1
|
Sajid S, Ninh C, Yan R, Rafiq M, Christensen LP, Jørgensen MG, Hansen PR, Franzyk H, Mirza O, Prabhala BK. The Prototypical Oligopeptide Transporter YdgR From E. coli Exhibits a Strict Preference for β-Ala-Lys(AMCA). J Pept Sci 2025; 31:e3670. [PMID: 39865462 DOI: 10.1002/psc.3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
Fluorescent probes are widely used in cellular imaging and disease diagnosis. Acting as substitute carriers, fluorescent probes can also be used to help transport drugs within cells. In this study, commonly used fluorophores, TAMRA (5-carboxytetramethylrhodamine), PBA (1-pyrenebutyric acid), NBD (nitrobenzoxadiazole), OG (Oregon Green), and CF (5-carboxyfluorescein) were conjugated with the dipeptide β-Ala-Lys, the peptide moiety of the well-established peptide transporter substrate β-Ala-Lys(AMCA) (AMCA: 7-amino-4-methyl-coumarin-3-acetic acid) by modifying it with respect to side-chain length and functional end groups. The analogs were tested for transport through or inhibition of YdgR, a prototypical peptide transporter from E. coli and apparently homologous to the human PEPT1. Strikingly, none of the dipeptide-fluorophore conjugates nor minor modifications in the reporter substrate were tolerated by YdgR, indicating discrepancies to PEPT1. These findings underscore intricate substrate recognition mechanisms governing substrate recognition by YdgR.
Collapse
Affiliation(s)
- Salvia Sajid
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Cecilia Ninh
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Ruyu Yan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Rafiq
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bala Krishna Prabhala
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Gharabli H, Rafiq M, Iqbal A, Yan R, Aduri NG, Sharma N, Prabhala BK, Mirza O. Functional Characterization of the Putative POT from Clostridium perfringens. BIOLOGY 2023; 12:biology12050651. [PMID: 37237465 DOI: 10.3390/biology12050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Proton-coupled oligopeptide transporters (POTs) are a fundamental part of the cellular transport machinery that provides plants, bacteria, and mammals with nutrition in the form of short peptides. However, POTs are not restricted to peptide transport; mammalian POTs have especially been in focus due to their ability to transport several peptidomimetics in the small intestine. Herein, we studied a POT from Clostridium perfringens (CPEPOT), which unexpectedly exhibited atypical characteristics. First, very little uptake of a fluorescently labelled peptide β-Ala-Lys-AMCA, an otherwise good substrate of several other bacterial POTs, was observed. Secondly, in the presence of a competitor peptide, enhanced uptake of β-Ala-Lys-AMCA was observed due to trans-stimulation. This effect was also observed even in the absence of a proton electrochemical gradient, suggesting that β-Ala-Lys-AMCA uptake mediated by CPEPOT is likely through the substrate-concentration-driving exchange mechanism, unlike any other functionally characterized bacterial POTs.
Collapse
Affiliation(s)
- Hani Gharabli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Maria Rafiq
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anna Iqbal
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ruyu Yan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Neha Sharma
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Ural-Blimke Y, Flayhan A, Strauss J, Rantos V, Bartels K, Nielsen R, Pardon E, Steyaert J, Kosinski J, Quistgaard EM, Löw C. Structure of Prototypic Peptide Transporter DtpA from E. coli in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. J Am Chem Soc 2019; 141:2404-2412. [DOI: 10.1021/jacs.8b11343] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Ali Flayhan
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Vasileios Rantos
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Rolf Nielsen
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels 1050, Belgium
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Esben M. Quistgaard
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Stockholm, Sweden
- Department of Molecular Biology and Genetics − DANDRITE, Gustav Wieds Vej 10, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177 Stockholm, Sweden
| |
Collapse
|
4
|
Sharma N, Aduri NG, Iqbal A, Prabhala BK, Mirza O. Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis. J Mol Microbiol Biotechnol 2016; 26:312-9. [DOI: 10.1159/000447129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022] Open
Abstract
Peptide transport in living organisms is facilitated by either primary transport, hydrolysis of ATP, or secondary transport, cotransport of protons. In this study, we focused on investigating the ligand specificity of the <i>Neisseria meningitidis</i> proton-coupled oligopeptide transporter (NmPOT). It has been shown that the gene encoding this transporter is upregulated during infection. NmPOT conformed to the typical chain length preference as observed in prototypical transporters of this family. In contrast to prototypical transporters, it was unable to accommodate a positively charged peptide residue at the C-terminus position of the substrate peptide. Sequence analysis of the active site of NmPOT displayed a distinctive aromatic patch, which has not been observed in any other transporters from this family. This aromatic patch may be involved in providing NmPOT with its atypical preferences. This study provides important novel information towards understanding how these transporters recognize their substrates.
