1
|
Cano-Argüelles AL, Oleaga A, González-Sánchez M, Vizcaíno-Marín R, Pérez-Sánchez R. Vaccinomics-driven selection and validation of protective salivary antigens from the argasid tick Ornithodoros moubata. Ticks Tick Borne Dis 2025; 16:102483. [PMID: 40306020 DOI: 10.1016/j.ttbdis.2025.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Ornithodoros moubata serves as primary vector of African swine fever and tick-borne human relapsing fever in Africa. Developing an effective vaccine targeting this argasid tick would significantly enhance disease control measures. To identify potential vaccine targets, the recently characterised sialome of O. moubata was analysed using a vaccinomics approach. This led to the identification of a set of salivary secreted proteins predicted to be antigenic and implicated in the regulation of blood-feeding and host immune defences. The objective of this study was to evaluate the protective potential of seven of these proteins, namely Complement inhibitor (OmCI), Cyclophilin (OmCPH), Hypothetical protein 275 (OmH275), Peroxiredoxin (OmPXR), Calreticulin (OmCLR), Neprilysin (OmNEP), and Superoxide dismutase (OmSOD). These candidates were produced as recombinant proteins, formulated with Montanide adjuvant, and administered individually to different groups of rabbits. Adult and nymphal-3 specimens of O. moubata and Ornithodoros erraticus (the Mediterranean vector of ASF and TBRF) were allowed to feed on the vaccinated rabbits, and the ticks' feeding performance, survival, and reproduction rates were assessed. OmH275, OmPXR, OmCPH, and OmCLR conferred 20 %-32 % protection against O. moubata and/or O. erraticus, whereas OmCI, OmNEP, and OmSOD afforded 2 %-17 % protection against one or both tick species. Consequently, OmH275, OmPXR, OmCPH, and OmCLR were deemed suitable candidates for inclusion in the development of anti-Ornithodoros cocktail vaccines, while OmCI, OmNEP, and OmSOD were considered less promising for tick vaccine development. These findings validate the vaccinomics pipeline, identifying four of seven candidates (57 %) as viable antigens for Ornithodoros tick vaccines.
Collapse
Affiliation(s)
- Ana Laura Cano-Argüelles
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - María González-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Rocío Vizcaíno-Marín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
2
|
Jia Z, Yu W, Li J, Zhang M, Zhan B, Yan L, Ming Z, Cheng Y, Tian X, Shao S, Huang J, Zhu X. Crystal structure of Trichinella spiralis calreticulin and the structural basis of its complement evasion mechanism involving C1q. Front Immunol 2024; 15:1404752. [PMID: 38690267 PMCID: PMC11059001 DOI: 10.3389/fimmu.2024.1404752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Helminths produce calreticulin (CRT) to immunomodulate the host immune system as a survival strategy. However, the structure of helminth-derived CRT and the structural basis of the immune evasion process remains unclarified. Previous study found that the tissue-dwelling helminth Trichinella spiralis produces calreticulin (TsCRT), which binds C1q to inhibit activation of the complement classical pathway. Here, we used x-ray crystallography to resolve the structure of truncated TsCRT (TsCRTΔ), the first structure of helminth-derived CRT. TsCRTΔ was observed to share the same binding region on C1q with IgG based on the structure and molecular docking, which explains the inhibitory effect of TsCRT on C1q-IgG-initiated classical complement activation. Based on the key residues in TsCRTΔ involved in the binding activity to C1q, a 24 amino acid peptide called PTsCRT was constructed that displayed strong C1q-binding activity and inhibited C1q-IgG-initiated classical complement activation. This study is the first to elucidate the structural basis of the role of TsCRT in immune evasion, providing an approach to develop helminth-derived bifunctional peptides as vaccine target to prevent parasite infections or as a therapeutic agent to treat complement-related autoimmune diseases.
Collapse
Affiliation(s)
- Zhihui Jia
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Yu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingmo Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Mingming Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Liming Yan
- Ministry of Education Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China
| | - Zhenhua Ming
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaolin Tian
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Shao
- Beijing institute of Clinical Medicine, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
4
|
Chambers JE, Zubkov N, Kubánková M, Nixon-Abell J, Mela I, Abreu S, Schwiening M, Lavarda G, López-Duarte I, Dickens JA, Torres T, Kaminski CF, Holt LJ, Avezov E, Huntington JA, George-Hyslop PS, Kuimova MK, Marciniak SJ. Z-α 1-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. SCIENCE ADVANCES 2022; 8:eabm2094. [PMID: 35394846 PMCID: PMC8993113 DOI: 10.1126/sciadv.abm2094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/16/2022] [Indexed: 05/06/2023]
Abstract
Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α1-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α1-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α1-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α1-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α1-antitrypsin-induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets.
