1
|
Malysa A, Zhang XM, Bepler G. Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response. Cells 2024; 14:12. [PMID: 39791713 PMCID: PMC11719910 DOI: 10.3390/cells14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system. Dysfunctional DNA replication and DDR are a source of genomic instability, causing heritable mutations that drive cancer evolutions. The family of minichromosome maintenance (MCM) proteins plays an important role not only in DNA replication but also in DDR. Here, we will review the current strides of MCM proteins in these integrated processes as well as the acetylation/deacetylation of MCM proteins and the value of MCMs as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA; (A.M.); (X.M.Z.)
| |
Collapse
|
2
|
Chen Y, Li LY, Li JD, He RQ, Huang ZG, Huang WY, Luo JY, Dang YW, Chen G, Wei DM. Expression, potential biological behaviour and clinical significance of MCM3 in pancreatic adenocarcinoma: a comprehensive study integrating high throughput sequencing, CRISPR screening and in-house immunohistochemistry. Ann Med 2024; 56:2405879. [PMID: 39310930 PMCID: PMC11421141 DOI: 10.1080/07853890.2024.2405879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Minichromosome maintenance complex component 3 (MCM3) plays a key role in various tumours. However, it remains largely unknown what the specific role and clinical significance of MCM3 in pancreatic adenocarcinoma (PAAD) are. MATERIALS AND METHODS We integrated high-throughput data from PAAD worldwide to analyse the expression level of MCM3 mRNA. We used immunohistochemistry to analyse MCM3 protein expression levels in 145 cases in the PAAD group and 29 cases in the non-PAAD group. We also mainly analysed the necessity of MCM3 for PAAD growth based on CRISPR screen data. In addition, we used enrichment analysis and protein-protein interaction networks to explore the molecular mechanism of MCM3 in PAAD. We also analysed the correlation between MCM3 expression, components of the immune microenvironment in PAAD tissue and clinical prognosis. RESULTS In PAAD, we observed for the first time that MCM3 was significantly highly expressed at both the mRNA (SMD = 0.67, 95% CI: 0.38 ∼ 0.96) and the protein level (p < 0.05). The mRNA (AUC = 0.78, 95% CI: 0.74 ∼ 0.81; sensitivity = 0.66, 95% CI: 0.55 ∼ 0.76; specificity = 0.76, 95% CI: 0.67 ∼ 0.84) and protein (AUC = 0.929) expression levels of MCM3 had a good ability to distinguish between PAAD and non-PAAD tissue. There was heterogeneity reflected by the differential expression of MCM3 protein in PAAD cells. MCM3 played an essential role in PAAD growth, through abnormal DNA replication, p53 signalling and cell cycle checkpoints. PAAD with high MCM3 expression was sensitive to c-75, brivanib, flavopiridol and VNLG/124 drugs, with stable molecular docking models. CONCLUSION MCM3 is likely to be a critical element in promoting the initiation and growth of PAAD. Flavopiridol may exert its anti-PAAD effect through the interaction between MCM3, classic CDK1 targets in the cell cycle checkpoint and p53 pathway as well as related molecules in other pathways.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Liu-Yan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jian-Di Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Rong-Quan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wan-Ying Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, PR China
- Guangxi key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| |
Collapse
|
3
|
Needham JM, Perritt SE, Thompson SR. Single-cell analysis reveals host S phase drives large T antigen expression during BK polyomavirus infection. PLoS Pathog 2024; 20:e1012663. [PMID: 39636788 PMCID: PMC11620372 DOI: 10.1371/journal.ppat.1012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
BK polyomavirus (BKPyV) is a major cause of kidney transplant failure, for which there are no antivirals. The current model is that BKPyV expresses TAg (large T antigen) early during infection, promoting cells to enter S phase where the viral DNA can access the host replication machinery. Here, we performed a single-cell analysis of viral TAg expression throughout the cell cycle to reveal that robust TAg expression required replication of the host DNA first. By using inhibitors that only affect host and not viral replication, we show that both TAg expression and viral production rely on an initial S phase. BKPyV is known to promote cellular re-replication, where the cell re-enters S phase from G2 phase (without passing through mitosis or G1 phase) to prolong S phase for viral replication. Thus, BKPyV infection results in cells with greater than 4N DNA content. We found that these subsequent rounds of replication of the host DNA relied on canonical host cell cycle machinery and regulators despite BKPyV infection. Together, these findings suggest a model for polyomavirus replication, where robust viral TAg expression depends on an initial host S phase and that BKPyV primarily replicates during host re-replication. Having a better understanding of the molecular events that are required for BKPyV production will help identify effective therapeutic targets against BKPyV.
Collapse
Affiliation(s)
- Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama United States of America
| | - Sarah E. Perritt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama United States of America
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama United States of America
| |
Collapse
|
4
|
Duan H, Wang S, Shu WJ, Tong Y, Long HZ, Li G, Du HN, Zhao MJ. SETD3-mediated histidine methylation of MCM7 regulates DNA replication by facilitating chromatin loading of MCM. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-023-2600-0. [PMID: 39455502 DOI: 10.1007/s11427-023-2600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/19/2024] [Indexed: 10/28/2024]
Abstract
The minichromosome maintenance complex (MCM) DNA helicase is an important replicative factor during DNA replication. The proper chromatin loading of MCM is a key step to ensure replication initiation during S phase. Because replication initiation is regulated by multiple biological cues, additional changes to MCM may provide better understanding towards this event. Here, we report that histidine methyltransferase SETD3 promotes DNA replication in a manner dependent on enzymatic activity. Nascent-strand sequencing (NS-seq) shows that SETD3 regulates replication initiation, as depletion of SETD3 attenuates early replication origins firing. Biochemical studies reveal that SETD3 binds MCM mainly during S phase, which is required for the CDT1-mediated chromatin loading of MCM. This MCM loading relies on histidine-459 methylation (H459me) on MCM7 which is catalyzed by SETD3. Impairment of H459 methylation attenuates DNA synthesis and chromatin loading of MCM. Furthermore, we show that CDK2 phosphorylates SETD3 at Serine-21 during the G1/S phase, which is required for DNA replication and cell cycle progression. These findings demonstrate a novel mechanism by which SETD3 methylates MCM to regulate replication initiation.
