1
|
de Munnik M, Lang PA, Calvopiña K, Rabe P, Brem J, Schofield CJ. Biochemical and crystallographic studies of L,D-transpeptidase 2 from Mycobacterium tuberculosis with its natural monomer substrate. Commun Biol 2024; 7:1173. [PMID: 39294212 PMCID: PMC11410929 DOI: 10.1038/s42003-024-06785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The essential L,D-transpeptidase of Mycobacterium tuberculosis (LdtMt2) catalyses the formation of 3 → 3 cross-links in cell wall peptidoglycan and is a target for development of antituberculosis therapeutics. Efforts to inhibit LdtMt2 have been hampered by lack of knowledge of how it binds its substrate. To address this gap, we optimised the isolation of natural disaccharide tetrapeptide monomers from the Corynebacterium jeikeium bacterial cell wall through overproduction of the peptidoglycan sacculus. The tetrapeptides were used in binding / turnover assays and biophysical studies on LdtMt2. We determined a crystal structure of wild-type LdtMt2 reacted with its natural substrate, the tetrapeptide monomer of the peptidoglycan layer. This structure shows formation of a thioester linking the catalytic cysteine and the donor substrate, reflecting an intermediate in the transpeptidase reaction; it informs on the mode of entrance of the donor substrate into the LdtMt2 active site. The results will be useful in design of LdtMt2 inhibitors, including those based on substrate binding interactions, a strategy successfully employed for other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Karina Calvopiña
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Patrick Rabe
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute of Antimicrobial Research, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Espaillat A, Alvarez L, Torrens G, Ter Beek J, Miguel-Ruano V, Irazoki O, Gago F, Hermoso JA, Berntsson RPA, Cava F. A distinctive family of L,D-transpeptidases catalyzing L-Ala-mDAP crosslinks in Alpha- and Betaproteobacteria. Nat Commun 2024; 15:1343. [PMID: 38351082 PMCID: PMC10864386 DOI: 10.1038/s41467-024-45620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.
Collapse
Affiliation(s)
- Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
- Chr. Hansen A/S, Microbial Physiology, R&D, 2970, Hoersholm, Denmark
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Oihane Irazoki
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805, Madrid, Alcalá de Henares, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Blas Cabrera", CSIC, Madrid, Spain
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Andrés Libreros-Zúñiga G, Pavão E Pavão D, de Morais Barroso V, Cristina de Moraes Roso Mesquita N, Fehelberg Pinto Braga S, Oliva G, Salgado Ferreira R, Ishida K, Vinicius Bertacine Dias M. Integration of biophysical and biological approaches to validate fragment-like compounds targeting l,d-transpeptidases from Mycobacterium tuberculosis. Bioorg Chem 2024; 142:106960. [PMID: 37944368 DOI: 10.1016/j.bioorg.2023.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tuberculosis is one of the major causes of death worldwide; more than a million people die every year because of this infection. The constant emergency of Mycobacterium tuberculosis resistant strains against the most used treatments also contributes to the burden caused by this disease. Consequently, the development of new alternative therapies against this disease is constantly required. In recent years, only a few molecules have reached the market as new antituberculosis agents. The mycobacterial cell wall biosynthesis is for a longstanding considered an important target for drug development. Particularly, in M. tuberculosis, the peptidoglycan cross-links are predominantly formed by nonclassical bridges between the third residues of adjacent tetrapeptides. The responsible enzymes for these reactions are ld-transpeptidases (Ldts), for which M. tuberculosis has five paralogues. Although these enzymes are distinct from the penicillin-binding proteins (PBPs), they can also be inactivated by β-lactam antibiotics, but since M. tuberculosis has a chromosomal β-lactamase, most of the antibiotics of these classes can be degraded. Thus, to identify alternative scaffolds for the development of new antimicrobials against tuberculosis, we have integrated several fragment-based drug discovery techniques. Based on that, we identified and validated a number of small molecules that could be the starting point in the synthesis of more potent inhibitors against at least two Ldts from M. tuberculosis, LdtMt2 and LdtMt3. Eight identified molecules inhibited the Ldts activity in at least 20%, and three of them have antimycobacterial activity. The cell ultrastructural analysis suggested that one of the best compounds induced severe effects on the septum and cell wall morphologies, which corroborates our target-based approach to identifying new Ldts hits.
Collapse
Affiliation(s)
- Gerardo Andrés Libreros-Zúñiga
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil; IBILCE, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000, Brazil; Department of Microbiology, Faculty of Health, University of Valle, Calle 4B # 36-00, 760043, Cali, Valle del Cauca, Colombia.
| | - Danilo Pavão E Pavão
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | - Vinicius de Morais Barroso
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | | | - Saulo Fehelberg Pinto Braga
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais. Av. Antônio Carlos, 6627 - Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Glaucius Oliva
- Institute of Physics of São Carlos, University of São Paulo, Av. João Dagnone, 1100 - Jardim Santa Angelina, São Carlos, Brazil
| | - Rafaela Salgado Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais. Av. Antônio Carlos, 6627 - Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, São Paulo 05508-900, Brazil; IBILCE, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000, Brazil; Department of Chemistry, University of Warwick, Coventry CV4 7AL, England.
| |
Collapse
|
4
|
de Munnik M, Lang PA, De Dios Anton F, Cacho M, Bates RH, Brem J, Rodríguez Miquel B, Schofield CJ. High-throughput screen with the l,d-transpeptidase Ldt Mt2 of Mycobacterium tuberculosis reveals novel classes of covalently reacting inhibitors. Chem Sci 2023; 14:7262-7278. [PMID: 37416715 PMCID: PMC10321483 DOI: 10.1039/d2sc06858c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 07/08/2023] Open
Abstract
Disruption of bacterial cell wall biosynthesis in Mycobacterium tuberculosis is a promising target for treating tuberculosis. The l,d-transpeptidase LdtMt2, which is responsible for the formation of 3 → 3 cross-links in the cell wall peptidoglycan, has been identified as essential for M. tuberculosis virulence. We optimised a high-throughput assay for LdtMt2, and screened a targeted library of ∼10 000 electrophilic compounds. Potent inhibitor classes were identified, including established (e.g., β-lactams) and unexplored covalently reacting electrophilic groups (e.g., cyanamides). Protein-observed mass spectrometric studies reveal most classes to react covalently and irreversibly with the LdtMt2 catalytic cysteine (Cys354). Crystallographic analyses of seven representative inhibitors reveal induced fit involving a loop enclosing the LdtMt2 active site. Several of the identified compounds have a bactericidal effect on M. tuberculosis within macrophages, one with an MIC50 value of ∼1 μM. The results provide leads for the development of new covalently reaction inhibitors of LdtMt2 and other nucleophilic cysteine enzymes.
