1
|
Zalenski N, He Y, Suo Z. Mechanistic Basis for a Single Amino Acid Residue Mutation Causing Human DNA Ligase 1 Deficiency, A Rare Pediatric Disease. J Mol Biol 2024; 436:168813. [PMID: 39374888 DOI: 10.1016/j.jmb.2024.168813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
In mammalian cells, DNA ligase 1 (LIG1) functions as the primary DNA ligase in both genomic replication and single-strand break repair. Several reported mutations in human LIG1, including R305Q, R641L, and R771W, cause LIG1 syndrome, a primary immunodeficiency. While the R641L and R771W mutations, respectively located in the nucleotidyl transferase and oligonucleotide binding domains, have been biochemically characterized and shown to reduce catalytic efficiency, the recently reported R305Q mutation within the DNA binding domain (DBD) remains mechanistically unexplored. The R641L and R771W mutations are known to decrease the catalytic activity of LIG1 by affecting both interdomain interactions and DNA binding during catalysis, without significantly impacting overall DNA affinity. To elucidate the molecular basis of the LIG1 syndrome-causing R305Q mutation, we purified this single-residue mutant protein and investigated its secondary structure, protein stability, DNA binding affinity, and catalytic efficiency. Our findings reveal that the R305Q mutation significantly impairs the function of LIG1 by disrupting the DBD-DNA interactions, leading to a 7-21-fold lower DNA binding affinity and a 33-300-fold reduced catalytic efficiency of LIG1. Additionally, the R305Q mutation slightly decreases LIG1's protein stability by 2 to 3.6 °C, on par with the effect observed previously with either the R641L or R771W mutant. Collectively, our results uncover a new mechanism whereby the R305Q mutation impairs LIG1-catalyzed nicked DNA ligation, resulting in LIG1 syndrome, and highlight the crucial roles of the DBD-DNA interactions in tight DNA binding and efficient LIG1 catalysis.
Collapse
Affiliation(s)
- Nikita Zalenski
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Yufan He
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Zucai Suo
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
2
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Almohdar D, Ratcliffe J, Gulkis M, Çağlayan M. Probing the mechanism of nick searching by LIG1 at the single-molecule level. Nucleic Acids Res 2024; 52:12604-12615. [PMID: 39404052 PMCID: PMC11551761 DOI: 10.1093/nar/gkae865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
DNA ligase 1 (LIG1) joins Okazaki fragments during the nuclear replication and completes DNA repair pathways by joining 3'-OH and 5'-PO4 ends of nick at the final step. Yet, the mechanism of how LIG1 searches for a nick at single-molecule level is unknown. Here, we combine single-molecule fluorescence microscopy approaches, C-Trap and total internal reflection fluorescence (TIRF), to investigate the dynamics of LIG1-nick DNA binding. Our C-Trap data reveal that DNA binding by LIG1 full-length is enriched near the nick sites and the protein exhibits diffusive behavior to form a long-lived ligase/nick complex after binding to a non-nick region. However, LIG1 C-terminal mutant, containing the catalytic core and DNA-binding domain, predominantly binds throughout DNA non-specifically to the regions lacking nick site for shorter time. These results are further supported by TIRF data for LIG1 binding to DNA with a single nick site and demonstrate that a fraction of LIG1 full-length binds significantly longer period compared to the C-terminal mutant. Overall comparison of DNA binding modes provides a mechanistic model where the N-terminal domain promotes 1D diffusion and the enrichment of LIG1 binding at nick sites with longer binding lifetime, thereby facilitating an efficient nick search process.
Collapse
Affiliation(s)
- Surajit Chatterjee
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Loïc Chaubet
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | | | - Ann Mukhortava
- LUMICKS B.V., 1059 CH, Paalbergweg 31105 AG, Amsterdam, The Netherlands
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Ratcliffe
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Veenstra JH, Chabez A, Haanen TJ, Keranen A, Cunningham-Rundles C, O'Brien PJ. Rare Variants of DNA Ligase 1 Show Distinct Mechanisms of Deficiency. J Biol Chem 2024:107957. [PMID: 39510190 DOI: 10.1016/j.jbc.2024.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency. We investigated the enzymatic activity of several new candidate LIG1 Syndrome variants chosen based on their structural proximity to known clinical variants, low minor allele frequency (MAF), high level of conservation, and concurrence in patients with similar symptoms as LIG1 Syndrome patients. The R305Q substitution is in the DNA binding domain, R768W is in the OB-fold domain, and R641S is in the nucleotidyltransferase domain. Biochemical characterization confirmed deficiencies in ligase activity for all three variants, but also revealed marked differences in comparison to the known LIG1 Syndrome variants. Both the R305Q and R768W substitutions increase the KM for DNA and decrease the catalytic efficiency, however, neither exhibit elevated levels of abortive ligation. In contrast, the R641S variant exhibits a greater impairment of activity as well as a more pronounced level of abortive ligation compared to the known LIG1 Syndrome variant, R641L. This work expands the number of LIG1 alleles that are likely candidates for LIG1 Syndrome, and it raises the question of whether distinct enzymatic deficiencies in LIG1 cause unique clinical impacts in patients harboring these alleles.
