1
|
Echeverría E, Ripoll S, Fabián L, Shayo C, Monczor F, Fernández NC. Novel inhibitors of phosphorylation independent activity of GRK2 modulate cAMP signaling. Pharmacol Res Perspect 2022; 10:e00913. [PMID: 35184416 PMCID: PMC8858223 DOI: 10.1002/prp2.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
G protein-coupled receptors kinase 2 (GRK2) plays a major role in receptor regulation and, as a consequence, in cell biology and physiology. GRK2-mediated receptor desensitization is performed by its kinase domain, which exerts receptor phosphorylation promoting G protein uncoupling and the cessation of signaling, and by its RGS homology (RH) domain, able to interrupt G protein signaling. Since GRK2 activity is exacerbated in several pathologies, many efforts to develop inhibitors have been conducted. Most of them were directed toward GRK2 kinase activity and showed encouraging results on in vitro systems and animal models. Nevertheless, limitations including unspecific effects or pharmacokinetics issues prevented them from advancing to clinical trials. Surprisingly, even though the RH domain demonstrated the ability to desensitize GPCRs, this domain has been less explored. Herein, we show in vitro activity of a series of compounds that, by inhibiting GRK2 RH domain, increase receptor cAMP response, avoid GRK2 translocation to the plasma membrane, inhibit coimmunoprecipitation of GRK2 with Gαs subunit of heterotrimeric G protein, and prevent receptor desensitization. Also, we preliminarily evaluated candidates' ADMET properties and observed suitable lipophilicity and cytotoxicity. These novel inhibitors of phosphorylation-independent actions of GRK2 might be useful in elucidating other RH domain roles and lay the foundation for the development of innovative pharmacologic therapy for diseases where GRK2 activity is exacerbated.
Collapse
Affiliation(s)
- Emiliana Echeverría
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Sonia Ripoll
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lucas Fabián
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental (IByME)CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Natalia C. Fernández
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA‐UBA‐CONICET)Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Echeverría E, Velez Rueda AJ, Cabrera M, Juritz E, Burghi V, Fabián L, Davio C, Lorenzano Menna P, Fernández NC. Identification of inhibitors of the RGS homology domain of GRK2 by docking-based virtual screening. Life Sci 2019; 239:116872. [DOI: 10.1016/j.lfs.2019.116872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/25/2023]
|
3
|
Li Y, Li N, Yao X, Heizati M, Zhang D, Zhu Q, Chang G, Zhang X. Association Between Polymorphisms of ADRBK1 Gene and Plasma Renin Activity in Hypertensive Patients: A Case-Control Study. Med Sci Monit 2016; 22:2981-8. [PMID: 27555048 PMCID: PMC5008737 DOI: 10.12659/msm.896579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Renin is the first step of the RAS cascade, which is a major regulator of salt-volume homeostasis. Adrenergic beta receptor kinase 1 (ADRBK1) plays important roles in regulating blood pressure via the epithelial Na+ channel (ENaC), which plays an important role in Na+ reabsorption in the renal collecting duct. The present case-control study was designed to investigate the potential relationship between polymorphisms of ADRBK1 and plasma renin activity (PRA) in hypertension. Material/Methods We recruited 1831 hypertensive and 422 normotensive Han Chinese subjects. Sitting PRA (ng/mL/h) was measured using radioimmunoassay method. Hypertensive patients were classified into 4 renin categories via PRA quartile. Single-nucleotide polymorphisms (SNPs) of the ADRBK1 gene (rs1894111, rs4930416, rs7127431, rs12286664, and rs3730147) were identified via TaqMan polymerase chain reaction. Results Comparison of the hypertensive group and the control group showed significant differences in distribution of genotypes and alleles of rs1894111 (P<0.05). Moreover, distribution of the dominant model (CC vs. CT+TT) in rs1894111 was lower in the hypertensive group than in the control group (P<0.05). Subjects were classified into 4 subgroups based on PRA quartile; the dominant model (CC vs. CT+TT) of rs1894111 was significantly lower in the quartile 1 group (the group with the lowest PRA) than in the control group (P<0.05). Logistic regression analysis demonstrated that the dominant model (CC vs. CT+TT) of rs1894111 was significantly different in the hypertensive group (OR=1.590, 95%CI=1.022–2.474, P<0.05), particularly in the quartile 1 group (OR=1.845, 95%CI=1.119–3.042, P<0.05), but not in the quartile 4 group. Conclusions The dominant model (CC vs. CT+TT) of rs1894111 polymorphism in the ADRBK1 gene might be associated with low-renin hypertension in Han Chinese.
