1
|
Martín-Alonso S, Álvarez M, Nevot M, Martínez MÁ, Menéndez-Arias L. Defective Strand-Displacement DNA Synthesis Due to Accumulation of Thymidine Analogue Resistance Mutations in HIV-2 Reverse Transcriptase. ACS Infect Dis 2020; 6:1140-1153. [PMID: 32129987 DOI: 10.1021/acsinfecdis.9b00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroviral reverse transcriptases (RTs) have the ability to carry out strand displacement DNA synthesis in the absence of accessory proteins. Although studies with RTs and other DNA polymerases suggest that fingers subdomain residues participate in strand displacement, molecular determinants of this activity are still unknown. A mutant human immunodeficiency virus type 2 (HIV-2) RT (M41L/D67N/K70R/S215Y) with low strand displacement activity was identified after screening a panel of purified enzymes, including several antiretroviral drug-resistant HIV-1 and HIV-2 RTs. In HIV-1, resistance to zidovudine and other thymidine analogues is conferred by different combinations of M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q (designated as thymidine analogue resistance-associated mutations (TAMs)). However, those changes are rarely selected in HIV-2. We show that the strand displacement activity of HIV-2ROD mutants M41L/S215Y and D67N/K70R was only slightly reduced compared to the wild-type RT. In contrast, mutants D67N/K70R/S215Y and M41L/D67N/K70R/S215Y were the most defective RTs in reactions carried out with nicked and gapped substrates. Moreover, these enzymes showed the lowest nucleotide incorporation rates in assays carried out with strand displacement substrates. Unlike in HIV-2, substitutions M41L/T215Y and D67N/K70R/T215Y/K219Q had no effect on the strand displacement activity of HIV-1BH10 RT. The strand displacement efficiencies of HIV-2ROD RTs were consistent with the lower replication capacity of HIV-2 strains bearing the four major TAMs in their RT. Our results highlight the role of the fingers subdomain in strand displacement. These findings might be important for the development of strand-displacement defective RTs.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - María Nevot
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Miguel Á. Martínez
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| |
Collapse
|
2
|
Álvarez M, Nevot M, Mendieta J, Martínez MA, Menéndez-Arias L. Amino acid residues in HIV-2 reverse transcriptase that restrict the development of nucleoside analogue resistance through the excision pathway. J Biol Chem 2017; 293:2247-2259. [PMID: 29275329 DOI: 10.1074/jbc.ra117.000177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/21/2017] [Indexed: 01/13/2023] Open
Abstract
Nucleoside reverse transcriptase (RT) inhibitors (NRTIs) are the backbone of current antiretroviral treatments. However, the emergence of viral resistance against NRTIs is a major threat to their therapeutic effectiveness. In HIV-1, NRTI resistance-associated mutations either reduce RT-mediated incorporation of NRTI triphosphates (discrimination mechanism) or confer an ATP-mediated nucleotide excision activity that removes the inhibitor from the 3' terminus of DNA primers, enabling further primer elongation (excision mechanism). In HIV-2, resistance to zidovudine (3'-azido-3'-deoxythymidine (AZT)) and other NRTIs is conferred by mutations affecting nucleotide discrimination. Mutations of the excision pathway such as M41L, D67N, K70R, or S215Y (known as thymidine-analogue resistance mutations (TAMs)) are rare in the virus from HIV-2-infected individuals. Here, we demonstrate that mutant M41L/D67N/K70R/S215Y HIV-2 RT lacks ATP-dependent excision activity, and recombinant virus containing this RT remains susceptible to AZT inhibition. Mutant HIV-2 RTs were tested for their ability to unblock and extend DNA primers terminated with AZT and other NRTIs, when complexed with RNA or DNA templates. Our results show that Met73 and, to a lesser extent, Ile75 suppress excision activity when TAMs are present in the HIV-2 RT. Interestingly, recombinant HIV-2 carrying a mutant D67N/K70R/M73K RT showed 10-fold decreased AZT susceptibility and increased rescue efficiency on AZT- or tenofovir-terminated primers, as compared with the double-mutant D67N/K70R. Molecular dynamics simulations reveal that Met73influences β3-β4 hairpin loop conformation, whereas its substitution affects hydrogen bond interactions at position 70, required for NRTI excision. Our work highlights critical HIV-2 RT residues impeding the development of excision-mediated NRTI resistance.