Collapse
Affiliation(s)
- Mariska de Munnik
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Pauline A Lang
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Francisco De Dios Anton
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Mónica Cacho
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Robert H Bates
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Jürgen Brem
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Beatriz Rodríguez Miquel
- Tres Cantos Medicines Development Campus, GlaxoSmithKline Calle Severo Ochoa 2, Tres Cantos Madrid Spain
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, the Ineos Oxford Institute of Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
5
|
Toth M, Stewart NK, Smith CA, Lee M, Vakulenko SB. The l,d-Transpeptidase Ldt Ab from Acinetobacter baumannii Is Poorly Inhibited by Carbapenems and Has a Unique Structural Architecture. ACS Infect Dis 2022; 8:1948-1961. [PMID: 35973205 PMCID: PMC9764404 DOI: 10.1021/acsinfecdis.2c00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
l,d-Transpeptidases (LDTs) are enzymes that catalyze reactions essential for biogenesis of the bacterial cell wall, including formation of 3-3 cross-linked peptidoglycan. Unlike the historically well-known bacterial transpeptidases, the penicillin-binding proteins (PBPs), LDTs are resistant to inhibition by the majority of β-lactam antibiotics, with the exception of carbapenems and penems, allowing bacteria to survive in the presence of these drugs. Here we report characterization of LdtAb from the clinically important pathogen, Acinetobacter baumannii. We show that A. baumannii survives inactivation of LdtAb alone or in combination with PBP1b or PBP2, while simultaneous inactivation of LdtAb and PBP1a is lethal. Minimal inhibitory concentrations (MICs) of all 13 β-lactam antibiotics tested decreased 2- to 8-fold for the LdtAb deletion mutant, while further decreases were seen for both double mutants, with the largest, synergistic effect observed for the LdtAb + PBP2 deletion mutant. Mass spectrometry experiments showed that LdtAb forms complexes in vitro only with carbapenems. However, the acylation rate of these antibiotics is very slow, with the reaction taking longer than four hours to complete. Our X-ray crystallographic studies revealed that LdtAb has a unique structural architecture and is the only known LDT to have two different peptidoglycan-binding domains.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Clyde A Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Mass Spectrometry and Proteomics Facility, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Zandi TA, Townsend CA. Competing off-loading mechanisms of meropenem from an l,d-transpeptidase reduce antibiotic effectiveness. Proc Natl Acad Sci U S A 2021; 118:e2008610118. [PMID: 34187885 PMCID: PMC8271661 DOI: 10.1073/pnas.2008610118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The carbapenem family of β-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which β-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular β-lactams. Decades of study have delineated mechanisms of β-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase LdtMt2 through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.
Collapse
Affiliation(s)
- Trevor A Zandi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
7
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
8
|
Ntombela T, Seupersad A, Maseko S, Ibeji CU, Tolufashe G, Maphumulo SI, Naicker T, Baijnath S, Maguire GEM, Govender T, Lamichhane G, Honarparvar B, Kruger HG. Mechanistic insight on the inhibition of D, D-carboxypeptidase from Mycobacterium tuberculosis by β-lactam antibiotics: an ONIOM acylation study. J Biomol Struct Dyn 2021; 40:7645-7655. [PMID: 33719919 DOI: 10.1080/07391102.2021.1899052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis cell wall is intricate and impermeable to many agents. A D, D-carboxypeptidase (DacB1) is one of the enzymes involved in the biosynthesis of cell wall peptidoglycan and catalyzes the terminal D-alanine cleavage from pentapeptide precursors. Catalytic activity and mechanism by which DacB1 functions is poorly understood. Herein, we investigated the acylation mechanism of DacB1 by β-lactams using a 6-membered ring transition state model that involves a catalytic water molecule in the reaction pathway. The full transition states (TS) optimization plus frequency were achieved using the ONIOM (B3LYP/6-31 + G(d): AMBER) method. Subsequently, the activation free energies were computed via single-point calculations on fully optimized structures using B3LYP/6-311++(d,p): AMBER and M06-2X/6-311++(d,p): AMBER with an electronic embedding scheme. The 6-membered ring transition state is an effective model to examine the inactivation of DacB1 via acylation by β-lactams antibiotics (imipenem, meropenem, and faropenem) in the presence of the catalytic water. The ΔG# values obtained suggest that the nucleophilic attack on the carbonyl carbon is the rate-limiting step with 13.62, 19.60 and 30.29 kcal mol-1 for Imi-DacB1, Mero-DacB1 and Faro-DacB1, respectively. The electrostatic potential (ESP) and natural bond orbital (NBO) analysis provided significant electronic details of the electron-rich region and charge delocalization, respectively, based on the concerted 6-membered ring transition state. The stabilization energies of charge transfer within the catalytic reaction pathway concurred with the obtained activation free energies. The outcomes of this study provide important molecular insight into the inactivation of D, D-carboxypeptidase by β-lactams.
Collapse
Affiliation(s)
- Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anya Seupersad
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sibusiso Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gideon Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Siyabonga Innocent Maphumulo
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Faculty of Science and Agriculture, Department of Chemistry, University of Zululand, Richards Bay, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Saidjalolov S, Edoo Z, Fonvielle M, Mayer L, Iannazzo L, Arthur M, Etheve-Quelquejeu M, Braud E. Synthesis of Carbapenems Containing Peptidoglycan Mimetics and Inhibition of the Cross-Linking Activity of a Transpeptidase of l,d Specificity. Chemistry 2021; 27:3542-3551. [PMID: 33336443 DOI: 10.1002/chem.202004831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 11/07/2022]
Abstract
The carbapenem class of β-lactams has been optimized against Gram-negative bacteria producing extended-spectrum β-lactamases by introducing substituents at position C2. Carbapenems are currently investigated for the treatment of tuberculosis as these drugs are potent covalent inhibitors of l,d-transpeptidases involved in mycobacterial cell wall assembly. The optimization of carbapenems for inactivation of these unusual targets is sought herein by exploiting the nucleophilicity of the C8 hydroxyl group to introduce chemical diversity. As β-lactams are structure analogs of peptidoglycan precursors, the substituents were chosen to increase similarity between the drug and the substrate. Fourteen peptido-carbapenems were efficiently synthesized. They were more effective than the reference drug, meropenem, owing to the positive impact of a phenethylthio substituent introduced at position C2 but the peptidomimetics added at position C8 did not further improve the activity. Thus, position C8 can be modified to modulate the pharmacokinetic properties of highly efficient carbapenems.
Collapse
Affiliation(s)
- Saidbakhrom Saidjalolov
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Zainab Edoo
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Matthieu Fonvielle
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Louis Mayer
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Michel Arthur
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| |
Collapse
|
10
|
Tolufashe GF, Sabe VT, Ibeji CU, Ntombela T, Govender T, Maguire GEM, Kruger HG, Lamichhane G, Honarparvar B. Structure and Function of L,D- and D,D-Transpeptidase Family Enzymes from Mycobacterium tuberculosis. Curr Med Chem 2020; 27:3250-3267. [PMID: 30501595 DOI: 10.2174/0929867326666181203150231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023]
Abstract
Peptidoglycan, the exoskeleton of bacterial cell and an essential barrier that protects the cell, is synthesized by a pathway where the final steps are catalysed by transpeptidases. Knowledge of the structure and function of these vital enzymes that generate this macromolecule in M. tuberculosis could facilitate the development of potent lead compounds against tuberculosis. This review summarizes the experimental and computational studies to date on these aspects of transpeptidases in M. tuberculosis that have been identified and validated. The reported structures of L,D- and D,D-transpeptidases, as well as their functionalities, are reviewed and the proposed enzymatic mechanisms for L,D-transpeptidases are summarized. In addition, we provide bioactivities of known tuberculosis drugs against these enzymes based on both experimental and computational approaches. Advancing knowledge about these prominent targets supports the development of new drugs with novel inhibition mechanisms overcoming the current need for new drugs against tuberculosis.