Collapse
Affiliation(s)
- Joseph E. Chambers
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Nikita Zubkov
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Markéta Kubánková
- Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Susana Abreu
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Max Schwiening
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Giulia Lavarda
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ismael López-Duarte
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jennifer A. Dickens
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Tomás Torres
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA Nanociencia, Campus de Cantoblanco, Madrid 28049, Spain
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Liam J. Holt
- Institute for Systems Genetics, New York University Grossman School of Medicine, 435 E 30th St, New York, NY 10016, USA
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - James A. Huntington
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine (Neurology), Temerty Faculty of Medicine, University of Toronto, University Health Network, Toronto, ON M5T 0S8, Canada
- Taub Institute For Research on Alzheimer’s Disease and the Ageing Brain, Department of Neurology, Columbia University Irvine Medical Center, 630 West 1/68 Street, New York, NY 10032, USA
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, Wood Lane, London W12 0BZ, UK
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research (CIMR), Department of Medicine, University of Cambridge, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
- Royal Papworth Hospital, Cambridge CB2 0AY, UK
| |
Collapse
|
5
|
Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050866 DOI: 10.1007/978-3-030-67696-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.
Collapse
|
6
|
Mapping human calreticulin regions important for structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140710. [PMID: 34358706 DOI: 10.1016/j.bbapap.2021.140710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).
Collapse
|
7
|
Rivera JF, Baral AJ, Nadat F, Boyd G, Smyth R, Patel H, Burman EL, Alameer G, Boxall SA, Jackson BR, Baxter EJ, Laslo P, Green AR, Kent DG, Mullally A, Chen E. Zinc-dependent multimerization of mutant calreticulin is required for MPL binding and MPN pathogenesis. Blood Adv 2021; 5:1922-1932. [PMID: 33821991 PMCID: PMC8045488 DOI: 10.1182/bloodadvances.2020002402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/17/2021] [Indexed: 01/30/2023] Open
Abstract
Calreticulin (CALR) is mutated in the majority of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs). Mutant CALR (CALRdel52) exerts its effect by binding to the thrombopoietin receptor MPL to cause constitutive activation of JAK-STAT signaling. In this study, we performed an extensive mutagenesis screen of the CALR globular N-domain and revealed 2 motifs critical for CALRdel52 oncogenic activity: (1) the glycan-binding lectin motif and (2) the zinc-binding domain. Further analysis demonstrated that the zinc-binding domain was essential for formation of CALRdel52 multimers, which was a co-requisite for MPL binding. CALRdel52 variants incapable of binding zinc were unable to homomultimerize, form CALRdel52-MPL heteromeric complexes, or stimulate JAK-STAT signaling. Finally, treatment with zinc chelation disrupted CALRdel52-MPL complexes in hematopoietic cells in conjunction with preferential eradication of cells expressing CALRdel52 relative to cells expressing other MPN oncogenes. In addition, zinc chelators exhibited a therapeutic effect in preferentially impairing growth of CALRdel52-mutant erythroblasts relative to unmutated erythroblasts in primary cultures of MPN patients. Together, our data implicate zinc as an essential cofactor for CALRdel52 oncogenic activity by enabling CALRdel52 multimerization and interaction with MPL, and suggests that perturbation of intracellular zinc levels may represent a new approach to abrogate the oncogenic activity of CALRdel52 in the treatment of MPNs.