Collapse
Affiliation(s)
- Jenna H Veenstra
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Alexandria Chabez
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Terrance J Haanen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | - Austin Keranen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA
| | | | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA.
| |
Collapse
|
4
|
Nair VK, Sharma C, Kumar S, Sengupta M, Ghosh S. Probing the role of ligation and exonuclease digestion towards non-specific amplification in bioanalytical RCA assays. Analyst 2024; 149:5491-5503. [PMID: 39404091 DOI: 10.1039/d4an00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Non-specific amplification (NSA, amplification in the absence of a target analyte) in bioanalytical rolling circle amplification (RCA) assays, especially those involving pre-synthesized circular DNA (cDNA), affects its analytical sensitivity. Despite extensive development of RCA-based bioanalytical methods, the NSA in RCA remains uncharacterized in terms of its magnitude or origin. NSA may originate from inefficient ligation or succeeding cDNA purification steps. This study comprehensively quantifies NSA across several ligation and digestion techniques for the first time since the innovation of RCA. To quantify the NSA in RCA, cDNAs were prepared using self-annealing, splint-padlock, or cohesive end ligations. The cDNAs were then subjected to nine different exonuclease digestion steps and quantified for NSA under linear as well as hyperbranched RCA conditions. We investigated buffer compositions, divalent ion concentrations, single or dual enzyme digestion, cohesive end lengths, and splint lengths. The optimized conditions successfully mitigated absolute NSA by 30-100-fold and relative NSA (normalized against primer-assisted RCA) to ∼5%. Besides understanding the mechanistic origin of NSA, novel aspects of enzyme-substrate selectivity, buffer composition, and the role of divalent ions were discovered. With increasing bioanalytical RCA applications, this study will help standardize NSA-free assays.
Collapse
Affiliation(s)
- Vandana Kuttappan Nair
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Chandrika Sharma
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Shrawan Kumar
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Mrittika Sengupta
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
| | - Souradyuti Ghosh
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Li S, Chen Z, Yu H, Chang W, Zhou J, Wu G, Sun X, Sun H, Wang K. Association of magnesium deficiency scores with risk of rheumatoid arthritis and osteoarthritis in adults: a cross-sectional population-based study. Clin Rheumatol 2024:10.1007/s10067-024-07203-z. [PMID: 39453544 DOI: 10.1007/s10067-024-07203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND The magnesium depletion score (MDS) is a scoring system developed to predict magnesium deficiency based on pathophysiological factors that affect renal reabsorption. The relationship between systemic magnesium status and arthritis is unclear. The purpose of this study was to determine the association between the MDS and rheumatoid arthritis (RA) as well as osteoarthritis (OA). METHODS This study was conducted through a cross-sectional survey of 20,513 adults aged ≥ 20 years who participated in NHANES from 2007 to 2018. The four dimensions of the MDS included diuretics, proton pump inhibitors, glomerular filtration rate, and excessive alcohol consumption. Univariate and multivariable-weighted logistic regression were used to assess the associations between MDS and RA/OA, and a test for trend was performed to analyze the presence of a dose-response relationship. Subgroup analyses and interaction tests were performed according to confounders. RESULTS After adjustment for all covariates, we found a graded dose-response relationship between MDS and RA or OA. When MDS was considered as a continuous variable, each onefold increase in MDS was associated with a 1.21-fold increase in the odds of having RA (OR = 1.21, 1.10, 1.33) and a 1.12-fold increase in the odds of having OA (OR = 1.12, 1.04, 1.21). There was an interaction of sex in the effect of MDS on RA (Pinteraction = 0.004) and age in the effect of MDS on OA (Pinteraction = 0.006). In addition, these associations were further confirmed in sensitivity and subgroup analyses. CONCLUSIONS Our study identified significant dose-response associations between MDS and both RA and OA. More biological mechanisms are needed in the future to validate and clarify the results of this study.
Collapse
Affiliation(s)
- Shuxiang Li
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Zhuo Chen
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Haoyun Yu
- Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Wenliao Chang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Jian Zhou
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Guofeng Wu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaoliang Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| | - Kun Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
6
|
Rousseau M, Oulavallickal T, Williamson A, Arcus V, Patrick WM, Hicks J. Characterisation and engineering of a thermophilic RNA ligase from Palaeococcus pacificus. Nucleic Acids Res 2024; 52:3924-3937. [PMID: 38421610 DOI: 10.1093/nar/gkae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.
Collapse
Affiliation(s)
- Meghan Rousseau
- School of Science, The University of Waikato, Hamilton 3216, New Zealand
| | - Tifany Oulavallickal
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Adele Williamson
- School of Science, The University of Waikato, Hamilton 3216, New Zealand
| | - Vic Arcus
- School of Science, The University of Waikato, Hamilton 3216, New Zealand
| | - Wayne M Patrick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora School of Health, The University of Waikato, Hamilton 3216, New Zealand
| |
Collapse
|
7
|
Chatterjee S, Chaubet L, van den Berg A, Mukhortava A, Gulkis M, Çağlayan M. Uncovering nick DNA binding by LIG1 at the single-molecule level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587287. [PMID: 38586032 PMCID: PMC10996606 DOI: 10.1101/2024.03.28.587287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
DNA ligases repair the strand breaks are made continually and naturally throughout the genome, if left unrepaired and allowed to persist, they can lead to genome instability in the forms of lethal double-strand (ds) breaks, deletions, and duplications. DNA ligase 1 (LIG1) joins Okazaki fragments during the replication machinery and seals nicks at the end of most DNA repair pathways. Yet, how LIG1 recognizes its target substrate is entirely missing. Here, we uncover the dynamics of nick DNA binding by LIG1 at the single-molecule level. Our findings reveal that LIG1 binds to dsDNA both specifically and non-specifically and exhibits diffusive behavior to form a stable complex at the nick. Furthermore, by comparing with the LIG1 C-terminal protein, we demonstrate that the N-terminal non-catalytic region promotes binding enriched at nick sites and facilitates an efficient nick search process by promoting 1D diffusion along the DNA. Our findings provide a novel single-molecule insight into the nick binding by LIG1, which is critical to repair broken phosphodiester bonds in the DNA backbone to maintain genome integrity.
Collapse
|
8
|
Friese S, Heinze T, Ebert F, Schwerdtle T. Establishment of a nonradioactive DNA ligation assay and its applications in murine tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:106-115. [PMID: 38767089 DOI: 10.1002/em.22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.