Collapse
|
5
|
Evidence of a Substrate-Discriminating Entrance Channel in the Lower Porter Domain of the Multidrug Resistance Efflux Pump AcrB. Antimicrob Agents Chemother 2016; 60:4315-23. [PMID: 27161641 DOI: 10.1128/aac.00314-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/01/2016] [Indexed: 11/20/2022] Open
Abstract
Efflux pumps of the resistance nodulation cell division (RND) transporter family, such as AcrB of Escherichia coli, play an important role in the development of multidrug resistance, but the molecular basis for their substrate promiscuity is not yet completely understood. From a collection of highly clarithromycin-resistant AcrB periplasmic domain mutants derived from in vitro random mutagenesis, we identified variants with an unusually altered drug resistance pattern characterized by increased susceptibility to many drugs of lower molecular weight, including fluoroquinolones, tetracyclines, and oxazolidinones, but unchanged or increased resistance to drugs of higher molecular weight, including macrolides. Sequencing of 14 such "divergent resistance" phenotype mutants and 15 control mutants showed that this unusual phenotype was associated with mutations at residues I38 and I671 predominantly to phenylalanine and threonine, respectively, both conferring a similar susceptibility pattern. Reconstructed I38F and I671T single mutants as well as an engineered I38F I671T double mutant with proved efflux competence revealed an equivalent phenotype with enhanced or unchanged resistance to many large AcrB substrates but increased susceptibility to several lower-molecular-weight drugs known to bind within the distal binding pocket. The two isoleucines located in close vicinity to each other in the lower porter domain of AcrB beneath the bottom of the proximal binding pocket may be part of a preferential small-drug entrance pathway that is compromised by the mutations. This finding supports recent indications of distinct entrance channels used by compounds with different physicochemical properties, of which molecular size appears to play a prominent role.
Collapse
|
6
|
Aduri NG, Prabhala BK, Ernst HA, Jørgensen FS, Olsen L, Mirza O. Salt Bridge Swapping in the EXXERFXYY Motif of Proton-coupled Oligopeptide Transporters. J Biol Chem 2015; 290:29931-40. [PMID: 26483552 DOI: 10.1074/jbc.m115.675603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 01/12/2023] Open
Abstract
Proton-coupled oligopeptide transporters (POTs) couple the inward transport of di- or tripeptides with an inwardly directed transport of protons. Evidence from several studies of different POTs has pointed toward involvement of a highly conserved sequence motif, E1XXE2RFXYY (from here on referred to as E1XXE2R), located on Helix I, in interactions with the proton. In this study, we investigated the intracellular substrate accumulation by motif variants with all possible combinations of glutamate residues changed to glutamine and arginine changed to a tyrosine, the latter being a natural variant found in the Escherichia coli POT YjdL. We found that YjdL motif variants with E1XXE2R, E1XXE2Y, E1XXQ2Y, or Q1XXE2Y were able to accumulate peptide, whereas those with E1XXQ2R, Q1XXE2R, or Q1XXQ2Y were unable to accumulate peptide, and Q1XXQ2R abolished uptake. These results suggest a mechanism that involves swapping of an intramotif salt bridge, i.e. R-E2 to R-E1, which is consistent with previous structural studies. Molecular dynamics simulations of the motif variants E1XXE2R and E1XXQ2R support this mechanism. The simulations showed that upon changing conformation arginine pushes Helix V, through interactions with the highly conserved FYING motif, further away from the central cavity in what could be a stabilization of an inward facing conformation. As E2 has been suggested to be the primary site for protonation, these novel findings show how protonation may drive conformational changes through interactions of two highly conserved motifs.
Collapse
Affiliation(s)
- Nanda G Aduri
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bala K Prabhala
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Heidi A Ernst
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Flemming S Jørgensen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Osman Mirza
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Jensen JM, Aduri NG, Prabhala BK, Jahnsen R, Franzyk H, Mirza O. Critical role of a conserved transmembrane lysine in substrate recognition by the proton-coupled oligopeptide transporter YjdL. Int J Biochem Cell Biol 2014; 55:311-7. [PMID: 25261786 DOI: 10.1016/j.biocel.2014.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/16/2022]
Abstract
Proton-coupled oligopeptide transporters (POTs) utilize an electrochemical proton gradient to accumulate peptides in the cytoplasm. Changing the highly conserved active-site Lys117 in the Escherichia coli POT YjdL to glutamine resulted in loss of ligand affinity as well as inability to distinguish between a dipeptide ligand and the corresponding dipeptide amide. The radically changed pH(Bulk) profiles of Lys117Gln and Lys117Arg mutants indicate an important role of Lys117 in facilitating protonation of the transporter; a notion that is supported by the close proximity of Lys117 to the conserved ExxERFxYY POT motif previously shown to be involved in proton translocation. These results point toward a novel dual role of Lys117 in direct or indirect interaction with both proton and peptide.