Collapse
Affiliation(s)
- Jeanne F Rivera
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
- Division of Haematology and Immunology, Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - April J Baral
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Fatima Nadat
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Grace Boyd
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Rachael Smyth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Hershna Patel
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - Emma L Burman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Ghadah Alameer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Sally A Boxall
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - Brian R Jackson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
| | - E Joanna Baxter
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Peter Laslo
- Division of Haematology and Immunology, Leeds Institute for Medical Research, St. James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome MRC Cambridge Stem Cell Institute and
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA; and
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Edwin Chen
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
8
|
Roles of Calreticulin in Protein Folding, Immunity, Calcium Signaling and Cell Transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:145-162. [PMID: 34050865 DOI: 10.1007/978-3-030-67696-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
Collapse
|
9
|
Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:13-25. [PMID: 34050860 DOI: 10.1007/978-3-030-67696-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calreticulin (Calr) is an endoplasmic reticulum (ER) chaperone involved in protein quality control, Ca2+ regulation and other cellular processes. The structure of Calr is unusual, reflecting different functions of the protein: a proline-rich β-hairpin arm and an acidic C-terminal tail protrude from a globular core, composed of a β-sheet sandwich and an α-helix. The arm and tail interact in the presence of Ca2+ and cover the upper β-sheet, where a carbohydrate-binding site gives the chaperone glycoprotein affinity. At the edge of the carbohydrate-binding site is a conserved, strained disulphide bridge, formed between C106 and C137 of human Calr, which lies in a polypeptide-binding site. The lower β-sheet has several conserved residues, comprised of a characteristic triad, D166-H170-D187, Tyr172 and the free C163. In addition to its role in the ER, Calr translocates to the cell surface upon stress and functions as an immune surveillance marker. In some myeloproliferative neoplasms, the acidic Ca2+-binding C-terminal tail is transformed into a polybasic sequence.
Collapse
|
10
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
11
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
12
|
Yang H, Ahmad ZA, Song Y. Molecular insight for the role of key residues of calreticulin in its binding activities: A computational study. Comput Biol Chem 2020; 85:107228. [DOI: 10.1016/j.compbiolchem.2020.107228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 12/26/2022]
|
13
|
Wang L, Song Y. Molecular insights into the effect of an apoptotic raft-like bilayer on the conformation and dynamics of calreticulin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183146. [PMID: 31816323 DOI: 10.1016/j.bbamem.2019.183146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/29/2022]
Abstract
Cell surface calreticulin (CRT) can mediate apoptotic cells removal by binding and activating LDL receptor-related protein (LRP1). Phosphatidylserine (PS) lipids in the inner leaflet of the cell membrane are externalized and become exposed in cholesterol (CHOL)-rich membrane raft-like microdomain during apoptosis and co-localized with cell surface CRT. How the apoptotic raft-like membrane microdomain affects the structure and dynamics of CRT, further affecting CRT binding with LRP1 to signal apoptotic-cell clearance, remains unknown. In this study, we investigate the interactions between CRT and raft-like bilayers with or without POPS lipids with molecular dynamics simulations. In addition, the effect of an apoptotic raft bilayer on the binding between CRT and thrombospondin-1 (TSP1), a ligand of CRT on the cell surface to signal focal adhesion disassembly, was also investigated. Results of single CRT interactions with raft-like bilayers show that PS lipids in apoptotic raft-like bilayer increased the interactions between CRT and lipid bilayer, which enhanced the conformational stability and increased dynamical motion of CRT. The microscopic and mesoscopic properties of apoptotic raft-like bilayer were altered by the binding of CRT with lipid bilayer. Results of CRT-TSP1 complex interactions with raft-like bilayers show that the binding free energy between TSP1 and CRT was reduced in apoptotic raft-like bilayer environment. This study provides molecular and structural insight into the effect of an apoptotic raft-like bilayer on the conformation and dynamics of CRT, which could enrich our understanding of CRT-mediated apoptotic-cell clearance and focal adhesion disassembly.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Yuhua Song
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
14
|
Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties. Immunobiology 2019; 225:151863. [PMID: 31732192 DOI: 10.1016/j.imbio.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas' disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.