Collapse
Affiliation(s)
- Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Shuang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Yongjia Tong
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | | | - Guohong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
6
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
7
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Dihydrotanshinone I Enhances Cell Adhesion and Inhibits Cell Migration in Osteosarcoma U-2 OS Cells through CD44 and Chemokine Signaling. Molecules 2022; 27:molecules27123714. [PMID: 35744840 PMCID: PMC9231138 DOI: 10.3390/molecules27123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
In the screening of novel natural products against cancer using an in vitro cancer cell model, we recently found that tanshinones from a traditional Chinese medicine, the rhizome of Salvia miltiorrhiza Bunge (Danshen), had potent effects on cell proliferation and migration. Especially for human osteosarcoma U−2 OS cells, tanshinones significantly enhanced the cell adherence, implying a possible role in cell adhesion and cell migration inhibition. In this work, therefore, we aimed to provide a new insight into the possible molecule mechanisms of dihydrotanshinone I, which had the strongest effects on cell adhesion among several candidate tanshinones. RNA−sequencing-based transcriptome analysis and several biochemical experiments indicated that there were comprehensive signals involved in dihydrotanshinone I-treated U−2 OS cells, such as cell cycle, DNA replication, thermogenesis, tight junction, oxidative phosphorylation, adherens junction, and focal adhesion. First, dihydrotanshinone I could potently inhibit cell proliferation and induce cell cycle arrest in the G0/G1 phase by downregulating the expression of CDK4, CDK2, cyclin D1, and cyclin E1 and upregulating the expression of p21. Second, it could significantly enhance cell adhesion on cell plates and inhibit cell migration, involving the hyaluronan CD44−mediated CXCL8–PI3K/AKT–FOXO1, IL6–STAT3–P53, and EMT signaling pathways. Thus, the increased expression of CD44 and lengthened protrusions around the cell yielded a significant increase in cell adhesion. In summary, these results suggest that dihydrotanshinone I might be an interesting molecular therapy for enhancing human osteosarcoma U−2 OS cell adhesion and inhibiting cell migration and proliferation.
Collapse
|
9
|
Jiang N, Wang L, Jiang D, Wang M, Liu H, Yu H, Yao W. Transcriptomic analysis of inhibition by eugenol of ochratoxin A biosynthesis and growth of Aspergillus carbonarius. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Han L, Sun Y, Cao Y, Gao P, Quan Z, Chang Y, Ding J. Analysis of the gene transcription patterns and DNA methylation characteristics of triploid sea cucumbers (Apostichopus japonicus). Sci Rep 2021; 11:7564. [PMID: 33828212 PMCID: PMC8027599 DOI: 10.1038/s41598-021-87278-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 02/01/2023] Open
Abstract
Breeding of polyploid aquatic animals is still an important approach and research hotspot for realizing the economic benefits afforded by the improvement of aquatic animal germplasm. To better understand the molecular mechanisms of the growth of triploid sea cucumbers, we performed gene expression and genome-wide comparisons of DNA methylation using the body wall tissue of triploid sea cucumbers using RNA-seq and MethylRAD-seq technologies. We clarified the expression pattern of triploid sea cucumbers and found no dosage effect. DEGs were significantly enriched in the pathways of nucleic acid and protein synthesis, cell growth, cell division, and other pathways. Moreover, we characterized the methylation pattern changes and found 615 differentially methylated genes at CCGG sites and 447 differentially methylated genes at CCWGG sites. Integrative analysis identified 23 genes (such as Guf1, SGT, Col5a1, HAL, HPS1, etc.) that exhibited correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions in the growth of triploid sea cucumbers. Our data provide new insights into the epigenetic and transcriptomic alterations of the body wall tissue of triploid sea cucumbers and preliminarily elucidate the molecular mechanism of their growth, which is of great significance for the breeding of fine varieties of sea cucumbers.
Collapse
Affiliation(s)
- Lingshu Han
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China ,grid.203507.30000 0000 8950 5267Ningbo University, Ningbo, 315832 Zhejiang People’s Republic of China
| | - Yi Sun
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Yue Cao
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Pingping Gao
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Zijiao Quan
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Yaqing Chang
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Jun Ding
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| |
Collapse
|
11
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Riahi A, Hosseinpour-Feizi M, Rajabi A, Akbarzadeh M, Montazeri V, Safaralizadeh R. Overexpression of long non-coding RNA MCM3AP-AS1 in breast cancer tissues compared to adjacent non-tumour tissues. Br J Biomed Sci 2020; 78:53-57. [PMID: 32678686 DOI: 10.1080/09674845.2020.1798058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Altered expression of several long non-coding RNAs (lncRNAs) has been described in numerous malignancies, including breast cancer, and some may have a role in carcinogenesis. We hypothesised differences in the expression of lncRNA MCM3AP-AS1 in breast cancer tissues compared to nearby healthy tissues and potential links with clinical features. METHODS We tested our hypothesis in 102 pairs of breast cancer tumours and adjacent non-tumour tissues from female patients. After RNA extraction, cDNA synthesis was performed for all specimens. The differential gene expression was assessed using Quantitative Real-Time PCR Technique. RESULTS There was a significant overexpression of the lncRNAs in tumour tissues as compared with their adjacent non-tumour tissues (P < 0.001). Expression was significantly linked with the tumour oestrogen receptor expression (P = 0.023) and tumour progesterone receptor expression (P < 0.001). ROC analysis showed an AUC of 0.67 (95% CI 0.60-0.75) (P < 0.001) with sensitivity and specificity of 58% and 76%, respectively. CONCLUSION The lncRNA MCM3AP-AS1 may be a novel breast cancer lncRNA with high expression levels in breast cancer patients' tissue. Further investigations are needed to confirm its uses as a potential molecular marker and therapeutic target.