Collapse
Affiliation(s)
- Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Victor T Sabe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Colins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Gyanu Lamichhane
- Division of Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, United States
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
11
|
Lu Z, Wang H, Zhang A, Liu X, Zhou W, Yang C, Guddat L, Yang H, Schofield CJ, Rao Z. Structures of Mycobacterium tuberculosis Penicillin-Binding Protein 3 in Complex with Five β-Lactam Antibiotics Reveal Mechanism of Inactivation. Mol Pharmacol 2020; 97:287-294. [DOI: 10.1124/mol.119.118042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
|
12
|
Zandi TA, Marshburn RL, Stateler PK, Brammer Basta LA. Phylogenetic and Biochemical Analyses of Mycobacterial l,d-Transpeptidases Reveal a Distinct Enzyme Class That Is Preferentially Acylated by Meropenem. ACS Infect Dis 2019; 5:2047-2054. [PMID: 31597040 DOI: 10.1021/acsinfecdis.9b00234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The genomes of diverse mycobacterial species encode multiple proteins with the canonical l,d-transpeptidase (Ldt) sequence motif. The reason for this apparent redundancy is not well understood, but evidence suggests paralogous Ldts may serve niche roles in maintaining and/or remodeling mycobacterial peptidoglycan. We examined 323 mycobacterial Ldts and determined these enzymes cluster into six clades. We identified a variably represented yet distinct Ldt class (class 6) containing Mycobacterium smegmatis (Msm) LdtF and built a homology model of Msm LdtF toward elucidating class 6 structural and functional differences. We report class 6 Ldts have structurally divergent catalytic domains containing a 10-residue insertion near the active site and additionally determined that meropenem preferentially acylates LdtF. Our data demonstrate an evolutionary basis for mycobacterial Ldt multiplicity that lends support to the idea that paralogous Ldts serve nonredundant roles in vivo and suggests class 6 Ldts can be selectively targeted by specific carbapenem antibiotics.
Collapse
Affiliation(s)
- Trevor A. Zandi
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Robert L. Marshburn
- Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - Paige K. Stateler
- Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - Leighanne A. Brammer Basta
- Chemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| |
Collapse
|
13
|
Triboulet S, Edoo Z, Compain F, Ourghanlian C, Dupuis A, Dubée V, Sutterlin L, Atze H, Etheve-Quelquejeu M, Hugonnet JE, Arthur M. Tryptophan Fluorescence Quenching in β-Lactam-Interacting Proteins Is Modulated by the Structure of Intermediates and Final Products of the Acylation Reaction. ACS Infect Dis 2019; 5:1169-1176. [PMID: 31056908 DOI: 10.1021/acsinfecdis.9b00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In most bacteria, β-lactam antibiotics inhibit the last cross-linking step of peptidoglycan synthesis by acylation of the active-site Ser of d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family. In mycobacteria, cross-linking is mainly ensured by l,d-transpeptidases (LDTs), which are promising targets for the development of β-lactam-based therapies for multidrug-resistant tuberculosis. For this purpose, fluorescence spectroscopy is used to investigate the efficacy of LDT inactivation by β-lactams but the basis for fluorescence quenching during enzyme acylation remains unknown. In contrast to what has been reported for PBPs, we show here using a model l,d-transpeptidase (Ldtfm) that fluorescence quenching of Trp residues does not depend upon direct hydrophobic interaction between Trp residues and β-lactams. Rather, Trp fluorescence was quenched by the drug covalently bound to the active-site Cys residue of Ldtfm. Fluorescence quenching was not quantitatively determined by the size of the drug and was not specific of the thioester link connecting the β-lactam carbonyl to the catalytic Cys as quenching was also observed for acylation of the active-site Ser of β-lactamase BlaC from M. tuberculosis. Fluorescence quenching was extensive for reaction intermediates containing an amine anion and for acylenzymes containing an imine stabilized by mesomeric effect, but not for acylenzymes containing a protonated β-lactam nitrogen. Together, these results indicate that the extent of fluorescence quenching is determined by the status of the β-lactam nitrogen. Thus, fluorescence kinetics can provide information not only on the efficacy of enzyme inactivation but also on the structure of the covalent adducts responsible for enzyme inactivation.
Collapse
Affiliation(s)
- Sebastien Triboulet
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Zainab Edoo
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Fabrice Compain
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, F-75015 Paris, France
| | - Clément Ourghanlian
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Adrian Dupuis
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Vincent Dubée
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Laetitia Sutterlin
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Heiner Atze
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75005 France
- CNRS UMR 8601, 45 rue des Saints-Pères, Paris, F-75006 France
| | - Jean-Emmanuel Hugonnet
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Michel Arthur
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| |
Collapse
|
14
|
Ibeji CU, Lawal MM, Tolufashe GF, Govender T, Naicker T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. The Driving Force for the Acylation of β-Lactam Antibiotics by L,D-Transpeptidase 2: Quantum Mechanics/Molecular Mechanics (QM/MM) Study. Chemphyschem 2019; 20:1126-1134. [PMID: 30969480 DOI: 10.1002/cphc.201900173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Indexed: 11/06/2022]
Abstract
β-lactam antibiotics, which are used to treat infectious diseases, are currently the most widely used class of antibiotics. This study focused on the chemical reactivity of five- and six-membered ring systems attached to the β-lactam ring. The ring strain energy (RSE), force constant (FC) of amide (C-N), acylation transition states and second-order perturbation stabilization energies of 13 basic structural units of β-lactam derivatives were computed using the M06-2X and G3/B3LYP multistep method. In the ring strain calculations, an isodesmic reaction scheme was used to obtain the total energies. RSE is relatively greater in the five-(1a-2c) compared to the six-membered ring systems except for 4b, which gives a RSE that is comparable to five-membered ring lactams. These variations were also observed in the calculated inter-atomic amide bond distances (C-N), which is why the six-membered ring lactams C-N bond are more rigid than those with five-membered ring lactams. The calculated ΔG# values from the acylation reaction of the lactams (involving the S-H group of the cysteine active residue from L,D transpeptidase 2) revealed a faster rate of C-N cleavage in the five-membered ring lactams especially in the 1-2 derivatives (17.58 kcal mol-1 ). This observation is also reflected in the calculated amide bond force constant (1.26 mDyn/A) indicating a weaker bond strength, suggesting that electronic factors (electron delocalization) play more of a role on reactivity of the β-lactam ring, than ring strain.
Collapse
Affiliation(s)
- Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Monsurat M Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
15
|
Story-Roller E, Maggioncalda EC, Lamichhane G. Select β-Lactam Combinations Exhibit Synergy against Mycobacterium abscessus In Vitro. Antimicrob Agents Chemother 2019; 63:e02613-18. [PMID: 30745389 PMCID: PMC6437493 DOI: 10.1128/aac.02613-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculous mycobacterium that causes invasive pulmonary infections in patients with structural lung disease. M. abscessus is intrinsically resistant to several classes of antibiotics, and an increasing number of strains isolated from patients exhibit resistance to most antibiotics considered for treatment of infections by this mycobacterium. Therefore, there is an unmet need for new regimens with improved efficacy to treat this disease. Synthesis of the essential cell wall peptidoglycan in M. abscessus is achieved via two enzyme classes, l,d- and d,d-transpeptidases, with each class preferentially inhibited by different subclasses of β-lactam antibiotics. We hypothesized that a combination of two β-lactams that comprehensively inhibit the two enzyme classes will exhibit synergy in killing M. abscessus Paired combinations of antibiotics tested for in vitro synergy against M. abscessus included dual β-lactams, a β-lactam and a β-lactamase inhibitor, and a β-lactam and a rifamycin. Of the initial 206 combinations screened, 24 pairs exhibited synergy. A total of 13/24 pairs were combinations of two β-lactams, and 12/24 pairs brought the MICs of both drugs to within the therapeutic range. Additionally, synergistic drug pairs significantly reduced the frequency of selection of spontaneous resistant mutants. These novel combinations of currently available antibiotics may offer viable immediate treatment options against highly-resistant M. abscessus infections.