Collapse
|
15
|
Thermal unfolding of calreticulin. Structural and thermodynamic characterization of the transition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:175-183. [DOI: 10.1016/j.bbapap.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
16
|
Affiliation(s)
- Gunnar Houen
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
17
|
Kiuchi T, Izumi M, Mukogawa Y, Shimada A, Okamoto R, Seko A, Sakono M, Takeda Y, Ito Y, Kajihara Y. Monitoring of Glycoprotein Quality Control System with a Series of Chemically Synthesized Homogeneous Native and Misfolded Glycoproteins. J Am Chem Soc 2018; 140:17499-17507. [DOI: 10.1021/jacs.8b08653] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tatsuto Kiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Arisa Shimada
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Seko
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masafumi Sakono
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukishige Ito
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- ERATO Ito Glycotrilogy Project, Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
19
|
Arshad N, Cresswell P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J Biol Chem 2018; 293:9555-9569. [PMID: 29769311 DOI: 10.1074/jbc.ra118.002836] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
Major histocompatibility complex-I-β2m dimers (MHC-I) bind peptides derived from intracellular proteins, enabling the immune system to distinguish between normal cells and those expressing pathogen-derived or mutant proteins. The peptides bind to MHC-I in the endoplasmic reticulum (ER), and this binding is facilitated by the peptide loading complex (PLC), which contains calreticulin (CRT). CRT associates with MHC-I via a conserved glycan present on MHC-I and recruits it to the PLC for peptide binding. Somatic frameshift mutations in CRT (CRT-FS) drive the proliferation of a subset of myeloproliferative neoplasms, which are chronic blood tumors. All CRT-FS proteins have a C-terminal sequence lacking the normal ER-retention signal and possessing a net negative charge rather than the normal positive charge. We characterized the effect of CRT-FS on antigen presentation by MHC-I in human cells. Our results indicate that CRT-FS cannot mediate CRT's peptide loading function in the PLC. Cells lacking CRT exhibited reduced surface MHC-I levels, consistent with reduced binding of high-affinity peptides, and this was not reversed by CRT-FS expression. CRT-FS was secreted and not detectably associated with the PLC, leading to poor MHC-I recruitment, although CRT-FS could still associate with MHC-I in a glycan-dependent manner. The addition of an ER-retention sequence to CRT-FS restored its association with the PLC but did not rescue MHC-I recruitment or its surface expression, indicating that the CRT-FS mutants functionally compromise the PLC. MHC-I down-regulation permits tumor cells to evade immune surveillance, and these findings may therefore be relevant for designing effective immunotherapies for managing myeloproliferative neoplasms.
Collapse
Affiliation(s)
| | - Peter Cresswell
- From the Departments of Immunobiology and .,Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| |
Collapse
|
20
|
Elevated expression of the EZH2 gene in CALR-mutated patients with primary myelofibrosis. Ann Hematol 2018; 97:1193-1208. [PMID: 29560522 DOI: 10.1007/s00277-018-3287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/25/2018] [Indexed: 01/07/2023]
Abstract
Primary myelofibrosis (PMF) is one of the BCR/ABL-negative myeloproliferative neoplasms (MPNs), characterized by the diffuse fibrous hyperproliferation, bone marrow osteosclerosis, extramedullary hematopoiesis, and marked splenomegaly. The patients with PMF have an insidious onset, a long duration of clinical course, and the deteriorated quality of life. It has been reported that the CALR gene 9 exon mutations were detected in 25-30% PMF patients, particularly as high as 80% in the JAK2/MPL-negative ones. As the second most common mutation in BCR/ABL-negative MPNs, CALR mutation has been included in the latest World Health Organization (WHO) classification criteria as one of the main diagnostic criteria for both essential thrombocythemia (ET) and PMF. Moreover, the CALR mutations indicated a favorable prognosis, which the mechanism is still under investigation. It was demonstrated that a characterized high expression of EZH2 and SUZ12 in CALR-mutated patients. Taking EZH2 as the research entry point, we initially discussed the mechanism that the CALR-positive patients with PMF exhibited a better prognosis in the current study.
Collapse
|
21
|
Wang G, Jiang Z, He S, Zhang M. Two novel calreticulin-related molecules with microbial binding and phagocytosis enhancing capacity in the half-smooth tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:174-180. [PMID: 29104090 DOI: 10.1016/j.fsi.2017.10.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Calreticulin (CRT) is highly conserved chaperone located in the endoplasmic reticulum. It plays important roles in innate immunity. Although various immune-related functions of CRT have been reported in vertebrates and invertebrates, information on the potential functions of teleost CRT is very limited. In the present study, we characterized two calreticulin-related molecules from tongue sole (Cynoglossus semilaevis), calreticulin-like1 and calreticulin-like2 (CsCRTL1 and CsCRTL2). CsCRTL1and CsCRTL2 contain signature CRT motifs that are highly conserved in different species. CsCRTL1and CsCRTL2 were expressed in liver, head kidney, brain, spleen, heart, muscle, skin, intestine and gills. The expression levels of CsCRTL1and CsCRTL2 were highest in liver and spleen, respectively. After stimulation by Vibrio anguillarum and Streptococcus agalactiae, CsCRTL1 and CsCRTL2 were significantly up-regulated. The expression patterns depended on the tissue type, pathogen type, and infection time. The recombinant proteins rCsCRTL1and rCsCRTL2 bound to different pathogen-associated molecular patterns (PAMPs) including LPS and PGN, and to different bacteria, such as Gram-negative bacteria V. anguillarum and Gram-positive bacteria Staphylococcus aureus. Moreover, rCsCRTL1and rCsCRTL2 significantly enhanced the killing of V. anguillarum by tongue sole macrophages. Our results indicate that CsCRTL1and CsCRTL2 play important roles in antibacterial immunity of tongue sole.