Collapse
Affiliation(s)
- Mar Álvarez
- From the Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid
| | - María Nevot
- the Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, and
| | - Jesús Mendieta
- From the Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid.,the Departamento de Biotecnología, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Miguel A Martínez
- the Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, and
| | - Luis Menéndez-Arias
- From the Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid,
| |
Collapse
|
3
|
Tzou PL, Huang X, Shafer RW. NucAmino: a nucleotide to amino acid alignment optimized for virus gene sequences. BMC Bioinformatics 2017; 18:138. [PMID: 28249562 PMCID: PMC5333393 DOI: 10.1186/s12859-017-1555-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Current nucleotide-to-amino acid alignment software programs were developed primarily for detecting gene exons within eukaryotic genomes and were therefore optimized for speed across long genetic sequences. We developed a nucleotide-to-amino acid alignment program NucAmino optimized for virus sequencing. Results NucAmino is an open source program written in the high-level language Go. NucAmino is more likely to align codons flush with a reference sequence’s amino acids and can be modified to facilitate the placement of insertions and deletions at specific positions. We compared NucAmino to the nucleotide to amino acid alignment program Local Alignment Program (LAP) using 115,118 human immunodeficiency virus type 1 (HIV-1) protease, reverse transcriptase, and integrase sequences—three genes that are commonly sequenced in clinical laboratories. Discordances between NucAmino and LAP occurred in 512 (16.9%) of the 3,029 sequences containing gaps but in none of 112,910 sequences without gaps. For 242 of the sequences with discordances, NucAmino produced an alignment that was preferable to that found by LAP in that it was more likely to codon align insertions and deletions and to facilitate the placement of an important drug-resistance associated insertion at the position at which most laboratories expect it to occur. Conclusions NucAmino is a nucleotide-to-amino acid alignment program with several advantages for clinical laboratories performing virus sequencing compared with older programs designed for gene finding.
Collapse
Affiliation(s)
- Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2016; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Derache A, Wallis CL, Vardhanabhuti S, Bartlett J, Kumarasamy N, Katzenstein D. Phenotype, Genotype, and Drug Resistance in Subtype C HIV-1 Infection. J Infect Dis 2015; 213:250-6. [PMID: 26175454 DOI: 10.1093/infdis/jiv383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/06/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Virologic failure in subtype C is characterized by high resistance to first-line antiretroviral (ARV) drugs, including efavirenz, nevirapine, and lamivudine, with nucleoside resistance including type 2 thymidine analog mutations, K65R, a T69del, and M184V. However, genotypic algorithms predicting resistance are mainly based on subtype B viruses and may under- or overestimate drug resistance in non-B subtypes. To explore potential treatment strategies after first-line failure, we compared genotypic and phenotypic susceptibility of subtype C human immunodeficiency virus 1 (HIV-1) following first-line ARV failure. METHODS AIDS Clinical Trials Group 5230 evaluated patients failing an initial nonnucleoside reverse-transcriptase inhibitor (NNRTI) regimen in Africa and Asia, comparing the genotypic drug resistance and phenotypic profile from the PhenoSense (Monogram). Site-directed mutagenesis studies of K65R and T69del assessed the phenotypic impact of these mutations. RESULTS Genotypic algorithms overestimated resistance to etravirine and rilpivirine, misclassifying 28% and 32%, respectively. Despite K65R with the T69del in 9 samples, tenofovir retained activity in >60%. Reversion of the K65R increased susceptibility to tenofovir and other nucleosides, while reversion of the T69del showed increased resistance to zidovudine, with little impact on other NRTI. CONCLUSIONS Although genotype and phenotype were largely concordant for first-line drugs, estimates of genotypic resistance to etravirine and rilpivirine may misclassify subtype C isolates compared to phenotype.