Collapse
Affiliation(s)
- Elizabeth Story-Roller
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emily C Maggioncalda
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Evaluation of Carbapenems for Treatment of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.01489-18. [PMID: 30455232 DOI: 10.1128/aac.01489-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/07/2018] [Indexed: 01/12/2023] Open
Abstract
Multi- and extensively drug-resistant tuberculosis (M/XDR-TB) has become an increasing threat not only in countries where the TB burden is high but also in affluent regions, due to increased international travel and globalization. Carbapenems are earmarked as potentially active drugs for the treatment of Mycobacterium tuberculosis To better understand the potential of carbapenems for the treatment of M/XDR-TB, the aim of this review was to evaluate the literature on currently available in vitro, in vivo, and clinical data on carbapenems in the treatment of M. tuberculosis and to detect knowledge gaps, in order to target future research. In February 2018, a systematic literature search of PubMed and Web of Science was performed. Overall, the results of the studies identified in this review, which used a variety of carbapenem susceptibility tests on clinical and laboratory strains of M. tuberculosis, are consistent. In vitro, the activity of carbapenems against M. tuberculosis is increased when used in combination with clavulanate, a BLaC inhibitor. However, clavulanate is not commercially available alone, and therefore, it is impossible in practice to prescribe carbapenems in combination with clavulanate at this time. Few in vivo studies have been performed, including one prospective, two observational, and seven retrospective clinical studies to assess the effectiveness, safety, and tolerability of three different carbapenems (imipenem, meropenem, and ertapenem). We found no clear evidence at the present time to select one particular carbapenem among the different candidate compounds to design an effective M/XDR-TB regimen. Therefore, more clinical evidence and dose optimization substantiated by hollow-fiber infection studies are needed to support repurposing carbapenems for the treatment of M/XDR-TB.
Collapse
|
17
|
Ibeji CU, Tolufashe GF, Ntombela T, Govender T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. The catalytic role of water in the binding site of l,d-transpeptidase 2 within acylation mechanism: A QM/MM (ONIOM) modelling. Tuberculosis (Edinb) 2018; 113:222-230. [PMID: 30514506 DOI: 10.1016/j.tube.2018.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. Formation of 3 → 3 crosslinks in the peptidoglycan layer of M. tuberculosis is catalyzed by l,d-transpeptidases. These enzymes can confer resistance against classical β-lactams that inhibit enzymes that generate 4 → 3 peptidoglycan crosslinks. The focus of this study is to investigate the catalytic role of water molecules in the acylation mechanism of the β-lactam ring within two models; 4- and 6-membered ring systems using two-layered our Own N-layer integrated Molecular Mechanics ONIOM (B3LYP/6-311++G(2d,2p): AMBER) model. The obtained thermochemical parameters revealed that the 6-membered ring model best describes the inhibition mechanism of acylation which indicates the role of water in the preference of 6-membered ring reaction pathway. This finding is in accordance with experimental data for the rate-limiting step of cysteine protease with the same class of inhibitor and binding affinity for both inhibitors. As expected, the ΔG# results also reveal that the 6-membered ring reaction pathway is the most favourable. The electrostatic potential (ESP) and the natural bond orbital analysis (NBO) showed stronger interactions in 6-membered ring transition state (TS-6) mechanism involving water in the active site of the enzyme. This study could be helpful in the development of novel antibiotics against l,d-transpeptidase.
Collapse
Affiliation(s)
- Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thandokuhle Ntombela
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
18
|
Copper inhibits peptidoglycan LD-transpeptidases suppressing β-lactam resistance due to bypass of penicillin-binding proteins. Proc Natl Acad Sci U S A 2018; 115:10786-10791. [PMID: 30275297 DOI: 10.1073/pnas.1809285115] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peptidoglycan (PG) layer stabilizes the bacterial cell envelope to maintain the integrity and shape of the cell. Penicillin-binding proteins (PBPs) synthesize essential 4-3 cross-links in PG and are inhibited by β-lactam antibiotics. Some clinical isolates and laboratory strains of Enterococcus faecium and Escherichia coli achieve high-level β-lactam resistance by utilizing β-lactam-insensitive LD-transpeptidases (LDTs) to produce exclusively 3-3 cross-links in PG, bypassing the PBPs. In E. coli, other LDTs covalently attach the lipoprotein Lpp to PG to stabilize the envelope and maintain the permeability barrier function of the outermembrane. Here we show that subminimal inhibitory concentration of copper chloride sensitizes E. coli cells to sodium dodecyl sulfate and impair survival upon LPS transport stress, indicating reduced cell envelope robustness. Cells grown in the presence of copper chloride lacked 3-3 cross-links in PG and displayed reduced covalent attachment of Braun's lipoprotein and reduced incorporation of a fluorescent d-amino acid, suggesting inhibition of LDTs. Copper dramatically decreased the minimal inhibitory concentration of ampicillin in E. coli and E. faecium strains with a resistance mechanism relying on LDTs and inhibited purified LDTs at submillimolar concentrations. Hence, our work reveals how copper affects bacterial cell envelope stability and counteracts LDT-mediated β-lactam resistance.
Collapse
|
19
|
Gokulan K, Khare S, Cerniglia CE, Foley SL, Varughese KI. Structure and Inhibitor Specificity of L,D-Transpeptidase (LdtMt2) from Mycobacterium tuberculosis and Antibiotic Resistance: Calcium Binding Promotes Dimer Formation. AAPS JOURNAL 2018. [DOI: 10.1208/s12248-018-0193-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Peptidoglycan Cross-Linking Activity of l,d-Transpeptidases from Clostridium difficile and Inactivation of These Enzymes by β-Lactams. Antimicrob Agents Chemother 2017; 62:AAC.01607-17. [PMID: 29061738 DOI: 10.1128/aac.01607-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
In most bacteria, the essential targets of β-lactam antibiotics are the d,d-transpeptidases that catalyze the last step of peptidoglycan polymerization by forming 4→3 cross-links. The peptidoglycan of Clostridium difficile is unusual since it mainly contains 3→3 cross-links generated by l,d-transpeptidases. To gain insight into the characteristics of C. difficile peptidoglycan cross-linking enzymes, we purified the three putative C. difficile l,d-transpeptidase paralogues LdtCd1, LdtCd2, and LdtCd3, which were previously identified by sequence analysis. The catalytic activities of the three proteins were assayed with a disaccharide-tetrapeptide purified from the C. difficile cell wall. LdtCd2 and LdtCd3 catalyzed the formation of 3→3 cross-links (l,d-transpeptidase activity), the hydrolysis of the C-terminal d-Ala residue of the disaccharide-tetrapeptide substrate (l,d-carboxypeptidase activity), and the exchange of the C-terminal d-Ala for d-Met. LdtCd1 displayed only l,d-carboxypeptidase activity. Mass spectrometry analyses indicated that LdtCd1 and LdtCd2 were acylated by β-lactams belonging to the carbapenem (imipenem, meropenem, and ertapenem), cephalosporin (ceftriaxone), and penicillin (ampicillin) classes. Acylation of LdtCd3 by these β-lactams was not detected. The acylation efficacy of LdtCd1 and LdtCd2 was higher for the carbapenems (480 to 6,600 M-1 s-1) than for ampicillin and ceftriaxone (3.9 to 82 M-1 s-1). In contrast, the efficacy of the hydrolysis of β-lactams by LdtCd1 and LdtCd2 was higher for ampicillin and ceftriaxone than for imipenem. These observations indicate that LdtCd1 and LdtCd2 are inactivated only by β-lactams of the carbapenem class due to a combination of rapid acylation and the stability of the resulting covalent adducts.