Collapse
Affiliation(s)
- Yu Li
- Department of Geriatric Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Nanfang Li
- Hypertension Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Center of Diagnosis, Treatment, and Hypertension Research, Urumqi, Xinjiang, China (mainland)
| | - Xiaoguang Yao
- Hypertension Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Center of Diagnosis, Treatment, and Hypertension Research, Urumqi, Xinjiang, China (mainland)
| | - Mulalibieke Heizati
- Hypertension Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Center of Diagnosis, Treatment, and Hypertension Research, Urumqi, Xinjiang, China (mainland)
| | - Delian Zhang
- Hypertension Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Center of Diagnosis, Treatment, and Hypertension Research, Urumqi, Xinjiang, China (mainland)
| | - Qing Zhu
- Hypertension Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Center of Diagnosis, Treatment, and Hypertension Research, Urumqi, Xinjiang, China (mainland)
| | - Guijuan Chang
- Hypertension Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Center of Diagnosis, Treatment, and Hypertension Research, Urumqi, Xinjiang, China (mainland)
| | - Xiangyang Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
4
|
Yang J, Villar VAM, Armando I, Jose PA, Zeng C. G Protein-Coupled Receptor Kinases: Crucial Regulators of Blood Pressure. J Am Heart Assoc 2016; 5:JAHA.116.003519. [PMID: 27390269 PMCID: PMC5015388 DOI: 10.1161/jaha.116.003519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Gambardella J, Franco A, Giudice CD, Fiordelisi A, Cipolletta E, Ciccarelli M, Trimarco B, Iaccarino G, Sorriento D. Dual role of GRK5 in cancer development and progression. Transl Med UniSa 2016; 14:28-37. [PMID: 27326393 PMCID: PMC4912336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
GRK5 is a multifunctional protein that is able to move within the cell in response to various stimuli to regulate key intracellular signaling from receptor activation, on plasmamembrane, to gene transcription, in the nucleus. Thus, GRK5 is involved in the development and progression of several pathological conditions including cancer. Several reports underline the involvement of GRK5 in the regulation of tumor growth even if they appear controversial. Indeed, depending on its subcellular localization and on the type of cancer, GRK5 is able to both inhibit cancer progression, through the desensitization of GPCR and non GPCR-receptors (TSH, PGE2R, PDGFR), and induce tumor growth, acting on non-receptor substrates (p53, AUKA and NPM1). All these findings suggest that targeting GRK5 could be an useful anti-cancer strategy, for specific tumor types. In this review, we will discuss the different effects of this kinase in the induction and progression of tumorigenesis, the molecular mechanisms by which GRK5 exerts its effects, and the potential therapeutic strategies to modulate them.
Collapse
Affiliation(s)
- J Gambardella
- Department of Medicine and Surgery -University of Salerno, Italy
| | - A Franco
- Department of Advanced Biomedical Science -“Federico II” University of Naples, Italy
| | - C Del Giudice
- Department of Advanced Biomedical Science -“Federico II” University of Naples, Italy
| | - A Fiordelisi
- Department of Advanced Biomedical Science -“Federico II” University of Naples, Italy
| | - E Cipolletta
- Department of Medicine and Surgery -University of Salerno, Italy
| | - M Ciccarelli
- Department of Medicine and Surgery -University of Salerno, Italy
| | - B Trimarco
- Department of Advanced Biomedical Science -“Federico II” University of Naples, Italy
| | - G Iaccarino
- Department of Medicine and Surgery -University of Salerno, Italy
| | - D Sorriento
- Institute of Biostructure and Bioimaging - CNR, Naples, Italy.,Address for correspondence: Daniela Sorriento PhD, Institute of Biostructure and Bioimaging-CNR, Via T. De Amicis 95 Naples, Italy. Tel. +390817462220; FAX +390817462256;
| |
Collapse
|
6
|
H-Ras mediates the inhibitory effect of epidermal growth factor on the epithelial Na+ channel. PLoS One 2015; 10:e0116938. [PMID: 25774517 PMCID: PMC4361710 DOI: 10.1371/journal.pone.0116938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/01/2014] [Indexed: 11/21/2022] Open
Abstract
The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current. The H-Ras-mediated signalling pathway that inhibits activity of ENaC involves c-Raf, and that the inhibitory effect of H-Ras on ENaC is abolished by the MEK1/2 inhibitor, PD98059. The inhibitory effect of H-Ras is not mediated by Nedd4-2, a ubiquitin protein ligase that regulates the abundance of ENaC at the cell surface membrane, or by a negative effect of H-Ras on proteolytic activation of the channel. The inhibitory effects of EGF and H-Ras on ENaC, however, were not observed in cells in which expression of caveolin-1 (Cav-1) had been knocked down by siRNA. These findings suggest that the inhibitory effect of EGF on ENaC-dependent Na+ absorption is mediated via the H-Ras/c-Raf, MEK/ERK signalling pathway, and that Cav-1 is an essential component of this EGF-activated signalling mechanism. Taken together with reports that mice expressing a constitutive mutant of H-Ras develop renal cysts, our findings suggest that H-Ras may play a key role in the regulation of renal ion transport and renal development.