Collapse
Affiliation(s)
- Anne Derache
- Division of Infectious Diseases, Stanford University, California
| | - Carole L Wallis
- Department of Molecular Pathology, Lancet Laboratories and BARC-SA, Johannesburg, South Africa
| | | | - John Bartlett
- Duke University Medical Center, Durham, North Carolina
| | | | | |
Collapse
|
6
|
Ammaranond P, Sanguansittianant S, Raju PA, Cunningham P, Horthongkham N. Development of a cost-effective assay for genotyping of HIV-1 non-B subtype for drug resistance. J Virol Methods 2014; 199:102-7. [PMID: 24462843 DOI: 10.1016/j.jviromet.2014.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/04/2014] [Accepted: 01/10/2014] [Indexed: 10/25/2022]
Abstract
Highly Active Antiretroviral Therapy (HAART) is the most effective way to control HIV-1 replication in infected patients. Prior to the start of therapy, genotyping of HIV-1 for mutations that confer resistance to potential drug candidates is crucial for it allows formulating an effective regimen. Ineffective drugs are excluded and potentially effective ones are included. A number of diagnostic kits are commercially available for this purpose but are tailored for HIV-1 subtype-B, a strain chiefly found in AIDS patients of Europe and America. However, AIDS patients of South-East Asia including Thailand are predominant infected with HIV-1 subtype non-B. In this study, an inexpensive assay was developed that genotypes HIV-1 non-B for drug resistance and tested it on 99 Thai AIDS patients. Results showed that 98 were infected with HIV-1 subtype non-B (or CRF01_AE) and one with subtype-B. Within the HIV-1 polymerase (pol), reverse transcriptase (RT) gene, the assay identified 18 codon mutations associated with resistance to Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs) and 17 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Employing a commercially available kit, parallel genotyping of patient samples confirmed results providing validation of the assay. This method approximately costs 100 US dollars compared to $300 for a commercially available test. In Thailand, the burden of cost for treating HIV-infections is high not only for the average citizen but the country's health care systems. Therefore the low cost and yet effective genotyping test for HIV-1 subtype non-B is a practical and viable solution to expensive genotyping platforms.
Collapse
Affiliation(s)
- Palanee Ammaranond
- Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand; Innovation Center for Research and Development of Medical Diagnostic Technology Project, Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Sayompoo Sanguansittianant
- Innovation Center for Research and Development of Medical Diagnostic Technology Project, Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Paul A Raju
- National Engineering Research Center for Miniaturized Detection System, Northwest University, Xi'an, China
| | | | - Navin Horthongkham
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Maeda K, Desai DV, Aoki M, Nakata H, Kodama EN, Mitsuya H. Delayed emergence of HIV-1 variants resistant to 4'-ethynyl-2-fluoro-2'-deoxyadenosine: comparative sequential passage study with lamivudine, tenofovir, emtricitabine and BMS-986001. Antivir Ther 2013; 19:179-89. [PMID: 24162098 DOI: 10.3851/imp2697] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) contains an ethynyl moiety and the 3'-hydroxyl and exerts highly potent activity against various HIV type-1 (HIV-1) strains including multi-drug-resistant variants. METHODS Comparative selection passages against EFdA, lamivudine (3TC), tenofovir disoproxil fumarate (TDF), emtricitabine (FTC) or BMS-986001 (Ed4T) were conducted using a mixture of 11 highly multi-drug-resistant clinical HIV-1 isolates (HIV11MIX) as a starting virus population. RESULTS Before selection, HIV11MIX was sensitive to EFdA with a 50% inhibitory concentration (IC50) of 0.032 μM, less susceptible to TDF and Ed4T with IC50s of 0.57 and 2.6 μM, respectively, and highly resistant to 3TC and FTC with IC50s>10 μM. IC50s of TDF against HIV11MIX exposed to EFdA and TDF for 17 (HIV11MIX(EFdA-P17)) and 14 (HIV11MIX(TDF-P14)) passages were 8 and >10 μM, respectively, while EFdA remained active against HIV11MIX(EFdA-P17) and HIV11MIX(TDF-P14) with IC50s of 0.15 and 0.1 μM, respectively. Both selected variants were highly resistant against zidovudine, 3TC, Ed4T and FTC (IC50 values >10 μM). CONCLUSIONS The present data demonstrate that HIV11MIX developed resistance more rapidly against 3TC, FTC, TDF and Ed4T than against EFdA and that EFdA remained substantially active against TDF- and EFdA-selected variants. Thus, EFdA has a favourable resistance profile and represents a potentially promising new-generation nucleoside reverse transcriptase inhibitor.