Collapse
|
21
|
Reversible inactivation of a peptidoglycan transpeptidase by a β-lactam antibiotic mediated by β-lactam-ring recyclization in the enzyme active site. Sci Rep 2017; 7:9136. [PMID: 28831100 PMCID: PMC5567249 DOI: 10.1038/s41598-017-09341-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/17/2017] [Indexed: 11/08/2022] Open
Abstract
β-lactam antibiotics act as suicide substrates of transpeptidases responsible for the last cross-linking step of peptidoglycan synthesis in the bacterial cell wall. Nucleophilic attack of the β-lactam carbonyl by the catalytic residue (Ser or Cys) of transpeptidases results in the opening of the β-lactam ring and in the formation of a stable acyl-enzyme. The acylation reaction is considered as irreversible due to the strain of the β-lactam ring. In contradiction with this widely accepted but poorly demonstrated premise, we show here that the acylation of the L,D-transpeptidase Ldtfm from Enterococcus faecium by the β-lactam nitrocefin is reversible, leading to limited antibacterial activity. Experimentally, two independent methods based on spectrophotometry and mass spectrometry provided evidence that recyclization of the β-lactam ring within the active site of Ldtfm regenerates native nitrocefin. Ring strain is therefore not sufficient to account for irreversible acylation of peptidoglycan transpeptidases observed for most β-lactam antibiotics.
Collapse
|
22
|
Mattoo R, Lloyd EP, Kaushik A, Kumar P, Brunelle JL, Townsend CA, Lamichhane G. Ldt Mav2, a nonclassical transpeptidase and susceptibility of Mycobacterium avium to carbapenems. Future Microbiol 2017; 12:595-607. [PMID: 28555497 PMCID: PMC5619143 DOI: 10.2217/fmb-2016-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: Mycobacterium avium infections, especially in immune-compromised individuals, present a significant challenge as therapeutic options are limited. In this study, we investigated if M. avium genome encodes nonclassical transpeptidases and if newer carbapenems are effective against this mycobacteria. Materials & methods: Biochemical and microbiological approaches were used to identify and characterize a nonclassical transpeptidase, namely L,D-transpeptidase, in M. avium. Results & conclusion: We describe the biochemical and physiological attributes of a L,D-transpeptidase in M. avium, LdtMav2. Suggestive of a constitutive requirement, levels of LdtMav2, a L,D-transpeptidase in M. avium, remain constant during exponential and stationary phases of growth. Among β-lactam antibacterials, only a subset of carbapenems inhibit LdtMav2 and tebipenem, a new oral carbapenem, inhibits growth of M. avium.
Collapse
Affiliation(s)
- Rohini Mattoo
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Evan P Lloyd
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amit Kaushik
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Pankaj Kumar
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Julie L Brunelle
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Medicine, Taskforce to Study Resistance Emergence & Antimicrobial Development Technology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Gyanu Lamichhane
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD 21231, USA.,Department of Medicine, Taskforce to Study Resistance Emergence & Antimicrobial Development Technology, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
23
|
Target Engagement Measures in Preclinical Drug Discovery: Theory, Methods, and Case Studies. TRANSLATING MOLECULES INTO MEDICINES 2017. [DOI: 10.1007/978-3-319-50042-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Fakhar Z, Govender T, Lamichhane G, Maguire GE, Kruger HG, Honarparvar B. Computational model for the acylation step of the β-lactam ring: Potential application for l,d-transpeptidase 2 in mycobacterium tuberculosis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Non-classical transpeptidases yield insight into new antibacterials. Nat Chem Biol 2016; 13:54-61. [PMID: 27820797 PMCID: PMC5477059 DOI: 10.1038/nchembio.2237] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/31/2016] [Indexed: 01/30/2023]
Abstract
Bacterial survival requires an intact peptidoglycan layer, a three-dimensional exoskeleton that encapsulates the cytoplasmic membrane. Historically, the final steps of peptidoglycan synthesis are known to be carried out by D,D-transpeptidases, enzymes that are inhibited by the β-lactams, which constitute >50% of all antibacterials in clinical use. Here, we show that the carbapenem subclass of β-lactams are distinctly effective not only because they inhibit D,D-transpeptidases and are poor substrates for β-lactamases, but primarily because they also inhibit non-classical transpeptidases, namely the L,D-transpeptidases, which generate the majority of linkages in the peptidoglycan of mycobacteria. We have characterized the molecular mechanisms responsible for inhibition of L,D-transpeptidases of Mycobacterium tuberculosis and a range of bacteria including ESKAPE pathogens, and used this information to design, synthesize and test simplified carbapenems with potent antibacterial activity.
Collapse
|
26
|
Bhattacharjee N, Field MJ, Simorre JP, Arthur M, Bougault CM. Hybrid Potential Simulation of the Acylation of Enterococcus faecium l,d-Transpeptidase by Carbapenems. J Phys Chem B 2016; 120:4767-81. [DOI: 10.1021/acs.jpcb.6b02836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholus Bhattacharjee
- DYNAMO/DYNAMOP,
UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie
Structurale, 71 Avenue des Martyrs,
CS 10090, 38044 Grenoble Cedex 9, France
| | - Martin J. Field
- DYNAMO/DYNAMOP,
UMR 5075, Université Grenoble 1, CNRS, CEA, Institut de Biologie
Structurale, 71 Avenue des Martyrs,
CS 10090, 38044 Grenoble Cedex 9, France
| | - Jean-Pierre Simorre
- RMN, UMR 5075,
Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| | - Michel Arthur
- Centre de Recherche
des Cordeliers, Equipe 12, UMR S 872, Université Pierre et
Marie Curie-Paris 6, INSERM, Université Paris Descartes, Sorbonne
Paris Cité, 15 rue de l’Ecole
de Médecine, 75006 Paris, France
| | - Catherine M. Bougault
- RMN, UMR 5075,
Université Grenoble 1, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, 38044 Grenoble Cedex 9, France
| |
Collapse
|
27
|
Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025221. [PMID: 27091943 DOI: 10.1101/cshperspect.a025221] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| |
Collapse
|
28
|
Iannazzo L, Soroka D, Triboulet S, Fonvielle M, Compain F, Dubée V, Mainardi JL, Hugonnet JE, Braud E, Arthur M, Etheve-Quelquejeu M. Routes of Synthesis of Carbapenems for Optimizing Both the Inactivation of l,d-Transpeptidase LdtMt1 of Mycobacterium tuberculosis and the Stability toward Hydrolysis by β-Lactamase BlaC. J Med Chem 2016; 59:3427-38. [DOI: 10.1021/acs.jmedchem.6b00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Laura Iannazzo
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, team
CBNIT, Université Paris Descartes, CNRS UMR 8601, Paris F-75006, France
| | | | | | | | | | - Vincent Dubée
- Assistance
Publique-Hôpitaux de Paris, Service de Réanimation Médicale, Hôpital Saint-Antoine, Paris F-75012,France
| | - Jean-Luc Mainardi
- Assistance
Publique-Hôpitaux de Paris, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris F-75015, France
| | | | - Emmanuelle Braud
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, team
CBNIT, Université Paris Descartes, CNRS UMR 8601, Paris F-75006, France
| | | | - Mélanie Etheve-Quelquejeu
- Laboratoire
de Chimie et de Biochimie Pharmacologiques et Toxicologiques, team
CBNIT, Université Paris Descartes, CNRS UMR 8601, Paris F-75006, France
| |
Collapse
|
29
|
Billones JB, Carrillo MCO, Organo VG, Macalino SJY, Sy JBA, Emnacen IA, Clavio NAB, Concepcion GP. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosisl,d-transpeptidase 2. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1147-57. [PMID: 27042006 PMCID: PMC4795573 DOI: 10.2147/dddt.s97043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl–arabinogalactan–peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.