Collapse
|
7
|
Marunaka Y. Importance of expression and function of angiotensin II receptor type 1 in pulmonary epithelial cells. Respir Physiol Neurobiol 2014; 196:39-42. [PMID: 24594106 DOI: 10.1016/j.resp.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|
8
|
Lyon AM, Taylor VG, Tesmer JJG. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci 2013; 35:23-30. [PMID: 24287282 DOI: 10.1016/j.tips.2013.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The heterotrimeric G protein Gαq is a central player in signal transduction, relaying signals from activated G-protein-coupled receptors (GPCRs) to effectors and other proteins to elicit changes in intracellular Ca(2+), the actin cytoskeleton, and gene transcription. Gαq functions at the intracellular surface of the plasma membrane, as do its best-characterized targets, phospholipase C-β, p63RhoGEF, and GPCR kinase 2 (GRK2). Recent insights into the structure and function of these signaling complexes reveal several recurring themes, including complex multivalent interactions between Gαq, its protein target, and the membrane, that are likely essential for allosteric control and maximum efficiency in signal transduction. Thus, the plasma membrane is not only a source of substrates but also a key player in the scaffolding of Gαq-dependent signaling pathways.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Veronica G Taylor
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Kashlan OB, Kleyman TR. Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp Cell Res 2012; 318:1011-9. [PMID: 22405998 DOI: 10.1016/j.yexcr.2012.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
Electrogenic Na(+) transport across high resistance epithelial is mediated by the epithelial Na(+) channel (ENaC). Our understanding of the mechanisms of ENaC regulation has continued to evolve over the two decades following the cloning of ENaC subunits. This review highlights many of the cellular and extracellular factors that regulate channel trafficking or gating.
Collapse
Affiliation(s)
- Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | | |
Collapse
|
10
|
Farooqi AA, Waseem MS, Riaz AM, Bhatti S. SMURF and NEDD4: sharp shooters monitor the gate keepers and ion traffic controllers of lead astray cell. J Membr Biol 2011; 244:1-8. [PMID: 21918841 DOI: 10.1007/s00232-011-9394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
It is becoming increasingly apparent that a complex bar code underlies the quantitative aspects of extracellular signal regulation. Cell type-specific and context-dependent transcriptional programs are triggered by sophisticated nanomachinery consisting of HECT enzymes which monitor signal generation, transduction and termination. How the HECT enzymes safeguard spatiotemporal organization was a fundamental question towards understanding the process of protein degradation and its functions in diverse biological processes. In this review we will dismantle how HECT E3 enzymes regulate the trafficking of many receptors, channels and transporters as well as how HECT enzymes negatively regulate each other. There is accumulating evidence that suggests an undeniable role of HECT enzymes in regulating mediators of the Wnt signal-transduction cascade. By contrast, little is known about the crosstalk of HECT enzymes with ATM and TRAIL in prostate cancer, but several hints have emerged. This review provides a broader snapshot for studying multiple pathways in parallel, rather than as separate entities.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.
| | | | | | | |
Collapse
|