Collapse
Affiliation(s)
- Sharleen Friese
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
9
|
Gulkis M, Tang Q, Petrides M, Çağlayan M. Structures of LIG1 active site mutants reveal the importance of DNA end rigidity for mismatch discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533718. [PMID: 36993234 PMCID: PMC10055324 DOI: 10.1101/2023.03.21.533718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
ATP-dependent DNA ligases catalyze phosphodiester bond formation in the conserved three-step chemical reaction of nick sealing. Human DNA ligase I (LIG1) finalizes almost all DNA repair pathways following DNA polymerase-mediated nucleotide insertion. We previously reported that LIG1 discriminates mismatches depending on the architecture of the 3'-terminus at a nick, however the contribution of conserved active site residues to faithful ligation remains unknown. Here, we comprehensively dissect the nick DNA substrate specificity of LIG1 active site mutants carrying Ala(A) and Leu(L) substitutions at Phe(F)635 and Phe(F)F872 residues and show completely abolished ligation of nick DNA substrates with all 12 non-canonical mismatches. LIG1 EE/AA structures of F635A and F872A mutants in complex with nick DNA containing A:C and G:T mismatches demonstrate the importance of DNA end rigidity, as well as uncover a shift in a flexible loop near 5'-end of the nick, which causes an increased barrier to adenylate transfer from LIG1 to the 5'-end of the nick. Furthermore, LIG1 EE/AA /8oxoG:A structures of both mutants demonstrated that F635 and F872 play critical roles during steps 1 or 2 of the ligation reaction depending on the position of the active site residue near the DNA ends. Overall, our study contributes towards a better understanding of the substrate discrimination mechanism of LIG1 against mutagenic repair intermediates with mismatched or damaged ends and reveals the importance of conserved ligase active site residues to maintain ligation fidelity.
Collapse
|
10
|
McNally JR, Ames AM, Admiraal SJ, O’Brien PJ. Human DNA ligases I and III have stand-alone end-joining capability, but differ in ligation efficiency and specificity. Nucleic Acids Res 2023; 51:796-805. [PMID: 36625284 PMCID: PMC9881130 DOI: 10.1093/nar/gkac1263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Double-strand DNA breaks (DSBs) are toxic to cells, and improper repair can cause chromosomal abnormalities that initiate and drive cancer progression. DNA ligases III and IV (LIG3, LIG4) have long been credited for repair of DSBs in mammals, but recent evidence suggests that DNA ligase I (LIG1) has intrinsic end-joining (EJ) activity that can compensate for their loss. To test this model, we employed in vitro biochemical assays to compare EJ by LIG1 and LIG3. The ligases join blunt-end and 3'-overhang-containing DNA substrates with similar catalytic efficiency, but LIG1 joins 5'-overhang-containing DNA substrates ∼20-fold less efficiently than LIG3 under optimal conditions. LIG1-catalyzed EJ is compromised at a physiological concentration of Mg2+, but its activity is restored by increased molecular crowding. In contrast to LIG1, LIG3 efficiently catalyzes EJ reactions at a physiological concentration of Mg2+ with or without molecular crowding. Under all tested conditions, LIG3 has greater affinity than LIG1 for DNA ends. Remarkably, LIG3 can ligate both strands of a DSB during a single binding encounter. The weaker DNA binding affinity of LIG1 causes significant abortive ligation that is sensitive to molecular crowding and DNA terminal structure. These results provide new insights into mechanisms of alternative nonhomologous EJ.
Collapse
Affiliation(s)
- Justin R McNally
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda M Ames
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne J Admiraal
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick J O’Brien
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Blair K, Tehseen M, Raducanu VS, Shahid T, Lancey C, Rashid F, Crehuet R, Hamdan SM, De Biasio A. Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing. Nat Commun 2022; 13:7833. [PMID: 36539424 PMCID: PMC9767926 DOI: 10.1038/s41467-022-35475-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
During lagging strand synthesis, DNA Ligase 1 (Lig1) cooperates with the sliding clamp PCNA to seal the nicks between Okazaki fragments generated by Pol δ and Flap endonuclease 1 (FEN1). We present several cryo-EM structures combined with functional assays, showing that human Lig1 recruits PCNA to nicked DNA using two PCNA-interacting motifs (PIPs) located at its disordered N-terminus (PIPN-term) and DNA binding domain (PIPDBD). Once Lig1 and PCNA assemble as two-stack rings encircling DNA, PIPN-term is released from PCNA and only PIPDBD is required for ligation to facilitate the substrate handoff from FEN1. Consistently, we observed that PCNA forms a defined complex with FEN1 and nicked DNA, and it recruits Lig1 to an unoccupied monomer creating a toolbelt that drives the transfer of DNA to Lig1. Collectively, our results provide a structural model on how PCNA regulates FEN1 and Lig1 during Okazaki fragments maturation.
Collapse
Affiliation(s)
- Kerry Blair
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Muhammad Tehseen
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Taha Shahid
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK
| | - Fahad Rashid
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Ramon Crehuet
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC) C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Samir M Hamdan
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester, LE1 7HB, UK.
- Bioscience Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
12
|
Biechele-Speziale DJ, Sutton TB, Delaney S. Obstacles and opportunities for base excision repair in chromatin. DNA Repair (Amst) 2022; 116:103345. [PMID: 35689883 PMCID: PMC9253077 DOI: 10.1016/j.dnarep.2022.103345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/01/2023]
Abstract
Most eukaryotic DNA is packaged into chromatin, which is made up of tandemly repeating nucleosomes. This packaging of DNA poses a significant barrier to the various enzymes that must act on DNA, including DNA damage response enzymes that interact intimately with DNA to prevent mutations and cell death. To regulate access to certain DNA regions, chromatin remodeling, variant histone exchange, and histone post-translational modifications have been shown to assist several DNA repair pathways including nucleotide excision repair, single strand break repair, and double strand break repair. While these chromatin-level responses have been directly linked to various DNA repair pathways, how they modulate the base excision repair (BER) pathway remains elusive. This review highlights recent findings that demonstrate how BER is regulated by the packaging of DNA into nucleosome core particles (NCPs) and higher orders of chromatin structures. We also summarize the available data that indicate BER may be enabled by chromatin modifications and remodeling.