Collapse
Affiliation(s)
- A Riahi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - M Hosseinpour-Feizi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - A Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| | - M Akbarzadeh
- Department of Biology, Faculty of Sciences, Azerbaijan Shahid Madani University , Tabriz, Iran
| | - V Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences\Surgery Ward, Nour-Nejat Hospital , Tabriz, Iran
| | - R Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz , Tabriz, Iran
| |
Collapse
|
13
|
Caglar HO, Biray Avci C. Alterations of cell cycle genes in cancer: unmasking the role of cancer stem cells. Mol Biol Rep 2020; 47:3065-3076. [DOI: 10.1007/s11033-020-05341-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/22/2020] [Indexed: 02/07/2023]
|
14
|
Masnadi-Shirazi M, Maurya MR, Pao G, Ke E, Verma IM, Subramaniam S. Time varying causal network reconstruction of a mouse cell cycle. BMC Bioinformatics 2019; 20:294. [PMID: 31142274 PMCID: PMC6542064 DOI: 10.1186/s12859-019-2895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Biochemical networks are often described through static or time-averaged measurements of the component macromolecules. Temporal variation in these components plays an important role in both describing the dynamical nature of the network as well as providing insights into causal mechanisms. Few methods exist, specifically for systems with many variables, for analyzing time series data to identify distinct temporal regimes and the corresponding time-varying causal networks and mechanisms. Results In this study, we use well-constructed temporal transcriptional measurements in a mammalian cell during a cell cycle, to identify dynamical networks and mechanisms describing the cell cycle. The methods we have used and developed in part deal with Granger causality, Vector Autoregression, Estimation Stability with Cross Validation and a nonparametric change point detection algorithm that enable estimating temporally evolving directed networks that provide a comprehensive picture of the crosstalk among different molecular components. We applied our approach to RNA-seq time-course data spanning nearly two cell cycles from Mouse Embryonic Fibroblast (MEF) primary cells. The change-point detection algorithm is able to extract precise information on the duration and timing of cell cycle phases. Using Least Absolute Shrinkage and Selection Operator (LASSO) and Estimation Stability with Cross Validation (ES-CV), we were able to, without any prior biological knowledge, extract information on the phase-specific causal interaction of cell cycle genes, as well as temporal interdependencies of biological mechanisms through a complete cell cycle. Conclusions The temporal dependence of cellular components we provide in our model goes beyond what is known in the literature. Furthermore, our inference of dynamic interplay of multiple intracellular mechanisms and their temporal dependence on one another can be used to predict time-varying cellular responses, and provide insight on the design of precise experiments for modulating the regulation of the cell cycle. Electronic supplementary material The online version of this article (10.1186/s12859-019-2895-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Masnadi-Shirazi
- Department of Electrical and Computer Engineering and Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Mano R Maurya
- Department of Bioengineering and San Diego Supercomputer center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Gerald Pao
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Eugene Ke
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Inder M Verma
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shankar Subramaniam
- Department of Bioengineering, Departments of Computer Science and Engineering, Cellular and Molecular Medicine, and the Graduate Program in Bioinformatics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes (Basel) 2019; 10:genes10050331. [PMID: 31052337 PMCID: PMC6563057 DOI: 10.3390/genes10050331] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2-7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2-7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8-MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.
Collapse
|
16
|
Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, Vercoutter-Edouart AS. Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Front Endocrinol (Lausanne) 2019; 10:106. [PMID: 30853938 PMCID: PMC6395391 DOI: 10.3389/fendo.2019.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked β-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination.
Collapse
Affiliation(s)
- Louis Masclef
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR 8161, M3T: Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maïté Leturcq
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Anne-Sophie Vercoutter-Edouart
| |
Collapse
|
17
|
Leturcq M, Mortuaire M, Hardivillé S, Schulz C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc transferase associates with the MCM2-7 complex and its silencing destabilizes MCM-MCM interactions. Cell Mol Life Sci 2018; 75:4321-4339. [PMID: 30069701 PMCID: PMC6208770 DOI: 10.1007/s00018-018-2874-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023]
Abstract
O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2-7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2-7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2-7 complex and O-GlcNAcylation homeostasis might regulate MCM2-7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.
Collapse
Affiliation(s)
- Maïté Leturcq
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marlène Mortuaire
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Stéphan Hardivillé
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | | |
Collapse
|
18
|
Feng C, Song C, Ning Z, Ai B, Wang Q, Xu Y, Li M, Bai X, Zhao J, Liu Y, Li X, Zhang J, Li C. ce-Subpathway: Identification of ceRNA-mediated subpathways via joint power of ceRNAs and pathway topologies. J Cell Mol Med 2018; 23:967-984. [PMID: 30421585 PMCID: PMC6349186 DOI: 10.1111/jcmm.13997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) represent a novel mechanism of gene regulation that may mediate key subpathway regions and contribute to the altered activities of pathways. However, the classical methods used to identify pathways fail to specifically consider ceRNAs within the pathways and key regions impacted by them. We proposed a powerful strategy named ce-Subpathway for the identification of ceRNA-mediated functional subpathways. It provided an effective level of pathway analysis via integrating ceRNAs, differentially expressed (DE) genes and their key regions within the given pathways. We respectively analysed one pulmonary arterial hypertension (PAH) and one myocardial infarction (MI) data sets and demonstrated that ce-Subpathway could identify many subpathways whose corresponding entire pathways were ignored by those non-ceRNA-mediated pathway identification methods. And these pathways have been well reported to be associated with PAH/MI-related cardiovascular diseases. Further evidence showed reliability of ceRNA interactions and robustness/reproducibility of the ce-Subpathway strategy by several data sets of different cancers, including breast cancer, oesophageal cancer and colon cancer. Survival analysis was finally applied to illustrate the clinical application value of the ceRNA-mediated functional subpathways using another data sets of pancreatic cancer. Comprehensive analyses have shown the power of a joint ceRNAs/DE genes and subpathway strategy based on their topologies.
