1
|
Horstmeier HJ, Bork S, Nagel MF, Keller W, Sproß J, Diepold N, Ruppel M, Kottke T, Niemann HH. The NADH-dependent flavin reductase ThdF follows an ordered sequential mechanism though crystal structures reveal two FAD molecules in the active site. J Biol Chem 2024; 301:108128. [PMID: 39725031 PMCID: PMC11795597 DOI: 10.1016/j.jbc.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation, and halogenation. The monooxygenase components require a separate flavin reductase which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase. Thal exhibits some limitations in terms of halogenation efficiency, also caused by unproductive enzyme-substrate complexes with reduced flavin adenine dinucleotide (FAD). Since the reductase components have an important regulatory function for the activity and efficiency of the monooxygenase by controlling the supply of reduced flavin, here, we studied the so far uncharacterized flavin reductase ThdF from the same gene cluster in S. albogriseolus, which potentially cooperates with Thal. A crystal structure of ThdF in complex with both substrates, FAD and NADH, revealed their orientation for hydride transfer. We obtained two further ThdF structures with two FAD molecules bound to the active site, suggesting a ping-pong bi-bi mechanism. In contrast, steady-state enzyme kinetics clearly showed that ThdF catalyzes flavin reduction via an ordered sequential mechanism, with FAD being bound first and FADH2 released last. Compared to related flavin reductases, ThdF has a low kcat and low KM value. The inhibition of ThdF by NAD+ might limit Thal's halogenation activity when the cellular NADH level is low. These results provide first insights into how the efficiency of Thal could be controlled by flavin reduction at the reductase ThdF.
Collapse
Affiliation(s)
- Hendrik J Horstmeier
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Simon Bork
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Marius F Nagel
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Willy Keller
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Jens Sproß
- Industrial Organic Chemistry and Biotechnology - Mass Spectrometry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Niklas Diepold
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Marie Ruppel
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Yang K, Zhang Q, Zhao W, Hu S, Lv C, Huang J, Mei J, Mei L. Advances in 4-Hydroxyphenylacetate-3-hydroxylase Monooxygenase. Molecules 2023; 28:6699. [PMID: 37764475 PMCID: PMC10537072 DOI: 10.3390/molecules28186699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Catechols have important applications in the pharmaceutical, food, cosmetic, and functional material industries. 4-hydroxyphenylacetate-3-hydroxylase (4HPA3H), a two-component enzyme system comprising HpaB (monooxygenase) and HpaC (FAD oxidoreductase), demonstrates significant potential for catechol production because it can be easily expressed, is highly active, and exhibits ortho-hydroxylation activity toward a broad spectrum of phenol substrates. HpaB determines the ortho-hydroxylation efficiency and substrate spectrum of the enzyme; therefore, studying its structure-activity relationship, improving its properties, and developing a robust HpaB-conducting system are of significance and value; indeed, considerable efforts have been made in these areas in recent decades. Here, we review the classification, molecular structure, catalytic mechanism, primary efforts in protein engineering, and industrial applications of HpaB in catechol synthesis. Current trends in the further investigation of HpaB are also discussed.