Collapse
Affiliation(s)
| | | | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Li X, Jin J, Xu W, Wang M, Liu L. Abortive ligation intermediate blocks seamless repair of double-stranded breaks. Int J Biol Macromol 2022; 209:1498-1503. [PMID: 35469952 DOI: 10.1016/j.ijbiomac.2022.04.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Because indel results in frame-shift mutations, seamless repair of double-stranded break (DSB)s plays a pivotal role in synthetic biology, molecular biology, and genome integrity. However, DSB repair is not well documented. T4 DNA ligase (T4lig) served to ligate intra-molecularly a zero bp break-apart DSB linear plasmid DNA pET22b(28a)-xylanase. An ATP T4lig ligation reaction joined one single-stranded break (SSB) into a phosphodiester-bond, whereas the opposite SSB into an abortive ligation intermediate blocking the DSB sequential repair. The intermediate proved to be fluorescent Cy5-AMP-SSB by a T4lig ligation reaction in the aid of Alexa Fluor 647 ATP having Cy5-AMP fluorescence. The fluorescent Cy5-AMP-SSB was de-adenylated into SSB by an ATP-free T4lig or Mg2+-free T4ligL159L reaction. The de-adenylated SSB was re-joined into another phosphodiester-bond by a sequential ATP T4lig re-ligation reaction. Thereby, DSB repair proceeds an abortive ligation, a reverse de-adenylation, and a sequential re-ligation reaction. The result has a potential usage in synthetic biology, molecular biology, and cancer-curing.
Collapse
Affiliation(s)
- Xuegang Li
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiacheng Jin
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Xu
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingdao Wang
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- The Life Science College, Henan Agricultural University, Zhengzhou 450002, China; The Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
14
|
Jurkiw TJ, Tumbale PP, Schellenberg MJ, Cunningham-Rundles C, Williams RS, O’Brien PJ. LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency. Nucleic Acids Res 2021; 49:1619-1630. [PMID: 33444456 PMCID: PMC7897520 DOI: 10.1093/nar/gkaa1297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 11/14/2022] Open
Abstract
Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.
Collapse
Affiliation(s)
- Thomas J Jurkiw
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Percy P Tumbale
- Structural Cell Biology group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Matthew J Schellenberg
- Structural Cell Biology group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - R Scott Williams
- Structural Cell Biology group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Patrick J O’Brien
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. J Biol Chem 2021; 296:100427. [PMID: 33600799 PMCID: PMC8024709 DOI: 10.1016/j.jbc.2021.100427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
DNA ligase I (LIG1) completes the base excision repair (BER) pathway at the last nick-sealing step after DNA polymerase (pol) β gap-filling DNA synthesis. However, the mechanism by which LIG1 fidelity mediates the faithful substrate-product channeling and ligation of repair intermediates at the final steps of the BER pathway remains unclear. We previously reported that pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion confounds LIG1, leading to the formation of ligation failure products with a 5'-adenylate block. Here, using reconstituted BER assays in vitro, we report the mutagenic ligation of pol β 8-oxo-2'-deoxyribonucleoside 5'-triphosphate insertion products and an inefficient ligation of pol β Watson-Crick-like dG:T mismatch insertion by the LIG1 mutant with a perturbed fidelity (E346A/E592A). Moreover, our results reveal that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3'-8-oxodG or mismatches is governed by mutations at both E346 and E592 residues. Finally, we found that aprataxin and flap endonuclease 1, as compensatory DNA-end processing enzymes, can remove the 5'-adenylate block from the abortive ligation products harboring 3'-8-oxodG or the 12 possible noncanonical base pairs. These findings contribute to the understanding of the role of LIG1 as an important determinant in faithful BER and how a multiprotein complex (LIG1, pol β, aprataxin, and flap endonuclease 1) can coordinate to prevent the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.
Collapse
|
16
|
Tumbale PP, Jurkiw TJ, Schellenberg MJ, Riccio AA, O'Brien PJ, Williams RS. Two-tiered enforcement of high-fidelity DNA ligation. Nat Commun 2019; 10:5431. [PMID: 31780661 PMCID: PMC6882888 DOI: 10.1038/s41467-019-13478-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.
Collapse
Affiliation(s)
- Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Thomas J Jurkiw
- Biological Chemistry, University of Michigan, 1150 W Medical Center Drive Ann Arbor, Ann Arbor, MI, 48109, USA
| | - Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Amanda A Riccio
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Patrick J O'Brien
- Biological Chemistry, University of Michigan, 1150 W Medical Center Drive Ann Arbor, Ann Arbor, MI, 48109, USA.