Collapse
Affiliation(s)
- Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chao Song
- Department of Pharmacology, Daqing Campus, Harbin Medical University, Daqing, China
| | - Ziyu Ning
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Qiuyu Wang
- School of Nursing, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yong Xu
- The fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Meng Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jianmei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, China
| |
Collapse
|
19
|
Kaposi's Sarcoma-Associated Herpesvirus Deregulates Host Cellular Replication during Lytic Reactivation by Disrupting the MCM Complex through ORF59. J Virol 2018; 92:JVI.00739-18. [PMID: 30158293 DOI: 10.1128/jvi.00739-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Minichromosome maintenance proteins (MCMs) play an important role in DNA replication by binding to the origins as helicase and recruiting polymerases for DNA synthesis. During the S phase, MCM complex is loaded to limit DNA replication once per cell cycle. We identified MCMs as ORF59 binding partners in our protein pulldown assays, which led us to hypothesize that this interaction influences DNA replication. ORF59's interactions with MCMs were confirmed in both endogenous and overexpression systems, which showed its association with MCM3, MCM4, MCM5, and MCM6. Interestingly, MCM6 interacted with both the N- and C-terminal domains of ORF59, and its depletion in BCBL-1 and BC3 cells led to an increase in viral genome copies, viral late gene transcripts, and virion production compared to the control cells following reactivation. MCMs perform their function by loading onto the replication competent DNA, and one means of regulating chromatin loading/unloading, in addition to enzymatic activity of the MCM complex, is by posttranslational modifications, including phosphorylation of these factors. Interestingly, a hypophosphorylated form of MCM3, which is associated with reduced loading onto the chromatin, was detected during lytic reactivation and correlated with its inability to associate with histones in reactivated cells. Additionally, chromatin immunoprecipitation showed lower levels of MCM3 and MCM4 association at cellular origins of replication and decreased levels of cellular DNA synthesis in cells undergoing reactivation. Taken together, these findings suggest a mechanism in which KSHV ORF59 disrupts the assembly and functions of MCM complex to stall cellular DNA replication and promote viral replication.IMPORTANCE KSHV is the causative agent of various lethal malignancies affecting immunocompromised individuals. Both lytic and latent phases of the viral life cycle contribute to the progression of these cancers. A better understanding of how viral proteins disrupt functions of a normal healthy cell to cause oncogenesis is warranted. One crucial lytic protein produced early during lytic reactivation is the multifunctional ORF59. In this report, we elucidated an important role of ORF59 in manipulating the cellular environment conducive for viral DNA replication by deregulating the normal functions of the host MCM proteins. ORF59 binds to specific MCMs and sequesters them away from replication origins in order to sabotage cellular DNA replication. Blocking cellular DNA replication ensures that cellular resources are utilized for transcription and replication of viral DNA.
Collapse
|
20
|
Schumann M, Malešević M, Hinze E, Mathea S, Meleshin M, Schutkowski M, Haehnel W, Schiene-Fischer C. Regulation of the Minichromosome Maintenance Protein 3 (MCM3) Chromatin Binding by the Prolyl Isomerase Pin1. J Mol Biol 2018; 430:5169-5181. [PMID: 30316783 DOI: 10.1016/j.jmb.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023]
Abstract
Human Pin1 is a peptidyl prolyl cis/trans isomerase with a unique preference for phosphorylated Ser/Thr-Pro substrate motifs. Here we report that MCM3 (minichromosome maintenance complex component 3) is a novel target of Pin1. MCM3 interacts directly with the WW domain of Pin1. Proline-directed phosphorylation of MCM3 at S112 and T722 are crucial for the interaction with Pin1. MCM3 as a subunit of the minichromosome maintenance heterocomplex MCM2-7 is part of the pre-replication complex responsible for replication licensing and is implicated in the formation of the replicative helicase during progression of replication. Our data suggest that Pin1 coordinates phosphorylation-dependently MCM3 loading onto chromatin and its unloading from chromatin, thereby mediating S phase control.
Collapse
Affiliation(s)
- Michael Schumann
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany
| | - Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | - Erik Hinze
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | - Sebastian Mathea
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany
| | - Wolfgang Haehnel
- Institute of Biology II / Biochemistry, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany.
| |
Collapse
|
21
|
Feng R, Wang X, Li J, Chen K, Guo G, Liao Y, Sun L, Huang S, Chen JL. Interaction of Abl Tyrosine Kinases with SOCS3 Impairs Its Suppressor Function in Tumorigenesis. Neoplasia 2018; 20:1095-1105. [PMID: 30236924 PMCID: PMC6143717 DOI: 10.1016/j.neo.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/19/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is involved in Bcr-Abl–induced tumorigenesis. However, how SOCS3 interacts with Bcr-Abl and is regulated by Abl kinases remains largely unknown. Since c-Abl plays a critical role in tumorigenesis, we asked whether SOCS3 is regulated by c-Abl–dependent phosphorylation. Here, we found that SOCS3 interacted with all three Abl kinases (Bcr-Abl, v-Abl, and c-Abl), and SH1 domain of the Abl kinases was critically required for such interaction. Furthermore, the SH2 domain of SOCS3 was sufficient to pull down the SH1 domain but not the full length of Bcr-Abl. Importantly, SOCS3 was highly tyrosine phosphorylated by c-Abl, leading to impairment of its ability to suppress JAK8+72 activity. In addition, disrupting the tyrosine phosphorylation of SOCS3 promoted apoptosis of c-Abl–expressing cells and impeded xenograft growth of these tumor cells in nude mice. The results demonstrate that SOCS3 is highly tyrosine phosphorylated by c-Abl and that tyrosine phosphorylation of SOCS3 is required for the survival and tumorigenesis of certain cells. Our findings provide novel insights into complicated mechanisms underlying the oncogenic function of Abl kinases.