Collapse
Affiliation(s)
- Junie B Billones
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines; Institute of Pharmaceutical Sciences, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | - Maria Constancia O Carrillo
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Voltaire G Organo
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Stephani Joy Y Macalino
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Jamie Bernadette A Sy
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Inno A Emnacen
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Nina Abigail B Clavio
- Office of the Vice President for Academic Affairs - Emerging Interdisciplinary Research Program: "Computer-aided Discovery of Compounds for the treatment of Tuberculosis in the Philippines," Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| |
Collapse
|
30
|
Silva JRA, Bishai WR, Govender T, Lamichhane G, Maguire GEM, Kruger HG, Lameira J, Alves CN. Targeting the cell wall of Mycobacterium tuberculosis: a molecular modeling investigation of the interaction of imipenem and meropenem with L,D-transpeptidase 2. J Biomol Struct Dyn 2015; 34:304-17. [PMID: 25762064 DOI: 10.1080/07391102.2015.1029000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.
Collapse
Affiliation(s)
- José Rogério A Silva
- a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil
| | - William R Bishai
- b Department of Medicine, Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Thavendran Govender
- c Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Gyanu Lamichhane
- c Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Glenn E M Maguire
- d Taskforce to study Resistance Emergence & Antimicrobial Development Technology , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Hendrik G Kruger
- d Taskforce to study Resistance Emergence & Antimicrobial Development Technology , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Jeronimo Lameira
- a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil
| | - Cláudio N Alves
- a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil
| |
Collapse
|
31
|
Triboulet S, Bougault CM, Laguri C, Hugonnet JE, Arthur M, Simorre JP. Acyl acceptor recognition by Enterococcus faecium L,D-transpeptidase Ldtfm. Mol Microbiol 2015; 98:90-100. [PMID: 26101813 DOI: 10.1111/mmi.13104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 11/27/2022]
Abstract
In Mycobacterium tuberculosis and ampicillin-resistant mutants of Enterococcus faecium, the classical target of β-lactam antibiotics is bypassed by L,D-transpeptidases that form unusual 3 → 3 peptidoglycan cross-links. β-lactams of the carbapenem class, such as ertapenem, are mimics of the acyl donor substrate and inactivate l,d-transpeptidases by acylation of their catalytic cysteine. We have blocked the acyl donor site of E. faecium L,D-transpeptidase Ldt(fm) by ertapenem and identified the acyl acceptor site based on analyses of chemical shift perturbations induced by binding of peptidoglycan fragments to the resulting acylenzyme. An nuclear magnetic resonance (NMR)-driven docking structure of the complex revealed key hydrogen interactions between the acyl acceptor and Ldt(fm) that were evaluated by site-directed mutagenesis and development of a cross-linking assay. Three residues are reported as critical for stabilisation of the acceptor in the Ldt(fm) active site and proper orientation of the nucleophilic nitrogen for the attack of the acylenzyme carbonyl. Identification of the catalytic pocket dedicated to the acceptor substrate opens new perspectives for the design of inhibitors with an original mode of action that could act alone or in synergy with β-lactams.
Collapse
Affiliation(s)
- Sébastien Triboulet
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Equipe 12, F-75006, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Catherine M Bougault
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Cédric Laguri
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| | - Jean-Emmanuel Hugonnet
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Equipe 12, F-75006, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Michel Arthur
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Equipe 12, F-75006, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France.,CNRS, IBS, F-38044 Grenoble, France.,CEA, IBS, F-38044 Grenoble, France
| |
Collapse
|
32
|
Silva JRA, Govender T, Maguire GEM, Kruger HG, Lameira J, Roitberg AE, Alves CN. Simulating the inhibition reaction of Mycobacterium tuberculosisl,d-transpeptidase 2 by carbapenems. Chem Commun (Camb) 2015; 51:12560-2. [DOI: 10.1039/c5cc03202d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The inactivation mechanism of LDT enzyme from M. tuberculosis by carbapenems is described by QM/MM and PMF analysis
Collapse
Affiliation(s)
- José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Glenn E. M. Maguire
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of Kwazulu-Natal
- Durban 4001
- South Africa
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| | | | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos
- Instituto de Ciências Exatas e Naturais
- Universidade Federal do Pará
- Belém
- Brazil
| |
Collapse
|
33
|
Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic. Antimicrob Agents Chemother 2014; 59:1308-19. [PMID: 25421469 DOI: 10.1128/aac.03461-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent clinical studies indicate that meropenem, a β-lactam antibiotic, is a promising candidate for therapy of drug-resistant tuberculosis. However, meropenem is chemically unstable, requires frequent intravenous injection, and must be combined with a β-lactamase inhibitor (clavulanate) for optimal activity. Here, we report that faropenem, a stable and orally bioavailable β-lactam, efficiently kills Mycobacterium tuberculosis even in the absence of clavulanate. The target enzymes, L,D-transpeptidases, were inactivated 6- to 22-fold more efficiently by faropenem than by meropenem. Using a real-time assay based on quantitative time-lapse microscopy and microfluidics, we demonstrate the superiority of faropenem to the frontline antituberculosis drug isoniazid in its ability to induce the rapid cytolysis of single cells. Faropenem also showed superior activity against a cryptic subpopulation of nongrowing but metabolically active cells, which may correspond to the viable but nonculturable forms believed to be responsible for relapses following prolonged chemotherapy. These results identify faropenem to be a potential candidate for alternative therapy of drug-resistant tuberculosis.
Collapse
|
34
|
Abstract
Most β-lactam antibiotics are ineffective against Mycobacterium tuberculosis due to the microbe’s innate resistance. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has prompted interest to repurpose this class of drugs. To identify the genetic determinants of innate β-lactam resistance, we carried out a synthetic lethality screen on a transposon mutant library for susceptibility to imipenem, a carbapenem β-lactam antibiotic. Mutations in 74 unique genes demonstrated synthetic lethality. The majority of mutations were in genes associated with cell wall biosynthesis. A second quantitative real-time PCR (qPCR)-based synthetic lethality screen of randomly selected mutants confirmed the role of cell wall biosynthesis in β-lactam resistance. The global transcriptional response of the bacterium to β-lactams was investigated, and changes in levels of expression of cell wall biosynthetic genes were identified. Finally, we validated these screens in vivo using the MT1616 transposon mutant, which lacks a functional acyl-transferase gene. Mice infected with the mutant responded to β-lactam treatment with a 100-fold decrease in bacillary lung burden over 4 weeks, while the numbers of organisms in the lungs of mice infected with wild-type bacilli proliferated. These findings reveal a road map of genes required for β-lactam resistance and validate synthetic lethality screening as a promising tool for repurposing existing classes of licensed, safe, well-characterized antimicrobials against tuberculosis. The global emergence of multidrug-resistant and extensively drug-resistant M. tuberculosis strains has threatened public health worldwide, yet the pipeline of new tuberculosis drugs under development remains limited. One strategy to cope with the urgent need for new antituberculosis agents is to repurpose existing, approved antibiotics. The carbapenem class of β-lactam antibiotics has been proposed as one such class of drugs. Our study identifies molecular determinants of innate resistance to β-lactam drugs in M. tuberculosis, and we demonstrate that functional loss of one of these genes enables successful treatment of M. tuberculosis with β-lactams in the mouse model.