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
17
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
18
|
Liddiard K, Ruis B, Kan Y, Cleal K, Ashelford KE, Hendrickson EA, Baird DM. DNA Ligase 1 is an essential mediator of sister chromatid telomere fusions in G2 cell cycle phase. Nucleic Acids Res 2019; 47:2402-2424. [PMID: 30590694 PMCID: PMC6411840 DOI: 10.1093/nar/gky1279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Fusion of critically short or damaged telomeres is associated with the genomic rearrangements that support malignant transformation. We have demonstrated the fundamental contribution of DNA ligase 4-dependent classical non-homologous end-joining to long-range inter-chromosomal telomere fusions. In contrast, localized genomic recombinations initiated by sister chromatid fusion are predominantly mediated by alternative non-homologous end-joining activity that may employ either DNA ligase 3 or DNA ligase 1. In this study, we sought to discriminate the relative involvement of these ligases in sister chromatid telomere fusion through a precise genetic dissociation of functional activity. We have resolved an essential and non-redundant role for DNA ligase 1 in the fusion of sister chromatids bearing targeted double strand DNA breaks that is entirely uncoupled from its requisite engagement in DNA replication. Importantly, this fusogenic repair occurs in cells fully proficient for non-homologous end-joining and is not compensated by DNA ligases 3 or 4. The dual functions of DNA ligase 1 in replication and non-homologous end-joining uniquely position and capacitate this ligase for DNA repair at stalled replication forks, facilitating mitotic progression.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Kevin E Ashelford
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
19
|
Maffucci P, Chavez J, Jurkiw TJ, O’Brien PJ, Abbott JK, Reynolds PR, Worth A, Notarangelo LD, Felgentreff K, Cortes P, Boisson B, Radigan L, Cobat A, Dinakar C, Ehlayel M, Ben-Omran T, Gelfand EW, Casanova JL, Cunningham-Rundles C. Biallelic mutations in DNA ligase 1 underlie a spectrum of immune deficiencies. J Clin Invest 2018; 128:5489-5504. [PMID: 30395541 PMCID: PMC6264644 DOI: 10.1172/jci99629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
We report the molecular, cellular, and clinical features of 5 patients from 3 kindreds with biallelic mutations in the autosomal LIG1 gene encoding DNA ligase 1. The patients exhibited hypogammaglobulinemia, lymphopenia, increased proportions of circulating γδT cells, and erythrocyte macrocytosis. Clinical severity ranged from a mild antibody deficiency to a combined immunodeficiency requiring hematopoietic stem cell transplantation. Using engineered LIG1-deficient cell lines, we demonstrated chemical and radiation defects associated with the mutant alleles, which variably impaired the DNA repair pathway. We further showed that these LIG1 mutant alleles are amorphic or hypomorphic, and exhibited variably decreased enzymatic activities, which lead to premature release of unligated adenylated DNA. The variability of the LIG1 genotypes in the patients was consistent with that of their immunological and clinical phenotypes. These data suggest that different forms of autosomal recessive, partial DNA ligase 1 deficiency underlie an immunodeficiency of variable severity.
Collapse
Affiliation(s)
- Patrick Maffucci
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jose Chavez
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Thomas J. Jurkiw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick J. O’Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jordan K. Abbott
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Paul R. Reynolds
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Austen Worth
- Department of Pediatric Medicine, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Science, CUNY School of Medicine, City College of New York, New York, New York, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
| | - Lin Radigan
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Aurélie Cobat
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Chitra Dinakar
- Allergy, Asthma & Immunodeficiency, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Mohammad Ehlayel
- Section of Pediatric Allergy-Immunology, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Clinical and Metabolic Genetics, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Erwin W. Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis. Nat Commun 2018; 9:2642. [PMID: 29980672 PMCID: PMC6035275 DOI: 10.1038/s41467-018-05024-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/16/2018] [Indexed: 11/26/2022] Open
Abstract
DNA ligase IV (LigIV) performs the final DNA nick-sealing step of classical nonhomologous end-joining, which is critical for immunoglobulin gene maturation and efficient repair of genotoxic DNA double-strand breaks. Hypomorphic LigIV mutations cause extreme radiation sensitivity and immunodeficiency in humans. To better understand the unique features of LigIV function, here we report the crystal structure of the catalytic core of human LigIV in complex with a nicked nucleic acid substrate in two distinct states—an open lysyl-AMP intermediate, and a closed DNA–adenylate form. Results from structural and mutagenesis experiments unveil a dynamic LigIV DNA encirclement mechanism characterized by extensive interdomain interactions and active site phosphoanhydride coordination, all of which are required for efficient DNA nick sealing. These studies provide a scaffold for defining impacts of LigIV catalytic core mutations and deficiencies in human LIG4 syndrome. DNA Ligase IV (LigIV) catalyzes nick sealing of DNA double-strand break substrates during non-homologous end-joining. Here the authors present the crystal structures of two human LigIV DNA-bound catalytic states, which provide insights into its catalytic mechanism and the molecular basis of LIG4 syndrome causing disease mutations.
Collapse
|
21
|
McNally JR, O'Brien PJ. Kinetic analyses of single-stranded break repair by human DNA ligase III isoforms reveal biochemical differences from DNA ligase I. J Biol Chem 2017; 292:15870-15879. [PMID: 28751376 DOI: 10.1074/jbc.m117.804625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Humans have three genes encoding DNA ligases with conserved structural features and activities, but they also have notable differences. The LIG3 gene encodes a ubiquitous isoform in all tissues (LIG3α) and a germ line-specific splicing isoform (LIG3β) that differs in the C-terminal domain. Both isoforms are found in the nucleus and the mitochondria. Here, we determined the kinetics and thermodynamics of single-stranded break ligation by LIG3α and LIG3β and compared this framework to that of LIG1, the nuclear replicative ligase. The kinetic parameters of the LIG3 isoforms are nearly identical under all tested conditions, indicating that the BRCA1 C terminal (BRCT) domain specific to LIG3α does not alter ligation kinetics. Although LIG3 is only 22% identical to LIG1 across their conserved domains, the two enzymes had very similar maximal ligation rates. Comparison of the rate and equilibrium constants for LIG3 and LIG1 nevertheless revealed important differences. The LIG3 isoforms were seven times more efficient than LIG1 at ligating nicked DNA under optimal conditions, mainly because of their lower Km value for the DNA substrate. This could explain why LIG3 is less prone to abortive ligation than LIG1. Surprisingly, the affinity of LIG3 for Mg2+ was ten times weaker than that of LIG1, suggesting that Mg2+ availability regulates DNA ligation in vivo, because Mg2+ levels are higher in the mitochondria than in the nucleus. The biochemical differences between the LIG3 isoforms and LIG1 identified here will guide the understanding of both unique and overlapping biological roles of these critical enzymes.
