glycosaminoglycan fragments. Ultracentrifugation showed that FH formed up to 63% of well-defined oligomers with purified heparin fragments (equivalent to S-domains), and indicated a dissociation constant K(d) of approximately 0.5 μM. Unchanged FH structures that are bivalently cross-linked at SCR-7 and SCR-20 with heparin explained the sedimentation coefficients of the FH-heparin oligomers. The X-ray radius of gyration, R(G), of FH in the presence of heparin fragments 18-36 monosaccharide units long increased significantly from 10.4 to 11.7 nm, and the maximum lengths of FH increased from 35 to 40 nm, confirming that large compact oligomers had formed. Surface plasmon resonance of immobilized heparin with full-length FH gave K(d) values of 1-3 μM, and similar but weaker K(d) values of 4-20 μM for the SCR-6/8 and SCR-16/20 fragments, confirming co-operativity between the two binding sites. The use of minimally-sulfated heparan sulfate fragments that correspond largely to NA-domains showed much weaker binding, proving the importance of S-domains for this interaction. This bivalent and co-operative model of FH binding to heparan sulfate provides novel insights on the immune function of FH at host cell surfaces.
Collapse
|
15
|
Fan L, Gong Y, Cao M, Gao S, Sun Y, Chen L, Zheng H, Xie W. Synthesis, characterization, and anticoagulant activity of carboxymethyl starch sulfates. J Appl Polym Sci 2012. [DOI: 10.1002/app.38088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Seo Y, Andaya A, Leary JA. Preparation, separation, and conformational analysis of differentially sulfated heparin octasaccharide isomers using ion mobility mass spectrometry. Anal Chem 2012; 84:2416-23. [PMID: 22283665 PMCID: PMC3296823 DOI: 10.1021/ac203190k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heparin is a linear sulfated polysaccharide widely used in medicine because of its anticoagulant properties. The various sulfation and/or acetylation patterns on heparin impart different degrees of conformational change around the glycosidic bonds and subsequently alter its function as an anticoagulant, anticancer, or antiviral drug. Characterization of these structures is important for eventual elucidation of its function but presents itself as an analytical challenge due to the inherent heterogeneity of the carbohydrates. Heparin octasaccharide structural isomers of various sulfation patterns were investigated using ion mobility mass spectrometry (IMMS). In addition to distinguishing the isomers, we report the preparation and tandem mass spectrometry analysis for multiple sulfated or acetylated oligosaccharides. Herein, our data indicate that heparin octasaccharide isomers were separated on the basis of their structural conformations in the ion mobility cell. Subsequent to this separation, isomers were further distinguished using product ions resulting from tandem mass spectrometry. Overall, IMMS analysis was used to successfully characterize and separate individual isomers and subsequently measure their conformations.
Collapse
Affiliation(s)
- Youjin Seo
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
17
|
Svensson G, Awad W, Håkansson M, Mani K, Logan DT. Crystal structure of N-glycosylated human glypican-1 core protein: structure of two loops evolutionarily conserved in vertebrate glypican-1. J Biol Chem 2012; 287:14040-51. [PMID: 22351761 DOI: 10.1074/jbc.m111.322487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glypicans are a family of cell-surface proteoglycans that regulate Wnt, hedgehog, bone morphogenetic protein, and fibroblast growth factor signaling. Loss-of-function mutations in glypican core proteins and in glycosaminoglycan-synthesizing enzymes have revealed that glypican core proteins and their glycosaminoglycan chains are important in shaping animal development. Glypican core proteins consist of a stable α-helical domain containing 14 conserved Cys residues followed by a glycosaminoglycan attachment domain that becomes exclusively substituted with heparan sulfate (HS) and presumably adopts a random coil conformation. Removal of the α-helical domain results in almost exclusive addition of the glycosaminoglycan chondroitin sulfate, suggesting that factors in the α-helical domain promote assembly of HS. Glypican-1 is involved in brain development and is one of six members of the vertebrate family of glypicans. We expressed and crystallized N-glycosylated human glypican-1 lacking HS and N-glycosylated glypican-1 lacking the HS attachment domain. The crystal structure of glypican-1 was solved using crystals of selenomethionine-labeled glypican-1 core protein lacking the HS domain. No additional electron density was observed for crystals of glypican-1 containing the HS attachment domain, and CD spectra of the two protein species were highly similar. The crystal structure of N-glycosylated human glypican-1 core protein at 2.5 Å, the first crystal structure of a vertebrate glypican, reveals the complete disulfide bond arrangement of the conserved Cys residues, and it also extends the structural knowledge of glypicans for one α-helix and two long loops. Importantly, the loops are evolutionarily conserved in vertebrate glypican-1, and one of them is involved in glycosaminoglycan class determination.