Collapse
Affiliation(s)
- Riyue Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Sun
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Fei L, Xu H. Role of MCM2-7 protein phosphorylation in human cancer cells. Cell Biosci 2018; 8:43. [PMID: 30062004 PMCID: PMC6056998 DOI: 10.1186/s13578-018-0242-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023] Open
Abstract
A heterohexameric complex composed of minichromosome maintenance protein 2–7 (MCM2–7), which acts as a key replicative enzyme in eukaryotes, is crucial for initiating DNA synthesis only once per cell cycle. The MCM complex remains inactive through the G1 phase, until the S phase, when it is activated to initiate replication. During the transition from the G1 to S phase, the MCM undergoes multisite phosphorylation, an important change that promotes subsequent assembly of other replisome members. Phosphorylation is crucial for the regulation of MCM activity and function. MCMs can be phosphorylated by multiple kinases and these phosphorylation events are involved not only in DNA replication but also cell cycle progression and checkpoint response. Dysfunctional phosphorylation of MCMs appears to correlate with the occurrence and development of cancers. In this review, we summarize the currently available data regarding the regulatory mechanisms and functional consequences of MCM phosphorylation and seek the probability that protein kinase inhibitor can be used therapeutically to target MCM phosphorylation in cancer.
Collapse
Affiliation(s)
- Liangru Fei
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| | - Hongtao Xu
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| |
Collapse
|
23
|
Tamošaitis L, Smales CM. Meta-Analysis of Publicly Available Chinese Hamster Ovary (CHO) Cell Transcriptomic Datasets for Identifying Engineering Targets to Enhance Recombinant Protein Yields. Biotechnol J 2018; 13:e1800066. [DOI: 10.1002/biot.201800066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Linas Tamošaitis
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences; University of Kent; Canterbury Kent CT2 7NJ UK
| |
Collapse
|
24
|
Furuta T, Joo HJ, Trimmer KA, Chen SY, Arur S. GSK-3 promotes S-phase entry and progression in C. elegans germline stem cells to maintain tissue output. Development 2018; 145:dev.161042. [PMID: 29695611 DOI: 10.1242/dev.161042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
Adult C. elegans germline stem cells (GSCs) and mouse embryonic stem cells (mESCs) exhibit a non-canonical cell cycle structure with an abbreviated G1 phase and phase-independent expression of Cdk2 and cyclin E. Mechanisms that promote the abbreviated cell cycle remain unknown, as do the consequences of not maintaining an abbreviated cell cycle in these tissues. In GSCs, we discovered that loss of gsk-3 results in reduced GSC proliferation without changes in differentiation or responsiveness to GLP-1/Notch signaling. We find that DPL-1 transcriptional activity inhibits CDK-2 mRNA accumulation in GSCs, which leads to slower S-phase entry and progression. Inhibition of dpl-1 or transgenic expression of CDK-2 via a heterologous germline promoter rescues the S-phase entry and progression defects of the gsk-3 mutants, demonstrating that transcriptional regulation rather than post-translational control of CDK-2 establishes the abbreviated cell cycle structure in GSCs. This highlights an inhibitory cascade wherein GSK-3 inhibits DPL-1 and DPL-1 inhibits cdk-2 transcription. Constitutive GSK-3 activity through this cascade maintains an abbreviated cell cycle structure to permit the efficient proliferation of GSCs necessary for continuous tissue output.
Collapse
Affiliation(s)
- Tokiko Furuta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyoe-Jin Joo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Genes and Development Graduate Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA .,Genes and Development Graduate Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
25
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
26
|
Zhao H, Pflug BR, Lai X, Wang M. Pyruvate dehydrogenase alpha 1 as a target of omega-3 polyunsaturated fatty acids in human prostate cancer through a global phosphoproteomic analysis. Proteomics 2016; 16:2419-31. [PMID: 27357730 DOI: 10.1002/pmic.201600166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 01/26/2023]
Abstract
Prostate cancer is one of the leading cancers in men. Taking dietary supplements, such as fish oil (FO), which is rich in n-3 polyunsaturated fatty acids (PUFAs), has been employed as a strategy to lower prostate cancer risk and control disease progression. In this study, we investigated the global phosphoproteomic changes induced by FO using a combination of phosphoprotein-enrichment strategy and high-resolution tandem mass spectrometry. We found that FO induces many more phosphorylation changes than oleic acid when they both are compared to control group. Quantitative comparison between untreated group and FO- or oleic acid-treated groups uncovered a number of important protein phosphorylation changes induced by n-3PUFAs. This phosphoproteomic discovery study and the follow-up Western Blot validation study elucidate that phosphorylation levels of the two regulatory serine residues in pyruvate dehydrogenase alpha 1 (PDHA1), serine-232 and serine-300, are significantly decreased upon FO treatment. As expected, increased pyruvate dehydrogenase activity was also observed. This study suggests that FO-induced phosphorylation changes in PDHA1 is more likely related to the glucose metabolism pathway, and n-3 PUFAs may have a role in controlling the balance between lipid and glucose oxidation.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Beth R Pflug
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xianyin Lai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Role of WDHD1 in Human Papillomavirus-Mediated Oncogenesis Identified by Transcriptional Profiling of E7-Expressing Cells. J Virol 2016; 90:6071-6084. [PMID: 27099318 DOI: 10.1128/jvi.00513-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/16/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The E7 oncoprotein of the high-risk human papillomavirus (HPV) plays a major role in HPV-induced carcinogenesis. E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, but the mechanism is not fully understood. In this study, we performed RNA sequencing (RNA-seq) to characterize the transcriptional profile of keratinocytes expressing HPV 16 (HPV-16) E7. At the transcriptome level, 236 genes were differentially expressed between E7 and vector control cells. A subset of the differentially expressed genes, most of them novel to E7-expressing cells, was further confirmed by real-time PCR. Of interest, the activities of multiple transcription factors were altered in E7-expressing cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were investigated. The upregulated genes were enriched in cell cycle and DNA replication, as well as in the DNA metabolic process, transcription, DNA damage, DNA repair, and nucleotide metabolism. Specifically, we focused our studies on the gene encoding WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein), one of the genes that was upregulated in E7-expressing cells. WDHD1 is a component of the replisome that regulates DNA replication. Recent studies suggest that WDHD1 may also function as a DNA replication initiation factor as well as a G1 checkpoint regulator. We found that in E7-expressing cells, the steady-state level of WDHD1 protein was increased along with the half-life. Moreover, downregulation of WDHD1 reduced E7-induced G1 checkpoint abrogation and rereplication, demonstrating a novel function for WDHD1. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. IMPORTANCE The high-risk HPV types induce cervical cancer and encode an E7 oncoprotein that plays a major role in HPV-induced carcinogenesis. However, the mechanism by which E7 induces carcinogenesis is not fully understood; specific anti-HPV agents are not available. In this study, we performed RNA-seq to characterize transcriptional profiling of keratinocytes expressing HPV-16 E7 and identified more than 200 genes that were differentially expressed between E7 and vector control cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were identified. Significantly, the WDHD1 gene, one of the genes that is upregulated in E7-expressing cells, was found to play an important role in E7-induced G1 checkpoint abrogation and rereplication. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications.