Collapse
Affiliation(s)
- Justin R McNally
- From the Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Patrick J O'Brien
- From the Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
22
|
Bauer RJ, Jurkiw TJ, Evans TC, Lohman GJS. Rapid Time Scale Analysis of T4 DNA Ligase-DNA Binding. Biochemistry 2017; 56:1117-1129. [PMID: 28165732 DOI: 10.1021/acs.biochem.6b01261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA ligases, essential to both in vivo genome integrity and in vitro molecular biology, catalyze phosphodiester bond formation between adjacent 3'-OH and 5'-phosphorylated termini in dsDNA. This reaction requires enzyme self-adenylylation, using ATP or NAD+ as a cofactor, and AMP release concomitant with phosphodiester bond formation. In this study, we present the first fast time scale binding kinetics of T4 DNA ligase to both nicked substrate DNA (nDNA) and product-equivalent non-nicked dsDNA, as well as binding and release kinetics of AMP. The described assays utilized a fluorescein-dT labeled DNA substrate as a reporter for ligase·DNA interactions via stopped-flow fluorescence spectroscopy. The analysis revealed that binding to nDNA by the active adenylylated ligase occurs in two steps, an initial rapid association equilibrium followed by a transition to a second bound state prior to catalysis. Furthermore, the ligase binds and dissociates from nicked and nonsubstrate dsDNA rapidly with initial association affinities on the order of 100 nM regardless of enzyme adenylylation state. DNA binding occurs through a two-step mechanism in all cases, confirming prior proposals of transient binding followed by a transition to a productive ligase·nDNA (Lig·nDNA) conformation but suggesting that weaker nonproductive "closed" complexes are formed as well. These observations demonstrate the mechanistic underpinnings of competitive inhibition by rapid binding of nonsubstrate DNA, and of substrate inhibition by blocking of the self-adenylylation reaction through nick binding by deadenylylated ligase. Our analysis further reveals that product release is not the rate-determining step in turnover.
Collapse
Affiliation(s)
- Robert J Bauer
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| | - Thomas J Jurkiw
- University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Thomas C Evans
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| | - Gregory J S Lohman
- DNA Enzymes Division, New England BioLabs, Inc. , Ipswich, Massachusetts 01938-2723, United States
| |
Collapse
|
23
|
Kwiatkowski D, Czarny P, Toma M, Korycinska A, Sowinska K, Galecki P, Bachurska A, Bielecka-Kowalska A, Szemraj J, Maes M, Sliwinski T. Association between Single-Nucleotide Polymorphisms of the hOGG1,NEIL1,APEX1, FEN1,LIG1, and LIG3 Genes and Alzheimer's Disease Risk. Neuropsychobiology 2016; 73:98-107. [PMID: 27010693 DOI: 10.1159/000444643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/11/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND One of the factors that contribute to Alzheimer's disease (AD) is the DNA damage caused by oxidative stress and inflammation that occurs in nerve cells. It has been suggested that the risk of AD may be associated with an age-dependent reduction of the DNA repair efficiency. Base excision repair (BER) is, among other things, a main repair system of oxidative DNA damage. One of the reasons for the reduced efficiency of this system may be single-nucleotide polymorphisms (SNP) of the genes encoding its proteins. METHODS DNA for genotyping was obtained from the peripheral blood of 281 patients and 150 controls. In the present study, we evaluated the impact of 8 polymorphisms of 6 BER genes on the AD risk. We analyzed the following SNP: c.-468T>G and c.444T>G of APEX1, c.*50C>T and c.*83A>C of LIG3, c.977C>G of OGG1, c.*283C>G of NEIL1, c.-441G>A of FEN1, and c.-7C>T of LIG1. RESULTS We showed that the LIG1 c.-7C>T A/A and LIG3 c.*83A>C A/C variants increased, while the APEX1 c.444T>G G/T, LIG1 c.-7C>T G/, LIG3 c.*83A>C C/C variants reduced, the AD risk. We also evaluated the relation between gene-gene interactions and the AD risk. We showed that combinations of certain BER gene variants such as c.977C>G×c.*50C>T CC/CT, c.444T>G×c.*50C>T GG/CT, c.-468T>G×c.*50C>T GG/CT, c.-441G>Ac.*50C>T×c.*50C>T GG/CT, c.*83A>C× c.*50C>T CT/AC, and c.-7C>T×c.*50C>T CT/GG can substantially positively modulate the risk of AD. CONCLUSIONS In conclusion, we revealed that polymorphisms of BER genes may have a significant effect on the AD risk, and the presence of polymorphic variants may be an important marker for AD.
Collapse
|
24
|
The Inhibitory Effect of Non-Substrate and Substrate DNA on the Ligation and Self-Adenylylation Reactions Catalyzed by T4 DNA Ligase. PLoS One 2016; 11:e0150802. [PMID: 26954034 PMCID: PMC4782999 DOI: 10.1371/journal.pone.0150802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/19/2016] [Indexed: 02/02/2023] Open
Abstract
DNA ligases are essential both to in vivo replication, repair and recombination processes, and in vitro molecular biology protocols. Prior characterization of DNA ligases through gel shift assays has shown the presence of a nick site to be essential for tight binding between the enzyme and its dsDNA substrate, with no interaction evident on dsDNA lacking a nick. In the current study, we observed a significant substrate inhibition effect, as well as the inhibition of both the self-adenylylation and nick-sealing steps of T4 DNA ligase by non-nicked, non-substrate dsDNA. Inhibition by non-substrate DNA was dependent only on the total DNA concentration rather than the structure; with 1 μg/mL of 40-mers, 75-mers, or circular plasmid DNA all inhibiting ligation equally. A >15-fold reduction in T4 DNA ligase self-adenylylation rate when in the presence of high non-nicked dsDNA concentrations was observed. Finally, EMSAs were utilized to demonstrate that non-substrate dsDNA can compete with nicked dsDNA substrates for enzyme binding. Based upon these data, we hypothesize the inhibition of T4 DNA ligase by non-nicked dsDNA is direct evidence for a two-step nick-binding mechanism, with an initial, nick-independent, transient dsDNA-binding event preceding a transition to a stable binding complex in the presence of a nick site.