Collapse
Affiliation(s)
- Kai Yang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Qianchao Zhang
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Changjiang Lv
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Department of Chemical and Biological Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaqi Mei
- Hangzhou Huadong Medicine Group Co., Ltd., Hangzhou 310011, China
| | - Lehe Mei
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| |
Collapse
|
3
|
The Isoenzymic Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453-An Episodic History and Still Mysterious after 60 Years. Microorganisms 2021; 9:microorganisms9122593. [PMID: 34946195 PMCID: PMC8706424 DOI: 10.3390/microorganisms9122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the relevant catabolic pathway in Pseudomonas putida ATCC 17453, the equivalent recorded history of the isoenzymic diketocamphane monooxygenases, the enzymes that facilitate the initial ring cleavage of the bicyclic terpene, is both less extensive and more enigmatic. First referred to as ‘ketolactonase—an enzyme for cyclic lactonization’—the enzyme now classified as 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) holds a special place in the history of oxygen-dependent biochemistry, being the first biocatalyst confirmed to undertake a biooxygenation reaction equivalent to the peracid-catalysed Baeyer–Villiger chemical oxidation first reported in the late 19th century. However, following that auspicious beginning, the biochemistry of EC 1.14.14.108, and its isoenzymic partner 3,6-diketocamphane 1,6-monooxygenase (EC 1.14.14.155) was dogged for many years by the mistaken belief that the enzymes were true flavoproteins that function with a tightly-bound flavin cofactor in the active site. This misconception led to a number of erroneous interpretations of relevant experimental data. It is only in the last decade, initially as the result of pure serendipity, that these enzymes have been confirmed to be members of a relatively recently discovered class of oxygen-dependent enzymes, the flavin-dependent two-component monooxygenases. This has promoted a renaissance of interest in the enzymes, resulting in programmes of research that have significantly expanded current knowledge of both their mode of action and regulation in camphor-grown P. putida ATCC 17453. However, some features of the biochemistry of the isoenzymic diketocamphane monooxygenases remain currently unexplained. It is the episodic history of these enzymes and some of what remains unresolved that are the principal subjects of this review.
Collapse
|
4
|
De Silva AJ, Sehgal R, Kim J, Bellizzi JJ. Steady-state kinetic analysis of halogenase-supporting flavin reductases BorF and AbeF reveals different kinetic mechanisms. Arch Biochem Biophys 2021; 704:108874. [PMID: 33862020 DOI: 10.1016/j.abb.2021.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
The short-chain flavin reductases BorF and AbeF reduce FAD to FADH2, which is then used by flavin-dependent halogenases (BorH and AbeH respectively) to regioselectively chlorinate tryptophan in the biosynthesis of indolotryptoline natural products. Recombinant AbeF and BorF were overexpressed and purified as homodimers from E. coli, and copurified with substoichiometric amounts of FAD, which could be easily removed. AbeF and BorF can reduce FAD, FMN, and riboflavin in vitro and are selective for NADH over NADPH. Initial velocity studies in the presence and absence of inhibitors showed that BorF proceeds by a sequential ordered kinetic mechanism in which FAD binds first, while AbeF follows a random-ordered sequence of substrate binding. Fluorescence quenching experiments verified that NADH does not bind BorF in the absence of FAD, and that both AbeF and BorF bind FAD with higher affinity than FADH2. pH-rate profiles of BorF and AbeF were bell-shaped with maximum kcat at pH 7.5, and site-directed mutagenesis of BorF implicated His160 and Arg38 as contributing to the catalytic activity and the pH dependence.
Collapse
Affiliation(s)
- Aravinda J De Silva
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Rippa Sehgal
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Jennifer Kim
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - John J Bellizzi
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA.
| |
Collapse
|
5
|
Willetts A. Characterised Flavin-Dependent Two-Component Monooxygenases from the CAM Plasmid of Pseudomonas putida ATCC 17453 (NCIMB 10007): ketolactonases by Another Name. Microorganisms 2018; 7:E1. [PMID: 30577535 PMCID: PMC6352141 DOI: 10.3390/microorganisms7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 11/17/2022] Open
Abstract
The CAM plasmid-coded isoenzymic diketocamphane monooxygenases induced in Pseudomonas putida ATCC 17453 (NCIMB 10007) by growth of the bacterium on the bicyclic monoterpene (rac)-camphor are notable both for their interesting history, and their strategic importance in chemoenzymatic syntheses. Originally named 'ketolactonase-an enzyme system for cyclic lactonization' because of its characterised mode of action, (+)-camphor-induced 2,5-diketocamphane 1,2-monooxygenase was the first example of a Baeyer-Villiger monooxygenase activity to be confirmed in vitro. Both this enzyme and the enantiocomplementary (-)-camphor-induced 3,6-diketocamphane 1,6-monooxygenase were mistakenly classified and studied as coenzyme-containing flavoproteins for nearly 40 years before being correctly recognised and reinvestigated as FMN-dependent two-component monooxygenases. As has subsequently become evident, both the nature and number of flavin reductases able to supply the requisite reduced flavin co-substrate for the monooxygenases changes progressively throughout the different phases of camphor-dependent growth. Highly purified preparations of the enantiocomplementary monooxygenases have been exploited successfully for undertaking both nucleophilic and electrophilic biooxidations generating various enantiopure lactones and sulfoxides of value as chiral synthons and auxiliaries, respectively. In this review the chequered history, current functional understanding, and scope and value as biocatalysts of the diketocamphane monooxygenases are discussed.