Collapse
Affiliation(s)
- Kenji Maeda
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Martrus G, Nevot M, Andres C, Clotet B, Martinez MA. Changes in codon-pair bias of human immunodeficiency virus type 1 have profound effects on virus replication in cell culture. Retrovirology 2013; 10:78. [PMID: 23885919 PMCID: PMC3726367 DOI: 10.1186/1742-4690-10-78] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) has a biased nucleotide composition different from human genes. This raises the question of how evolution has chosen the nucleotide sequence of HIV-1 that is observed today, or to what extent the actual encoding contributes to virus replication capacity, evolvability and pathogenesis. Here, we applied the previously described synthetic attenuated virus engineering (SAVE) approach to HIV-1. Results Using synonymous codon pairs, we rationally recoded and codon pair–optimized and deoptimized different moieties of the HIV-1 gag and pol genes. Deoptimized viruses had significantly lower viral replication capacity in MT-4 and peripheral blood mononuclear cells (PBMCs). Varying degrees of ex vivo attenuation were obtained, depending upon both the specific deoptimized region and the number of deoptimized codons. A protease optimized virus carrying 38 synonymous mutations was not attenuated and displayed a replication capacity similar to that of the wild-type virus in MT-4 cells and PBMCs. Although attenuation is based on several tens of nucleotide changes, deoptimized HIV-1 reverted to wild-type virulence after serial passages in MT-4 cells. Remarkably, no reversion was observed in the optimized virus. Conclusion These data demonstrate that SAVE is a useful strategy to phenotypically affect the replicative properties of HIV-1.
Collapse
Affiliation(s)
- Gloria Martrus
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Badalona 08916, Spain
| | | | | | | | | |
Collapse
|
9
|
Ehteshami M, Nijhuis M, Bernatchez JA, Ablenas CJ, McCormick S, de Jong D, Jochmans D, Götte M. Formation of a quaternary complex of HIV-1 reverse transcriptase with a nucleotide-competing inhibitor and its ATP enhancer. J Biol Chem 2013; 288:17336-46. [PMID: 23598281 DOI: 10.1074/jbc.m112.433441] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide-competing reverse transcriptase inhibitors were shown to bind reversibly to the nucleotide-binding site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus type 1 (HIV-1). Here, we show that the presence of ATP can enhance the inhibitory effects of the prototype compound INDOPY-1. We employed a combination of cell-free and cell-based assays to shed light on the underlying molecular mechanism. Binding studies and site-specific footprinting experiments demonstrate the existence of a stable quaternary complex with HIV-1 RT, its nucleic acid substrate, INDOPY-1, and ATP. The complex is frozen in the post-translocational state that usually accommodates the incoming nucleotide substrate. Structure-activity relationship studies show that both the base and the phosphate moieties of ATP are elements that play important roles in enhancing the inhibitory effects of INDOPY-1. In vitro susceptibility measurements with mutant viruses containing amino acid substitutions K70G, V75T, L228R, and K219R in the putative ATP binding pocket revealed unexpectedly a hypersusceptible phenotype with respect to INDOPY-1. The same mutational cluster was previously shown to reduce susceptibility to the pyrophosphate analog phosphonoformic acid. However, in the absence of INDOPY-1, ATP can bind and act as a pyrophosphate donor under conditions that favor formation of the pre-translocated RT complex. We therefore conclude that the mutant enzyme facilitates simultaneous binding of INDOPY-1 and ATP to the post-translocated complex. Based on these data, we propose a model in which the bound ATP traps the inhibitor, which, in turn, compromises its dissociation.