Collapse
|
25
|
Chauleau M, Shuman S. Kinetic mechanism and fidelity of nick sealing by Escherichia coli NAD+-dependent DNA ligase (LigA). Nucleic Acids Res 2016; 44:2298-309. [PMID: 26857547 PMCID: PMC4797296 DOI: 10.1093/nar/gkw049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/18/2016] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA's potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions.
Collapse
Affiliation(s)
- Mathieu Chauleau
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
26
|
Schmidt MA, Goodwin TJ, Pelligra R. Incorporation of omics analyses into artificial gravity research for space exploration countermeasure development. Metabolomics 2016; 12:36. [PMID: 26834514 PMCID: PMC4718941 DOI: 10.1007/s11306-015-0942-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
The next major steps in human spaceflight include flyby, orbital, and landing missions to the Moon, Mars, and near earth asteroids. The first crewed deep space mission is expected to launch in 2022, which affords less than 7 years to address the complex question of whether and how to apply artificial gravity to counter the effects of prolonged weightlessness. Various phenotypic changes are demonstrated during artificial gravity experiments. However, the molecular dynamics (genotype and molecular phenotypes) that underlie these morphological, physiological, and behavioral phenotypes are far more complex than previously understood. Thus, targeted molecular assessment of subjects under various G conditions can be expected to miss important patterns of molecular variance that inform the more general phenotypes typically being measured. Use of omics methods can help detect changes across broad molecular networks, as various G-loading paradigms are applied. This will be useful in detecting off-target, or unanticipated effects of the different gravity paradigms applied to humans or animals. Insights gained from these approaches may eventually be used to inform countermeasure development or refine the deployment of existing countermeasures. This convergence of the omics and artificial gravity research communities may be critical if we are to develop the proper artificial gravity solutions under the severely compressed timelines currently established. Thus, the omics community may offer a unique ability to accelerate discovery, provide new insights, and benefit deep space missions in ways that have not been previously considered.
Collapse
Affiliation(s)
- Michael A. Schmidt
- />Sovaris Aerospace, LLC, Advanced Pattern Analysis & Countermeasures Group, Research Innovation Center, Colorado State University, 3185 Rampart Road, Fort Collins, CO 80521 USA
| | - Thomas J. Goodwin
- />Disease Modeling and Tissue Analogues Laboratory, Biomedical Research and Environmental Sciences Division, NASA Lyndon B. Johnson Space Center, Houston, TX 77058 USA
| | - Ralph Pelligra
- />Chief Medical Officer, NASA Ames Research Center, Moffett Field, CA USA
| |
Collapse
|
27
|
Kukshal V, Kim IK, Hura GL, Tomkinson AE, Tainer JA, Ellenberger T. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining. Nucleic Acids Res 2015; 43:7021-31. [PMID: 26130724 PMCID: PMC4538836 DOI: 10.1093/nar/gkv652] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022] Open
Abstract
Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.
Collapse
Affiliation(s)
- Vandna Kukshal
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - In-Kwon Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gregory L Hura
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alan E Tomkinson
- Department of Internal Medicine and University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - John A Tainer
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
28
|
Schellenberg MJ, Tumbale PP, Williams RS. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:157-165. [PMID: 25637650 DOI: 10.1016/j.pbiomolbio.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/12/2015] [Accepted: 01/18/2015] [Indexed: 11/30/2022]
Abstract
Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Percy P Tumbale
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
29
|
Schermerhorn KM, Delaney S. A chemical and kinetic perspective on base excision repair of DNA. Acc Chem Res 2014; 47:1238-46. [PMID: 24646203 PMCID: PMC3993943 DOI: 10.1021/ar400275a] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our cellular genome is continuously exposed to a wide spectrum of exogenous and endogenous DNA damaging agents. These agents can lead to formation of an extensive array of DNA lesions including single- and double-stranded breaks, inter- and intrastrand cross-links, abasic sites, and modification of DNA nucleobases. Persistence of these DNA lesions can be both mutagenic and cytotoxic, and can cause altered gene expression and cellular apoptosis leading to aging, cancer, and various neurological disorders. To combat the deleterious effects of DNA lesions, cells have a variety of DNA repair pathways responsible for restoring damaged DNA to its canonical form. Here we examine one of those repair pathways, the base excision repair (BER) pathway, a highly regulated network of enzymes responsible for repair of modified nucleobase and abasic site lesions. The enzymes required to reconstitute BER in vitro have been identified, and the repair event can be considered to occur in two parts: (1) excision of the modified nucleobase by a DNA glycosylase, and (2) filling the resulting "hole" with an undamaged nucleobase by a series of downstream enzymes. DNA glycosylases, which initiate a BER event, recognize and remove specific modified nucleobases and yield an abasic site as the product. The abasic site, a highly reactive BER intermediate, is further processed by AP endonuclease 1 (APE1), which cleaves the DNA backbone 5' to the abasic site, generating a nick in the DNA backbone. After action of APE1, BER can follow one of two subpathways, the short-patch (SP) or long-patch (LP) version, which differ based on the number of nucleotides a polymerase incorporates at the nick site. DNA ligase is responsible for sealing the nick in the backbone and regenerating undamaged duplex. Not surprisingly, and consistent with the idea that BER maintains genetic stability, deficiency and/or inactivity of BER enzymes can be detrimental and result in cancer. Intriguingly, this DNA repair pathway has also been implicated in causing genetic instability by contributing to the trinucleotide repeat expansion associated with several neurological disorders. Within this Account, we outline the chemistry of the human BER pathway with a mechanistic focus on the DNA glycosylases that initiate the repair event. Furthermore, we describe kinetic studies of many BER enzymes as a means to understand the complex coordination that occurs during this highly regulated event. Finally, we examine the pitfalls associated with deficiency in BER activity, as well as instances when BER goes awry.