Collapse
|
28
|
Tissue Inhibitor of Matrix Metalloproteinases-1 Knockdown Suppresses the Proliferation of Human Adipose-Derived Stem Cells. Stem Cells Int 2016; 2016:4761507. [PMID: 27239203 PMCID: PMC4863124 DOI: 10.1155/2016/4761507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional matrix metalloproteinase, and it is involved in the regulation of cell proliferation and apoptosis in various cell types. However, little is known about the effect of TIMP-1 expression on the proliferation of adipose-derived stem cells (ADSCs). Therefore, TIMP-1 expression in the ADSCs was firstly detected by western blotting, and TIMP-1 gene was knocked down by lentivirus-mediated shRNA. Cell proliferation was then evaluated by MTT assay and Ki67 staining, respectively. Cell cycle progression was determined by flow cytometry. The changes of p51, p21, cyclin E, cyclin-dependent kinase 2 (CDK2), and P-CDK2 caused by TIMP-1 knockdown were detected by western blotting. The results indicated that ADSCs highly expressed TIMP-1 protein, and the knockdown of TIMP-1 inhibited cell proliferation and arrested cell cycle progression at G1 phase in the ADSCs possibly through the upregulation of p53, p21, and P-CDK2 protein levels and concurrent downregulation of cyclin E and CDK2 protein levels. These findings suggest that TIMP-1 works as a positive regulator of cell proliferation in ADSCs.
Collapse
|
29
|
Inference of Low and High-Grade Glioma Gene Regulatory Networks Delineates the Role of Rnd3 in Establishing Multiple Hallmarks of Cancer. PLoS Genet 2015; 11:e1005325. [PMID: 26132659 PMCID: PMC4488580 DOI: 10.1371/journal.pgen.1005325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/29/2015] [Indexed: 12/12/2022] Open
Abstract
Gliomas are a highly heterogeneous group of brain tumours that are refractory to treatment, highly invasive and pro-angiogenic. Glioblastoma patients have an average survival time of less than 15 months. Understanding the molecular basis of different grades of glioma, from well differentiated, low-grade tumours to high-grade tumours, is a key step in defining new therapeutic targets. Here we use a data-driven approach to learn the structure of gene regulatory networks from observational data and use the resulting models to formulate hypothesis on the molecular determinants of glioma stage. Remarkably, integration of available knowledge with functional genomics datasets representing clinical and pre-clinical studies reveals important properties within the regulatory circuits controlling low and high-grade glioma. Our analyses first show that low and high-grade gliomas are characterised by a switch in activity of two subsets of Rho GTPases. The first one is involved in maintaining normal glial cell function, while the second is linked to the establishment of multiple hallmarks of cancer. Next, the development and application of a novel data integration methodology reveals novel functions of RND3 in controlling glioma cell migration, invasion, proliferation, angiogenesis and clinical outcome. Gliomas are aggressive brain tumours that are invasive, heterogeneous, refractory to treatment and show poor survival rates. Surgical resection and chemotherapy can increase patient survival but ultimately the disease is fatal. Multiple grades of glioma exist, with lower grades associated to better prognosis. While the majority of high-grade gliomas occur de novo, it is common that low-grade gliomas progress to the more aggressive form known as glioblastoma. In this article, we have shown that by combining advanced network biology approaches with the right experimental models, we are able to reveal novel regulatory circuits controlling multiple hallmarks of glioma. Through analysis of multiple network models representing protein-protein interaction or gene co-expression data we have revealed a switch in the role of regulatory Rho GTPases between low and high-grade gliomas. Amongst these, we show that RND3 is up-regulated in glioblastomas and is a key regulator of tumour proliferation, migration and invasion. We confirm that expression and genomic copy number of RND3 are predictive of clinical outcome, suggesting that changes in the activity of this particular Rho GTPase could be an early event associated to transformation and tumour expansion.