Collapse
Affiliation(s)
- Maryam Ehteshami
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 2013; 98:93-120. [PMID: 23403210 DOI: 10.1016/j.antiviral.2013.01.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
The introduction of potent combination therapies in the mid-90s had a tremendous effect on AIDS mortality. However, drug resistance has been a major factor contributing to antiretroviral therapy failure. Currently, there are 26 drugs approved for treating human immunodeficiency virus (HIV) infections, although some of them are no longer prescribed. Most of the available antiretroviral drugs target HIV genome replication (i.e. reverse transcriptase inhibitors) and viral maturation (i.e. viral protease inhibitors). Other drugs in clinical use include a viral coreceptor antagonist (maraviroc), a fusion inhibitor (enfuvirtide) and two viral integrase inhibitors (raltegravir and elvitegravir). Elvitegravir and the nonnucleoside reverse transcriptase inhibitor rilpivirine have been the most recent additions to the antiretroviral drug armamentarium. An overview of the molecular mechanisms involved in antiretroviral drug resistance and the role of drug resistance-associated mutations was previously presented (Menéndez-Arias, L., 2010. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210-231). This article provides now an updated review that covers currently approved drugs, new experimental agents (e.g. neutralizing antibodies) and selected drugs in preclinical or early clinical development (e.g. experimental integrase inhibitors). Special attention is dedicated to recent research on resistance to reverse transcriptase and integrase inhibitors. In addition, recently discovered interactions between HIV and host proteins and novel strategies to block HIV assembly or viral entry emerge as promising alternatives for the development of effective antiretroviral treatments.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa"-Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, c/ Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Capel E, Martrus G, Parera M, Clotet B, Martínez MA. Evolution of the human immunodeficiency virus type 1 protease: effects on viral replication capacity and protease robustness. J Gen Virol 2012; 93:2625-2634. [PMID: 22933665 DOI: 10.1099/vir.0.045492-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rapid spread of human immunodeficiency virus type 1 (HIV-1) in humans has been accompanied by continuous extensive genetic diversification of the virus. The aim of this study was to investigate the impact of HIV-1 diversification on HIV-1 replication capacity (RC) and mutational robustness. Thirty-three HIV-1 protease sequences were amplified from three groups of viruses: two naïve sample groups isolated 15 years apart plus a third group of protease inhibitor-(PI) resistant samples. The amplified proteases were recombined with an HXB2 infectious clone and RC was determined in MT-4 cells. RC was also measured in these three groups after random mutagenesis in vitro using error-prone PCR. No significant RC differences were observed between recombinant viruses from either early or recent naïve isolates (P = 0.5729), even though the proteases from the recent isolates had significantly lower sequence conservation scores compared with a subtype B ancestral sequence (P<0.0001). Randomly mutated recombinant viruses from the three groups exhibited significantly lower RC values than the corresponding wild-type viruses (P<0.0001). There was no significant difference regarding viral infectivity reduction between viruses carrying randomly mutated naïve proteases from early or recent sample isolates (P = 0.8035). Interestingly, a significantly greater loss of RC was observed in the PI-resistant protease group (P = 0.0400). These results demonstrate that protease sequence diversification has not affected HIV-1 RC or protease robustness and indicate that proteases carrying PI resistance substitutions are less robust than naïve proteases.
Collapse
Affiliation(s)
- Elena Capel
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Glòria Martrus
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Mariona Parera
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Bonaventura Clotet
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Miguel Angel Martínez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
12
|
Betancor G, Garriga C, Puertas MC, Nevot M, Anta L, Blanco JL, Pérez-Elías MJ, de Mendoza C, Martínez MA, Martinez-Picado J, Menéndez-Arias L, Iribarren JA, Caballero E, Ribera E, Llibre JM, Clotet B, Jaén A, Dalmau D, Gatel JM, Peraire J, Vidal F, Vidal C, Riera M, Córdoba J, López Aldeguer J, Galindo MJ, Gutiérrez F, Álvarez M, García F, Pérez-Romero P, Viciana P, Leal M, Palomares JC, Pineda JA, Viciana I, Santos J, Rodríguez P, Gómez Sirvent JL, Gutiérrez C, Moreno S, Pérez-Olmeda M, Alcamí J, Rodríguez C, del Romero J, Cañizares A, Pedreira J, Miralles C, Ocampo A, Morano L, Aguilera A, Garrido C, Manuzza G, Poveda E, Soriano V. Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy. Retrovirology 2012; 9:68. [PMID: 22889300 PMCID: PMC3468358 DOI: 10.1186/1742-4690-9-68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. Results The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10-10) and TAMs (P < 10-3), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. Conclusions Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Menéndez-Arias L. A structural frame for understanding the role of thymidine analogue resistance mutations in resistance to zidovudine and other nucleoside analogues. Antivir Ther 2012; 16:943-6. [PMID: 22024508 DOI: 10.3851/imp1889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The acquisition of resistance to nucleoside reverse transcriptase inhibitors (NRTIs) can be mediated by amino acid changes at the dNTP binding site that affect the catalytic efficiency of nucleotide analogue incorporation, or by mutations that, in the presence of a pyrophosphate donor, facilitate excision of 3'-terminal chain-terminating inhibitors from blocked primers. These mutations, known as thymidine analogue resistance mutations (TAMs) are M41L, D67N, K70R, L210W, T215F/Y and K219E/Q. Recently published crystal structures of wild-type and TAM-containing HIV-1 reverse transcriptases bound to double-stranded DNA and the excision product, azidothymidine adenosine dinucleoside tetraphosphate have shed light into the molecular mechanism of excision.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|