Collapse
Affiliation(s)
- Guanghua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zengjie Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuwen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Kozlov G, Muñoz-Escobar J, Castro K, Gehring K. Mapping the ER Interactome: The P Domains of Calnexin and Calreticulin as Plurivalent Adapters for Foldases and Chaperones. Structure 2017; 25:1415-1422.e3. [DOI: 10.1016/j.str.2017.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 10/18/2022]
|
23
|
Sun C, Zhou X, Zou ZJ, Guo HF, Li JY, Qiao C. Clinical Manifestation of Calreticulin Gene Mutations in Essential Thrombocythemia without Janus Kinase 2 and MPL Mutations: A Chinese Cohort Clinical Study. Chin Med J (Engl) 2017; 129:1778-83. [PMID: 27453224 PMCID: PMC4976563 DOI: 10.4103/0366-6999.186641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, calreticulin (CALR) gene mutations have been identified in patients with essential thrombocythemia (ET). A high-frequency of ET cases without Janus kinase 2 (JAK2) mutations contain CALR mutations and exhibit clinical characteristics different from those with mutant JAK2. Thus, we investigated the frequency and clinical features of Chinese patients of Han ethnicity with CALR mutations in ET. METHODS We recruited 310 Chinese patients of Han ethnicity with ET to analyze states of CALR, JAK2V617F, and MPLW515 mutations by polymerase chain reaction and direct sequencing. We analyzed the relationship between the mutations and clinical features. RESULTS CALR, JAK2V617F, and MPLW515 mutations were detected in 30% (n = 92), 48% (n = 149), and 1% (n = 4) of patients with ET, respectively. The mutation types of CALR involved deletion and insertion of base pairs. Most of them were Type 1 (52-bp deletion) and Type 2 (5-bp insertion, TTGTC) mutations, leading to del367fs46 and ins385fs47, respectively. The three mutations were exclusive. Clinically, patients with mutated CALR had a lower hemoglobin level, lower white blood cell (WBC) count, and higher platelet count compared to those with mutated JAK2 (P < 0.05). Furthermore, a significant difference was found in WBCs between wild-type patients (triple negative for JAK2, MPL, and CALR mutations) and patients with JAK2 mutations. Patients with CALR mutations predominantly clustered into low or intermediate groups according to the International Prognostic Score of thrombosis for ET (P < 0.05). CONCLUSIONS CALR mutations were frequent in Chinese patients with ET, especially in those without JAK2 or MPL mutations. Compared with JAK2 mutant ET, CALR mutant ET showed a different clinical manifestation and an unfavorable prognosis. Thus, CALR is a potentially valuable diagnostic marker and therapeutic target in ET.
Collapse
Affiliation(s)
- Chao Sun
- Department of Hematology, Affiliated Wuxi Peoples Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xin Zhou
- Department of Hematology, Affiliated Wuxi Peoples Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Zhi-Jian Zou
- Department of Hematology, Affiliated Wuxi Peoples Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Hong-Feng Guo
- Department of Hematology, Affiliated Wuxi Peoples Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, China
| |
Collapse
|
24
|
Moreau C, Cioci G, Iannello M, Laffly E, Chouquet A, Ferreira A, Thielens NM, Gaboriaud C. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties. IUCRJ 2016; 3:408-419. [PMID: 27840680 PMCID: PMC5094443 DOI: 10.1107/s2052252516012847] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Calreticulin (CRT) is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER) chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant 'eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi, Entamoeba histolytica, Taenia solium, Leishmania donovani and Schistosoma mansoni. Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.