Collapse
|
30
|
Park HG, Yeo MK. Metabolic gene expression profiling of Zebrafish embryos exposed to silver nanocolloids and nanotubes. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-014-0045-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Sun L, Huang Y, Wei Q, Tong X, Cai R, Nalepa G, Ye X. Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. J Biol Chem 2014; 290:4075-85. [PMID: 25548279 DOI: 10.1074/jbc.m114.602532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin E-CDK2 is a key regulator in G1/S transition. Previously, we identified a number of CDK2-interacting proteins, including PHF8 (plant homeodomain finger protein 8). In this report, we confirmed that PHF8 is a novel cyclin E-CDK2 substrate. By taking the approach of mass spectrometry, we identified that PHF8 Ser-844 is phosphorylated by cyclin E-CDK2. Immunoblotting analysis indicated that WT PHF8 demethylates histone H3K9me2 more efficiently than the cyclin E-CDK2 phosphorylation-deficient PHF8-S844A mutant. Furthermore, flow cytometry analysis showed that WT PHF8 promotes S phase progression more robustly than PHF8-S844A. Real-time PCR results demonstrated that PHF8 increases transcription of cyclin E, E2F3, and E2F7 to significantly higher levels compared with PHF8-S844A. Further analysis by ChIP assay indicated that PHF8 binds to the cyclin E promoter stronger than PHF8-S844A and reduces the H3K9me2 level at the cyclin E promoter more efficiently than PHF8-S844A. In addition, we found that cyclin E-CDK2-mediated phosphorylation of PHF8 Ser-844 promotes PHF8-dependent rRNA transcription in luciferase reporter assays and real-time PCR. Taken together, these results indicate that cyclin E-CDK2 phosphorylates PHF8 to stimulate its demethylase activity to promote rRNA transcription and cell cycle progression.
Collapse
Affiliation(s)
- Liping Sun
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yan Huang
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Qian Wei
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Xiaomei Tong
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Cai
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100101, China, and
| | - Grzegorz Nalepa
- the Department of Pediatrics and Division of Pediatric Hematology-Oncology, Herman B. Wells Center for Pediatric Research, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xin Ye
- From the Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
32
|
Chen Q, Chen K, Guo G, Li F, Chen C, Wang S, Nalepa G, Huang S, Chen JL. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis. PLoS One 2014; 9:e111611. [PMID: 25360622 PMCID: PMC4216094 DOI: 10.1371/journal.pone.0111611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
CDKN3 (cyclin-dependent kinase inhibitor 3), a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs) and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML) remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S) devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.
Collapse
Affiliation(s)
- Qinghuang Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Fang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chao Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Grzegorz Nalepa
- Department of Pediatrics and Division of Pediatric Hematology-Oncology, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- * E-mail:
| |
Collapse
|
33
|
Huang TH, Huo L, Wang YN, Xia W, Wei Y, Chang SS, Chang WC, Fang YF, Chen CT, Lang JY, Tu C, Wang Y, Hsu MC, Kuo HP, Ko HW, Shen J, Lee HH, Lee PC, Wu Y, Chen CH, Hung MC. Epidermal growth factor receptor potentiates MCM7-mediated DNA replication through tyrosine phosphorylation of Lyn kinase in human cancers. Cancer Cell 2013; 23:796-810. [PMID: 23764002 PMCID: PMC3703149 DOI: 10.1016/j.ccr.2013.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 11/17/2012] [Accepted: 04/26/2013] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) initiates a signaling cascade that leads to DNA synthesis and cell proliferation, but its role in regulating DNA replication licensing is unclear. Here, we show that activated EGFR phosphorylates the p56 isoform of Lyn, p56(Lyn), at Y32, which then phosphorylates MCM7, a licensing factor critical for DNA replication, at Y600 to increase its association with other minichromosome maintenance complex proteins, thereby promoting DNA synthesis complex assembly and cell proliferation. Both p56(Lyn) Y32 and MCM7 Y600 phosphorylation are enhanced in proliferating cells and correlated with poor survival of breast cancer patients. These results establish a signaling cascade in which EGFR enhances MCM7 phosphorylation and DNA replication through Lyn phosphorylation in human cancer cells.
Collapse
Affiliation(s)
- Tzu-Hsuan Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Asia University, Taichung 413, Taiwan.
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Wei-Chao Chang
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
| | - Yueh-Fu Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chun-Te Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Jing-Yu Lang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chun Tu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ming-Chuan Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Jia Shen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
| | - Pei-Chih Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Chung-Hsuan Chen
- The Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan.
- Asia University, Taichung 413, Taiwan.
- To whom correspondence should be addressed: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Box 108, 1515 Holcombe Boulevard, Houston, TX 77030.
| |
Collapse
|
34
|
Wei Q, Li J, Liu T, Tong X, Ye X. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation. J Biol Chem 2013; 288:19715-25. [PMID: 23720738 DOI: 10.1074/jbc.m112.449652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MCM7 is one of the subunits of the MCM2-7 complex that plays a critical role in DNA replication initiation and cell proliferation of eukaryotic cells. After forming the pre-replication complex (pre-RC) with other components, the MCM2-7 complex is activated by DDK/cyclin-dependent kinase to initiate DNA replication. Each subunit of the MCM2-7 complex functions differently under regulation of various kinases on the specific site, which needs to be investigated in detail. In this study, we demonstrated that MCM7 is a substrate of cyclin E/Cdk2 and can be phosphorylated on Ser-121. We found that the distribution of MCM7-S121A is different from wild-type MCM7 and that the MCM7-S121A mutant is much less efficient to form a pre-RC complex with MCM3/MCM5/cdc45 compared with wild-type MCM7. By using the Tet-On inducible HeLa cell line, we revealed that overexpression of wild-type MCM7 but not MCM7-S121A can block S phase entry, suggesting that an excess of the pre-RC complex may activate the cell cycle checkpoint. Further analysis indicates that the Chk1 pathway is activated in MCM7-overexpressed cells in a p53-dependent manner. We performed experiments with the human normal cell line HL-7702 and also observed that overexpression of MCM7 can cause S phase block through checkpoint activation. In addition, we found that MCM7 could also be phosphorylated by cyclin B/Cdk1 on Ser-121 both in vitro and in vivo. Furthermore, overexpression of MCM7-S121A causes an obvious M phase exit delay, which suggests that phosphorylation of MCM7 on Ser-121 in M phase is very important for a proper mitotic exit. These data suggest that the phosphorylation of MCM7 on Ser-121 by cyclin/Cdks is involved in preventing DNA rereplication as well as in regulation of the mitotic exit.