Collapse
Affiliation(s)
- Johanne M Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanda G Aduri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bala K Prabhala
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Jahnsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Random mutagenesis of the multidrug transporter AcrB from Escherichia coli for identification of putative target residues of efflux pump inhibitors. Antimicrob Agents Chemother 2014; 58:6870-8. [PMID: 25182653 DOI: 10.1128/aac.03775-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efflux is an important mechanism of bacterial multidrug resistance (MDR), and the inhibition of MDR pumps by efflux pump inhibitors (EPIs) could be a promising strategy to overcome MDR. 1-(1-Naphthylmethyl)-piperazine (NMP) and phenylalanine-arginine-β-naphthylamide (PAβN) are model EPIs with activity in various Gram-negative bacteria expressing AcrB, the major efflux pump of Escherichia coli, or similar homologous pumps of the resistance-nodulation-cell division class. The aim of the present study was to generate E. coli AcrB mutants resistant to the inhibitory action of the two model EPIs and to identify putative EPI target residues in order to better understand mechanisms of pump inhibition. Using an in vitro random mutagenesis approach focusing on the periplasmic domain of AcrB, we identified the double mutation G141D N282Y, which substantially compromised the synergistic activity of NMP with linezolid, was associated with similar intracellular linezolid concentrations in the presence and absence of NMP, and did not impair the intrinsic MICs of various pump substrates and dye accumulation. We propose that these mutations near the outer face of the distal substrate binding pocket reduce NMP trapping. Other residues found to be relevant for efflux inhibition by NMP were G288 and A279, but mutations at these sites also changed the susceptibility to several pump substrates. Unlike with NMP, we were unable to generate AcrB periplasmic domain mutants with resistance or partial resistance to the EPI activity of PAβN, which is consistent with the modes of action of PAβN differing from those of NMP.
Collapse
|
9
|
Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc Natl Acad Sci U S A 2013; 110:E3978-86. [PMID: 24082128 DOI: 10.1073/pnas.1312959110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.
Collapse
|
10
|
Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep 2013; 14:804-10. [PMID: 23867627 DOI: 10.1038/embor.2013.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/09/2022] Open
Abstract
Short-chain peptides are transported across membranes through promiscuous proton-dependent oligopeptide transporters (POTs)--a subfamily of the major facilitator superfamily (MFS). The human POTs, PEPT1 and PEPT2, are also involved in the absorption of various drugs in the gut as well as transport to target cells. Here, we present a structure of an oligomeric POT transporter from Shewanella oneidensis (PepTSo2), which was crystallized in the inward open conformation in complex with the peptidomimetic alafosfalin. All ligand-binding residues are highly conserved and the structural insights presented here are therefore likely to also apply to human POTs.
Collapse
|
11
|
Jensen JM, Ismat F, Szakonyi G, Rahman M, Mirza O. Probing the putative active site of YjdL: an unusual proton-coupled oligopeptide transporter from E. coli. PLoS One 2012; 7:e47780. [PMID: 23110099 PMCID: PMC3478282 DOI: 10.1371/journal.pone.0047780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022] Open
Abstract
YjdL from E. coli is an unusual proton-coupled oligopeptide transporter (POT). Unlike prototypical POTs, dipeptides are preferred over tripeptides, in particular dipeptides with a positively charged C-terminal residue. To further understand this difference in peptide specificity, the sequences of YjdL and YdgR, a prototypical E. coli POT, were compared in light of the crystal structure of a POT from Shewanella oneidensis. Several residues found in the putative active site were mutated and the activities of the mutated variants were assessed in terms of substrate uptake assays, and changes in specificity in terms of uptake inhibition. Most strikingly, changing the YjdL specific Asp392 to the conserved Ser in YjdL obliterated the preference for a positively charged C-terminal residue. Based on this unique finding and previously published results indicating that the dipeptide N-terminus may interact with Glu388, a preliminary orientation model of a dipeptide in the YjdL cavity is presented. Single site mutations of particularly Ala281 and Trp278 support the presented orientation. A dipeptide bound in the cavity of YjdL appears to be oriented such that the N-terminal side chain protrudes into a sub pocket that opens towards the extracellular space. The C-terminal side chain faces in the opposite direction into a sub pocket that faces the cytoplasm. These data indicated a stabilizing effect on a bulky N-terminal residue by an Ala281Phe variant and on the dipeptide backbone by Trp278. In the presented orientation model, Tyr25 and Tyr58 both appear to be in proximity of the dipeptide backbone while Lys117 appears to be in proximity of the peptide C-terminus. Mutational studies of these conserved residues highlight their functional importance.
Collapse
Affiliation(s)
- Johanne Mørch Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
12
|
Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 2012; 31:3411-21. [PMID: 22659829 PMCID: PMC3419923 DOI: 10.1038/emboj.2012.157] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 01/16/2023] Open
Abstract
Proton-dependent oligopeptide transporters are required for the uptake of diet-derived peptides in all kingdoms of life. The crystal structure of a bacterial transporter in the inward open conformation, together with a published structure in an occluded conformation, reveals the peptide transport mechanism. Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton-dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3-Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge-like movement within the C-terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide-binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family.
Collapse
|