Collapse
Affiliation(s)
- Christophe Moreau
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Gianluca Cioci
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Marina Iannello
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Emmanuelle Laffly
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Anne Chouquet
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicole M. Thielens
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Christine Gaboriaud
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
25
|
Lum R, Ahmad S, Hong SJ, Chapman DC, Kozlov G, Williams DB. Contributions of the Lectin and Polypeptide Binding Sites of Calreticulin to Its Chaperone Functions in Vitro and in Cells. J Biol Chem 2016; 291:19631-41. [PMID: 27413183 DOI: 10.1074/jbc.m116.746321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 11/06/2022] Open
Abstract
Calreticulin is a lectin chaperone of the endoplasmic reticulum that interacts with newly synthesized glycoproteins by binding to Glc1Man9GlcNAc2 oligosaccharides as well as to the polypeptide chain. In vitro, the latter interaction potently suppresses the aggregation of various non-glycosylated proteins. Although the lectin-oligosaccharide association is well understood, the polypeptide-based interaction is more controversial because the binding site on calreticulin has not been identified, and its significance in the biogenesis of glycoproteins in cells remains unknown. In this study, we identified the polypeptide binding site responsible for the in vitro aggregation suppression function by mutating four candidate hydrophobic surface patches. Mutations in only one patch, P19K/I21E and Y22K/F84E, impaired the ability of calreticulin to suppress the thermally induced aggregation of non-glycosylated firefly luciferase. These mutants also failed to bind several hydrophobic peptides that act as substrate mimetics and compete in the luciferase aggregation suppression assay. To assess the relative contributions of the glycan-dependent and -independent interactions in living cells, we expressed lectin-deficient, polypeptide binding-deficient, and doubly deficient calreticulin constructs in calreticulin-negative cells and monitored the effects on the biogenesis of MHC class I molecules, the solubility of mutant forms of α1-antitrypsin, and interactions with newly synthesized glycoproteins. In all cases, we observed a profound impairment in calreticulin function when its lectin site was inactivated. Remarkably, inactivation of the polypeptide binding site had little impact. These findings indicate that the lectin-based mode of client interaction is the predominant contributor to the chaperone functions of calreticulin within the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ronnie Lum
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Samar Ahmad
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Seo Jung Hong
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Daniel C Chapman
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Guennadi Kozlov
- the Groupe de Recherche Axé sur la Structure des Proteines, Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - David B Williams
- From the Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
26
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
27
|
A molluscan calreticulin ortholog from Haliotis discus discus: Molecular characterization and transcriptional evidence for its role in host immunity. Biochem Biophys Res Commun 2016; 474:43-50. [PMID: 27086846 DOI: 10.1016/j.bbrc.2016.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 11/20/2022]
Abstract
Calreticulin (CALR), a Ca(2+) binding chaperone of the endoplasmic reticulum (ER) and mainly involved in Ca(2+) storage and signaling. In this study, we report the molecular characterization and immune responses of CALR homolog from disk abalone (AbCALR). The full length AbCALR cDNA (1837 bp) had an ORF of 1224 bp. According to the multiple alignments analysis, N- and P-domains were highly conserved in all the selected members of CALRs. In contrast, the C-domain which terminated with the characteristic ER retrieval signal (HDEL) was relatively less conserved. The phylogenetic analysis showed that all the selected molluscan homologs clustered together. Genomic sequence of AbCALR revealed that cDNA sequence was dispersed into ten exons interconnected with nine introns. AbCALR mRNA expression shows the significant (P < 0.05) up-regulation of AbCALR transcripts in hemocytes upon bacterial (Listeria monocytogenes and Vibrio parahaemolyticus), viral (Viral haemorrhagic septicaemia virus; VHSV) and immune stimulants (LPS and poly I:C) challenges at middle and/or late phases. These results collectively implied that AbCALR is able to be stimulated by pathogenic signals and might play a potential role in host immunity.