Collapse
|
35
|
Silva JRA, Roitberg AE, Alves CN. Catalytic mechanism of L,D-transpeptidase 2 from Mycobacterium tuberculosis described by a computational approach: insights for the design of new antibiotics drugs. J Chem Inf Model 2014; 54:2402-10. [PMID: 25149147 DOI: 10.1021/ci5003069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tuberculosis is perhaps the most persistent human disease caused by an infections bacterium, Mycobacterium tuberculosis. The L,D-transpeptidase enzyme catalyzes the formation of 3 → 3 peptidoglycan cross-links of the Mtb cell wall and facilitates resistance against classical β-lactams. Herein, the experimentally proposed mechanism for LdtMt2 was studied by performing QM/MM MD simulations. The whole mechanistic process includes two stages: acylation and deacylation. During the acylation step, two steps were observed: the first step is a thiolate/imidazole ion-pair in the zwitterionic form, and the second step is the nucleophilic attack on the carboxyl carbon of the natural substrate accompanied by the breaking of the peptide bond on substrate. In the deacylation step the acyl-enzyme suffers a nucleophilic attack on the carboxyl carbon by the amine group of the second substrate. Our free energy results obtained by PMF analysis reveal that the first step (acylation) is the rate-limiting step in the whole catalytic mechanism in accordance with the experimental proposal. Also, the residues responsible for binding of the substrate and transition state stabilization were identified by energy decomposition methods.
Collapse
Affiliation(s)
- José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará , Belém, PA 66075-110, Brazil
| | | | | |
Collapse
|
36
|
Intrinsic Fluorescence Excitation–Emission Matrix Spectral Features of Cottonseed Protein Fractions and the Effects of Denaturants. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2495-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother 2013; 57:5940-5. [PMID: 24041897 DOI: 10.1128/aac.01663-13] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis peptidoglycan is cross-linked mainly by l,d-transpeptidases (LDTs), which are efficiently inactivated by a single β-lactam class, the carbapenems. Development of carbapenems for tuberculosis treatment has recently raised considerable interest since these drugs, in association with the β-lactamase inhibitor clavulanic acid, are uniformly active against extensively drug-resistant M. tuberculosis and kill both exponentially growing and dormant forms of the bacilli. We have purified the five l,d-transpeptidase paralogues of M. tuberculosis (Mt1 to -5) and compared their activities with those of peptidoglycan fragments and carbapenems. The five LDTs were functional in vitro since they were active in assays of peptidoglycan cross-linking (Mt5), β-lactam acylation (Mt3), or both (Mt1, Mt2, and Mt4). Mt3 was the only LDT that was inactive in the cross-linking assay, suggesting that this enzyme might be involved in other cellular functions such as the anchoring of proteins to peptidoglycan, as shown in Escherichia coli. Inactivation of LDTs by carbapenems is a two-step reaction comprising reversible formation of a tetrahedral intermediate, the oxyanion, followed by irreversible rupture of the β-lactam ring that leads to formation of a stable acyl enzyme. Determination of the rate constants for these two steps revealed important differences (up to 460-fold) between carbapenems, which affected the velocity of oxyanion and acyl enzyme formation. Imipenem inactivated LDTs more rapidly than ertapenem, and both drugs were more efficient than meropenem and doripenem, indicating that modification of the carbapenem side chain could be used to optimize their antimycobacterial activity.
Collapse
|
38
|
Triboulet S, Dubée V, Lecoq L, Bougault C, Mainardi JL, Rice LB, Ethève-Quelquejeu M, Gutmann L, Marie A, Dubost L, Hugonnet JE, Simorre JP, Arthur M. Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity. PLoS One 2013; 8:e67831. [PMID: 23861815 PMCID: PMC3701632 DOI: 10.1371/journal.pone.0067831] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/22/2013] [Indexed: 12/03/2022] Open
Abstract
Active-site serine D,D-transpeptidases belonging to the penicillin-binding protein family (PBPs) have been considered for a long time as essential for peptidoglycan cross-linking in all bacteria. However, bypass of the PBPs by an L,D-transpeptidase (Ldtfm) conveys high-level resistance to β-lactams of the penam class in Enterococcus faecium with a minimal inhibitory concentration (MIC) of ampicillin >2,000 µg/ml. Unexpectedly, Ldtfm does not confer resistance to β-lactams of the carbapenem class (imipenem MIC = 0.5 µg/ml) whereas cephems display residual activity (ceftriaxone MIC = 128 µg/ml). Mass spectrometry, fluorescence kinetics, and NMR chemical shift perturbation experiments were performed to explore the basis for this specificity and identify β-lactam features that are critical for efficient L,D-transpeptidase inactivation. We show that imipenem, ceftriaxone, and ampicillin acylate Ldtfm by formation of a thioester bond between the active-site cysteine and the β-lactam-ring carbonyl. However, slow acylation and slow acylenzyme hydrolysis resulted in partial Ldtfm inactivation by ampicillin and ceftriaxone. For ampicillin, Ldtfm acylation was followed by rupture of the C5–C6 bond of the β-lactam ring and formation of a secondary acylenzyme prone to hydrolysis. The saturable step of the catalytic cycle was the reversible formation of a tetrahedral intermediate (oxyanion) without significant accumulation of a non-covalent complex. In agreement, a derivative of Ldtfm blocked in acylation bound ertapenem (a carbapenem), ceftriaxone, and ampicillin with similar low affinities. Thus, oxyanion and acylenzyme stabilization are both critical for rapid L,D-transpeptidase inactivation and antibacterial activity. These results pave the way for optimization of the β-lactam scaffold for L,D-transpeptidase-inactivation.
Collapse
Affiliation(s)
- Sébastien Triboulet
- Centre de Recherche des Cordeliers, Equipe 12, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lecoq L, Dubée V, Triboulet S, Bougault C, Hugonnet JE, Arthur M, Simorre JP. Structure of Enterococcus faeciuml,d-transpeptidase acylated by ertapenem provides insight into the inactivation mechanism. ACS Chem Biol 2013; 8:1140-6. [PMID: 23574509 DOI: 10.1021/cb4001603] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The maintenance of bacterial cell shape and integrity is largely attributed to peptidoglycan, a biopolymer highly cross-linked through d,d-transpeptidation. Peptidoglycan cross-linking is catalyzed by penicillin-binding proteins (PBPs) that are the essential target of β-lactam antibiotics. PBPs are functionally replaced by l,d-transpeptidases (Ldts) in ampicillin-resistant mutants of Enterococcus faecium and in wild-type Mycobacterium tuberculosis. Ldts are inhibited in vivo by a single class of β-lactams, the carbapenems, which act as a suicide substrate. We present here the first structure of a carbapenem-acylated l,d-transpeptidase, E. faecium Ldtfm acylated by ertapenem, which revealed key contacts between the carbapenem core and residues of the catalytic cavity of the enzyme. Significant reorganization of the antibiotic conformation occurs upon enzyme acylation. These results, together with the analysis of protein-to-carbapenem proton transfers, provide new insights into the mechanism of Ldt acylation by carbapenems.