Collapse
Affiliation(s)
- Qian Wei
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
35
|
WANG SHAOKANG, LIU SHA, YANG LIGANG, SHI RUOFU, SUN GUIJU. Effect of fumonisin B1 on the cell cycle of normal human liver cells. Mol Med Rep 2013; 7:1970-6. [DOI: 10.3892/mmr.2013.1447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/19/2013] [Indexed: 11/06/2022] Open
|
36
|
Ansari A, Tuteja R. Genome wide comparative comprehensive analysis of Plasmodium falciparum MCM family with human host. Commun Integr Biol 2013; 5:607-15. [PMID: 23336032 PMCID: PMC3541329 DOI: 10.4161/cib.21759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mini chromosome maintenance (MCM) proteins 2-7, a subgroup of the large AAA ATPase family are critically required for eukaryotic DNA replication. These proteins are most likely responsible for unwinding DNA at the replication forks. Besides this function, some MCMs are also involved in other chromosome transactions such as transcription, chromatin remodeling and genome stability. All the MCMs contain a conserved region of ~200 amino acids responsible for nucleotide binding. The importance of MCM proteins is evident by the fact that deregulation of the activity of MCM family of proteins appears to be directly linked to human carcinogenesis. This article will focus on members of this important family of proteins from the malaria parasite Plasmodium falciparum and their comparison with the human host.
Collapse
Affiliation(s)
- Abulaish Ansari
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
37
|
Drougat L, Olivier-Van Stichelen S, Mortuaire M, Foulquier F, Lacoste AS, Michalski JC, Lefebvre T, Vercoutter-Edouart AS. Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochim Biophys Acta Gen Subj 2012; 1820:1839-48. [PMID: 22967762 DOI: 10.1016/j.bbagen.2012.08.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND DNA replication represents a critical step of the cell cycle which requires highly controlled and ordered regulatory mechanisms to ensure the integrity of genome duplication. Among a plethora of elements, post-translational modifications (PTMs) ensure the spatiotemporal regulation of pivotal proteins orchestrating cell division. Despite increasing evidences showing that O-GlcNAcylation regulates mitotic events, the impact of this PTM in the early steps of the cell cycle remains poorly understood. METHODS AND RESULTS Quiescent MCF7 cells were stimulated by serum mitogens and cell cycle progression was determined by flow cytometry. The levels of O-GlcNAc modified proteins, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) were examined by Western blotting and OGA activity was measured during the progression of cells towards S phase. A global decrease in O-GlcNAcylation was observed at S phase entry, concomitantly to an increase in the activity of OGA. A combination of two-dimensional electrophoresis, Western blotting and mass spectrometry was then used to detect and identify cell cycle-dependent putative O-GlcNAcylated proteins. 58 cytoplasmic and nuclear proteins differentially O-GlcNAcylated through G1/S transition were identified and the O-GlcNAc variations of Cytokeratin 8, hnRNP K, Caprin-1, Minichromosome Maintenance proteins MCM3, MCM6 and MCM7 were validated by immunoprecipitation. CONCLUSIONS The dynamics of O-GlcNAc is regulated during G1/S transition and observed on key proteins involved in the cytoskeleton networks, mRNA processing, translation, protein folding and DNA replication. GENERAL SIGNIFICANCE Our results led us to propose that O-GlcNAcylation joins the PTMs that take part in the regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Ludivine Drougat
- Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Aparicio T, Megías D, Méndez J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma 2012; 121:499-507. [PMID: 22911457 DOI: 10.1007/s00412-012-0381-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
Abstract
In mammalian cells, DNA synthesis takes place at defined nuclear structures termed "replication foci" (RF) that follow the same order of activation in each cell cycle. Intriguingly, immunofluorescence studies have failed to visualize the DNA helicase minichromosome maintenance (MCM) at RF, raising doubts about its physical presence at the sites of DNA synthesis. We have revisited this paradox by pulse-labeling RF during the S phase and analyzing the localization of MCM at labeled DNA in the following cell cycle. Using high-throughput confocal microscopy, we provide direct evidence that MCM proteins concentrate in G1 at the chromosome structures bound to become RF in the S phase. Upon initiation of DNA synthesis, an active "MCM eviction" mechanism contributes to reduce the excess of DNA helicases at RF. Most MCM complexes are released from chromatin, except for a small but detectable fraction that remains at the forks during the S phase, as expected for a replicative helicase.
Collapse
Affiliation(s)
- Tomás Aparicio
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | | | | |
Collapse
|
39
|
Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc Natl Acad Sci U S A 2012; 109:13163-70. [PMID: 22853956 DOI: 10.1073/pnas.1211525109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The replication of eukaryote chromosomes slows down when DNA is damaged and the proteins that work at the fork (the replisome) are known targets for the signaling pathways that mediate such responses critical for accurate genomic inheritance. However, the molecular mechanisms and details of how this response is mediated are poorly understood. In this report we show that the activity of replisome helicase, the Cdc45/MCM2-7/GINS (CMG) complex, can be inhibited by protein phosphorylation. Recombinant Drosophila melanogaster CMG can be stimulated by treatment with phosphatase whereas Chk2 but not Chk1 interferes with the helicase activity in vitro. The targets for Chk2 phosphorylation have been identified and reside in MCM subunits 3 and 4 and in the GINS protein Psf2. Interference requires a combination of modifications and we suggest that the formation of negative charges might create a surface on the helicase to allosterically affect its function. The treatment of developing fly embryos with ionizing radiation leads to hyperphosphorylation of Psf2 subunit in the active helicase complex. Taken together these data suggest that the direct modification of the CMG helicase by Chk2 is an important nexus for response to DNA damage.
Collapse
|