Collapse
Affiliation(s)
- Andrew Willetts
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK.
- Curnow Consultancies, Helston TR13 9PQ, UK.
| |
Collapse
|
6
|
Seviour TW, Hinks J. Bucking the current trend in bioelectrochemical systems: a case for bioelectroanalytics. Crit Rev Biotechnol 2017; 38:634-646. [DOI: 10.1080/07388551.2017.1380599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thomas William Seviour
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Heine T, Scholtissek A, Westphal AH, van Berkel WJH, Tischler D. N-terminus determines activity and specificity of styrene monooxygenase reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1770-1780. [PMID: 28888693 DOI: 10.1016/j.bbapap.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s-1, one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity.
Collapse
Affiliation(s)
- Thomas Heine
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Anika Scholtissek
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| |
Collapse
|
8
|
Metabolic response of Clostridium ljungdahlii to oxygen exposure. Appl Environ Microbiol 2015; 81:8379-91. [PMID: 26431975 DOI: 10.1128/aem.02491-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Clostridium ljungdahlii is an important synthesis gas-fermenting bacterium used in the biofuels industry, and a preliminary investigation showed that it has some tolerance to oxygen when cultured in rich mixotrophic medium. Batch cultures not only continue to grow and consume H2, CO, and fructose after 8% O2 exposure, but fermentation product analysis revealed an increase in ethanol concentration and decreased acetate concentration compared to non-oxygen-exposed cultures. In this study, the mechanisms for higher ethanol production and oxygen/reactive oxygen species (ROS) detoxification were identified using a combination of fermentation, transcriptome sequencing (RNA-seq) differential expression, and enzyme activity analyses. The results indicate that the higher ethanol and lower acetate concentrations were due to the carboxylic acid reductase activity of a more highly expressed predicted aldehyde oxidoreductase (CLJU_c24130) and that C. ljungdahlii's primary defense upon oxygen exposure is a predicted rubrerythrin (CLJU_c39340). The metabolic responses of higher ethanol production and oxygen/ROS detoxification were found to be linked by cofactor management and substrate and energy metabolism. This study contributes new insights into the physiology and metabolism of C. ljungdahlii and provides new genetic targets to generate C. ljungdahlii strains that produce more ethanol and are more tolerant to syngas contaminants.
Collapse
|
9
|
Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl Environ Microbiol 2013; 79:3282-93. [PMID: 23524667 DOI: 10.1128/aem.03958-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (-) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 μM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 μM; kcat = 283 s(-1)) in preference to flavin adenine dinucleotide (FAD) (Km = 19 μM; kcat = 128 s(-1)). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25-1 for 2,5-DKCMO-1 and camE25-2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates.
Collapse
|
10
|
Oturkar CC, Othman MA, Kulkarni M, Madamwar D, Gawai KR. Synergistic action of flavin containing NADH dependant azoreductase and cytochrome P450 monooxygenase in azoaromatic mineralization. RSC Adv 2013. [DOI: 10.1039/c2ra21389c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|