Collapse
Affiliation(s)
- Lauriane Lecoq
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble,
France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075,
Grenoble, France
- Université
Joseph Fourier−Grenoble
1, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble, France
| | - Vincent Dubée
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Sébastien Triboulet
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Catherine Bougault
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble,
France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075,
Grenoble, France
- Université
Joseph Fourier−Grenoble
1, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Michel Arthur
- Centre de Recherche des Cordeliers,
LRMA, Equipe 12, Université Pierre et Marie Curie−Paris 6, UMR S 872, Paris, France
- INSERM, U872, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, UMR S 872, Paris,
France
| | - Jean-Pierre Simorre
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble,
France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075,
Grenoble, France
- Université
Joseph Fourier−Grenoble
1, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Grenoble, France
| |
Collapse
|
40
|
Kurz SG, Bonomo RA. Reappraising the use of β-lactams to treat tuberculosis. Expert Rev Anti Infect Ther 2013; 10:999-1006. [PMID: 23106275 DOI: 10.1586/eri.12.96] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The emergence of multidrug-resistant and extensively drug-resistant tuberculosis calls for novel approaches to treatment. Recent studies have shown that BlaC, the β-lactamase of Mycobacterium tuberculosis, is the major determinant of β-lactam resistance. This review invites the reader to explore evidence in order to answer the questions: can β-lactam and β-lactamase inhibitors adequately treat M. tuberculosis infection and are they a viable option in the management of resistant tuberculosis today?
Collapse
Affiliation(s)
- Sebastian G Kurz
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center and Louis Stokes Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | | |
Collapse
|
41
|
Erdemli SB, Gupta R, Bishai WR, Lamichhane G, Amzel LM, Bianchet MA. Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of L,D-transpeptidase 2. Structure 2012; 20:2103-15. [PMID: 23103390 DOI: 10.1016/j.str.2012.09.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 01/08/2023]
Abstract
With multidrug-resistant cases of tuberculosis increasing globally, better antibiotic drugs and novel drug targets are becoming an urgent need. Traditional β-lactam antibiotics that inhibit D,D-transpeptidases are not effective against mycobacteria, in part because mycobacteria rely mostly on L,D-transpeptidases for biosynthesis and maintenance of their peptidoglycan layer. This reliance plays a major role in drug resistance and persistence of Mycobacterium tuberculosis (Mtb) infections. The crystal structure at 1.7 Å resolution of the Mtb L,D-transpeptidase Ldt(Mt2) containing a bound peptidoglycan fragment, reported here, provides information about catalytic site organization as well as substrate recognition by the enzyme. Based on our structural, kinetic, and calorimetric data, we propose a catalytic mechanism for Ldt(Mt2) in which both acyl-acceptor and acyl-donor substrates reach the catalytic site from the same, rather than different, entrances. Together, this information provides vital insights to facilitate development of drugs targeting this validated yet unexploited enzyme.
Collapse
Affiliation(s)
- Sabri B Erdemli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
42
|
Inactivation of Mycobacterium tuberculosis l,d-transpeptidase LdtMt₁ by carbapenems and cephalosporins. Antimicrob Agents Chemother 2012; 56:4189-95. [PMID: 22615283 DOI: 10.1128/aac.00665-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of Mycobacterium tuberculosis peptidoglycan is atypical since it contains a majority of 3→3 cross-links synthesized by l,d-transpeptidases that replace 4→3 cross-links formed by the d,d-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these l,d-transpeptidases, and meropenem combined with clavulanic acid is bactericidal against extensively drug-resistant M. tuberculosis. Here, we used mass spectrometry and stopped-flow fluorimetry to investigate the kinetics and mechanisms of inactivation of the prototypic M. tuberculosis l,d-transpeptidase Ldt(Mt1) by carbapenems (meropenem, doripenem, imipenem, and ertapenem) and cephalosporins (cefotaxime, cephalothin, and ceftriaxone). Inactivation proceeded through noncovalent drug binding and acylation of the catalytic Cys of Ldt(Mt1), which was eventually followed by hydrolysis of the resulting acylenzyme. Meropenem rapidly inhibited Ldt(Mt1), with a binding rate constant of 0.08 μM(-1) min(-1). The enzyme was unable to recover from this initial binding step since the dissociation rate constant of the noncovalent complex was low (<0.1 min(-1)) in comparison to the acylation rate constant (3.1 min(-1)). The covalent adduct resulting from enzyme acylation was stable, with a hydrolysis rate constant of 1.0 × 10(-3) min(-1). Variations in the carbapenem side chains affected both the binding and acylation steps, ertapenem being the most efficient Ldt(Mt1) inactivator. Cephalosporins also formed covalent adducts with Ldt(Mt1), although the acylation reaction was 7- to 1,000-fold slower and led to elimination of one of the drug side chains. Comparison of kinetic constants for drug binding, acylation, and acylenzyme hydrolysis indicates that carbapenems and cephems can both be tailored to optimize peptidoglycan synthesis inhibition in M. tuberculosis.
Collapse
|
43
|
Kinetic analysis of Enterococcus faecium L,D-transpeptidase inactivation by carbapenems. Antimicrob Agents Chemother 2012; 56:3409-12. [PMID: 22450984 DOI: 10.1128/aac.06398-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bypass of classical penicillin-binding proteins by the L,D-transpeptidase of Enterococcus faecium (Ldt(fm)) leads to high-level ampicillin resistance in E. faecium mutants, whereas carbapenems remain the lone highly active β-lactams. Kinetics of Ldt(fm) inactivation was determined for four commercial carbapenems and a derivative obtained by introducing a minimal ethyl group at position 2. We show that the bulky side chains of commercial carbapenems have both positive and negative effects in preventing hydrolysis of the acyl enzyme and impairing drug binding.
Collapse
|
44
|
Abstract
Mycobacterium tuberculosis is a difficult pathogen to combat and the first-line drugs currently in use are 40-60 years old. The need for new TB drugs is urgent, but the time to identify, develop and ultimately advance new drug regimens onto the market has been excruciatingly slow. On the other hand, the drugs currently in clinical development, and the recent gains in knowledge of the pathogen and the disease itself give us hope for finding new drug targets and new drug leads. In this article we highlight the unique biology of the pathogen and several possible ways to identify new TB chemical leads. The Global Alliance for TB Drug Development (TB Alliance) is a not-for-profit organization whose mission is to accelerate the discovery and development of new TB drugs. The organization carries out research and development in collaboration with many academic laboratories and pharmaceutical companies around the world. In this perspective we will focus on the early discovery phases of drug development and try to provide snapshots of both the current status and future prospects.
Collapse
|
45
|
King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 2011; 20:1484-91. [PMID: 21774017 DOI: 10.1002/pro.697] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/08/2011] [Indexed: 11/11/2022]
Abstract
β-Lactams are the most commonly prescribed class of antibiotics and have had an enormous impact on human health. Thus, it is disquieting that an enzyme called New Delhi metallo-β-lactamase-1 (NDM-1) can confer Enterobacteriaceae with nearly complete resistance to all β-lactam antibiotics including the carbapenams. We have determined the crystal structure of Klebsiella pneumoniae apo-NDM-1 to 2.1-Å resolution. From the structure, we see that NDM-1 has an expansive active site with a unique electrostatic profile, which we propose leads to a broader substrate specificity. In addition, NDM-1 undergoes important conformational changes upon substrate binding. These changes have not been previously observed in metallo-β-lactamase enzymes and may have a direct influence on substrate recognition and catalysis.
Collapse
Affiliation(s)
- Dustin King
- Department of Biochemistry and Molecular Biology and Center for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|