Collapse
Affiliation(s)
- Kelly M. Schermerhorn
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
30
|
Desai KK, Cheng CL, Bingman CA, Phillips GN, Raines RT. A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Res 2014; 42:3931-42. [PMID: 24435797 PMCID: PMC3973293 DOI: 10.1093/nar/gkt1375] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Archease is a 16-kDa protein that is conserved in all three domains of life. In diverse bacteria and archaea, the genes encoding Archease and the tRNA ligase RtcB are localized into an operon. Here we provide a rationale for this operon organization by showing that Archease and RtcB from Pyrococcus horikoshii function in tandem, with Archease altering the catalytic properties of the RNA ligase. RtcB catalyzes the GTP and Mn(II)-dependent joining of either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. We find that catalytic concentrations of Archease are sufficient to activate RtcB, and that Archease accelerates both the RNA 3'-P guanylylation and ligation steps. In addition, we show that Archease can alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. Moreover, RtcB variants that have inactivating substitutions in the guanine-binding pocket can be rescued by the addition of Archease. We also present a 1.4 Å-resolution crystal structure of P. horikoshii Archease that reveals a metal-binding site consisting of conserved carboxylates located at the protein tip. Substitution of the Archease metal-binding residues drastically reduced Archease-dependent activation of RtcB. Thus, evolution has sought to co-express archease and rtcB by creating a tRNA splicing operon.
Collapse
Affiliation(s)
- Kevin K Desai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA, Department of Biochemistry and Cell Biology and Department of Chemistry, Rice University, Houston, TX 77005, USA and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
31
|
Chauleau M, Shuman S. Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3'-OH base mispairs and damaged base lesions. RNA (NEW YORK, N.Y.) 2013; 19:1840-7. [PMID: 24158792 PMCID: PMC3884662 DOI: 10.1261/rna.041731.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
T4 RNA ligase 2 (Rnl2) repairs 3'-OH/5'-PO4 nicks in duplex nucleic acids in which the broken 3'-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2-(lysyl-Nζ)-AMP intermediate (step 1); transfer of AMP to the 5'-PO4 of the nick to form an activated AppN- intermediate (step 2); and attack by the nick 3'-OH on the AppN- strand to form a 3'-5' phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2-AMP. For substrates with correctly base-paired 3'-OH nick termini, kstep2 was fast (9.5 to 17.9 sec(-1)) and similar in magnitude to kstep3 (7.9 to 32 sec(-1)). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3'-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3'-OH elicited severe decrements in the rate of 5'-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3'-terminal ribonucleoside at the nick for optimal 5'-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage.
Collapse
|
32
|
Bilotti K, Schermerhorn K, Delaney S. 105 Activity of DNA ligase on substrates containing non-canonical structures. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Samai P, Shuman S. Kinetic analysis of DNA strand joining by Chlorella virus DNA ligase and the role of nucleotidyltransferase motif VI in ligase adenylylation. J Biol Chem 2012; 287:28609-18. [PMID: 22745124 DOI: 10.1074/jbc.m112.380428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3'-OH and 5'-PO(4) termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PP(i) and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5'-phosphate to form DNA-adenylate; 3) the 3'-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg(2+). Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (k(step3) = 25 s(-1)) exceeds that for DNA adenylylation (k(step2) = 2.4 s(-1)) and that Mg(2+) binds with similar affinity during step 2 (K(d) = 0.77 mM) and step 3 (K(d) = 0.87 mM). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5'-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5'-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step.
Collapse
Affiliation(s)
- Poulami Samai
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
34
|
Lohman GJS, Chen L, Evans TC. Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase. J Biol Chem 2011; 286:44187-44196. [PMID: 22027837 PMCID: PMC3243518 DOI: 10.1074/jbc.m111.284992] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/14/2011] [Indexed: 01/24/2023] Open
Abstract
T4 DNA ligase catalyzes phosphodiester bond formation between juxtaposed 5'-phosphate and 3'-hydroxyl termini in duplex DNA in three steps: 1) enzyme-adenylylate formation by reaction with ATP; 2) adenylyl transfer to a 5'-phosphorylated polynucleotide to generate adenylylated DNA; and 3) phosphodiester bond formation with release of AMP. This investigation used synthetic, nicked DNA substrates possessing either a 5'-phosphate or a 5'-adenylyl phosphate. Steady state experiments with a nicked substrate containing juxtaposed dC and 5'-phosphorylated dT deoxynucleotides (substrate 1) yielded kcat and kcat/Km values of 0.4±0.1 s(-1) and 150±50 μm(-1) s(-1), respectively. Under identical reaction conditions, turnover of an adenylylated version of this substrate (substrate 1A) yielded kcat and kcat/Km values of 0.64±0.08 s(-1) and 240±40 μm(-1) s(-1). Single turnover experiments utilizing substrate 1 gave fits for the forward rates of Step 2 (k2) and Step 3 (k3) of 5.3 and 38 s(-1), respectively, with the slowest step ∼10-fold faster than the rate of turnover seen under steady state conditions. Single turnover experiments with substrate 1A produced a Step 3 forward rate constant of 4.3 s(-1), also faster than the turnover rate of 1A. Enzyme self-adenylylation was confirmed to also occur on a fast time scale (∼6 s(-1)), indicating that the rate-limiting step for T4 DNA ligase nick sealing is not a chemical step but rather is most likely product release. Pre-steady state reactions displayed a clear burst phase, consistent with this conclusion.
Collapse
Affiliation(s)
| | - Lixin Chen
- New England Biolabs Inc., Ipswich, Massachusetts 01938-2723
| | - Thomas C Evans
- New England Biolabs Inc., Ipswich, Massachusetts 01938-2723.
| |
Collapse
|