Collapse
Affiliation(s)
- Gabriel Svensson
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
18
|
Mulloy B, Khan S, Perkins SJ. Molecular architecture of heparin and heparan sulfate: Recent developments in solution structural studies. PURE APPL CHEM 2011. [DOI: 10.1351/pac-con-11-10-27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study of the relationship between the complex structures and numerous physiological functions of the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS) has continued to thrive in the past decade. Though it is clear that the monosaccharide sequences of these polysaccharides must determine their ability to modulate the action of growth factors, morphogens, chemokines, cytokines, and many other extracellular proteins, the exact details of this dependence still prove elusive. Sequence determines the 3D structure of GAGs at more than one level; detailed sequences of highly sulfated regions may influence affinity for specific proteins in some cases, but in addition attention has been called to the importance of the length and spacing of these highly sulfated sequences, which are separated by unsulfated domains. Within the sulfated “S-domains”, the internal dynamics of the conformationally flexible iduronate pyranose ring have continued to interest NMR spectroscopists and molecular modelers. New studies of the relative degrees of flexibility of sulfated and unsulfated domains lead to an overall model of heparin/HS in which protein-binding, highly sulfated S-domains with well-defined conformations are separated by more flexible NA-domains.
Collapse
|
19
|
Complement factor H-ligand interactions: self-association, multivalency and dissociation constants. Immunobiology 2011; 217:281-97. [PMID: 22137027 DOI: 10.1016/j.imbio.2011.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 11/21/2022]
Abstract
Factor H (FH) is the major plasma regulator of the central complement protein C3b in the alternative pathway of complement activation. The elucidation of the FH interactions with five major ligands (below) is complicated by their weak μM dissociation constants K(D) and FH multivalency. We present the first survey of all the K(D) values for the major FH-ligand interactions and critically review their physiological significance. (i) FH self-association is presently well-established. We review multiple data sets that show that 5-14% of FH is self-associated in physiological conditions. FH self-association is significant for both laboratory investigations and physiological function.(ii) The FH-C3b complex shows low M affinity, meaning that the complex is not fully formed in plasma. In addition, C3, its hydrolysed form C3u, and its cleaved forms C3b and C3d show multimerisation. Current data favour a model when two C3b molecules bind independently to one FH molecule, as opposed to a1:1 stoichiometry where FH wraps itself around C3b.(iii) Heparin is often used as an analogue of the polyanionic host cell surface. The FH-heparin complex also shows a low M affinity, again meaning that complexes are not fully formed in vivo. The oligomeric FH-heparin complexes clarify a two-site interaction model of FH with host-cell surfaces.(iv) Reinvestigation of the FH and C-reactive protein (CRP) interaction revealed that this can only occur in plasma when CRP levels are elevated during acute-phase conditions. Given that CRP binds more weakly to the His402 allotype of FH than the Tyr402 allotype, this suggested a link with age-related macular degeneration (AMD).(v) FH activity is inhibited by zinc, which causes FH to aggregate strongly. High levels of bioavailable zinc occur in sub-retinal pigment epithelial deposits which lead to AMD. Excess zinc binds weakly to a central region of FH, explaining how zinc inhibits FH regulation of C3b.
Collapse
|