Collapse
|
28
|
Boelt SG, Norn C, Rasmussen MI, André I, Čiplys E, Slibinskas R, Houen G, Højrup P. Mapping the Ca(2+) induced structural change in calreticulin. J Proteomics 2016; 142:138-48. [PMID: 27195812 DOI: 10.1016/j.jprot.2016.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/09/2016] [Accepted: 05/14/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED Calreticulin is a highly conserved multifunctional protein implicated in many different biological systems and has therefore been the subject of intensive research. It is primarily present in the endoplasmatic reticulum where its main functions are to regulate Ca(2+) homeostasis, act as a chaperone and stabilize the MHC class I peptide-loading complex. Although several high-resolution structures of calreticulin exist, these only cover three-quarters of the entire protein leaving the extended structures unsolved. Additionally, the structure of calreticulin is influenced by the presence of Ca(2+). The conformational changes induced by Ca(2+) have not been determined yet as they are hard to study with traditional approaches. Here, we investigated the Ca(2+)-induced conformational changes with a combination of chemical cross-linking, mass spectrometry, bioinformatics analysis and modelling in Rosetta. Using a bifunctional linker, we found a large Ca(2+)-induced change to the cross-linking pattern in calreticulin. Our results are consistent with a high flexibility in the P-loop, a stabilization of the acidic C-terminal and a relatively close interaction of the P-loop and the acidic C-terminal. BIOLOGICAL SIGNIFICANCE The function of calreticulin, an endoplasmatic reticulin chaperone, is affected by fluctuations in Ca(2+)concentration, but the structural mechanism is unknown. The present work suggests that Ca(2+)-dependent regulation is caused by different conformations of a long proline-rich loop that changes the accessibility to the peptide/lectin-binding site. Our results indicate that the binding of Ca(2+) to calreticulin may thus not only just be a question of Ca(2+) storage but is likely to have an impact on the chaperone activity.
Collapse
Affiliation(s)
- Sanne Grundvad Boelt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Christoffer Norn
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark
| | - Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Paradisgatan 2, SE 221 00 Lund, Sweden
| | - Evaldas Čiplys
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Rimantas Slibinskas
- Department of Eukayote Gene Engineering, Institute of Biotechnology, Vilnius University, V. Graičiūno St, LT 02241 Vilnius, Lithuania
| | - Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, DK 2300 Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense, Denmark.
| |
Collapse
|
29
|
Wijeyesakere SJ, Bedi SK, Huynh D, Raghavan M. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis. THE JOURNAL OF IMMUNOLOGY 2016; 196:3896-3909. [PMID: 27036911 DOI: 10.4049/jimmunol.1502122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/23/2016] [Indexed: 12/22/2022]
Abstract
Calreticulin is a calcium-binding chaperone that is normally localized in the endoplasmic reticulum. Calreticulin is detectable on the surface of apoptotic cells under some apoptosis-inducing conditions, where it promotes the phagocytosis and immunogenicity of dying cells. However, the precise mechanism by which calreticulin, a soluble protein, localizes to the outer surface of the plasma membrane of dying cells is unknown, as are the molecular mechanisms that are relevant to calreticulin-induced cellular phagocytosis. Calreticulin comprises three distinct structural domains: a globular domain, an extended arm-like P-domain, and a C-terminal acidic region containing multiple low-affinity calcium binding sites. We show that calreticulin, via its C-terminal acidic region, preferentially interacts with phosphatidylserine (PS) compared with other phospholipids and that this interaction is calcium dependent. Additionally, exogenous calreticulin binds apoptotic cells via a higher-affinity calcium-dependent mode that is acidic region dependent. Exogenous calreticulin also binds live cells, including macrophages, via a second, lower-affinity P-domain and globular domain-dependent, but calcium-independent binding mode that likely involves its generic polypeptide binding site. Truncation constructs lacking the acidic region or arm-like P-domain of calreticulin are impaired in their abilities to induce apoptotic cell phagocytosis by murine peritoneal macrophages. Taken together, the results of this investigation provide the first molecular insights into the phospholipid binding site of calreticulin as a key anchor point for the cell surface expression of calreticulin on apoptotic cells. These findings also support a role for calreticulin as a PS-bridging molecule that cooperates with other PS-binding factors to promote the phagocytosis of apoptotic cells.
Collapse
Affiliation(s)
| | - Sukhmani Kaur Bedi
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor MI 48109
| | - David Huynh
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor MI 48109
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor MI 48109
| |
Collapse
|
30
|
Izumi M, Oka Y, Okamoto R, Seko A, Takeda Y, Ito Y, Kajihara Y. Synthesis of Glc1
Man9
-Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yukiho Oka
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Ryo Okamoto
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Akira Seko
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yoichi Takeda
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yukishige Ito
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Synthetic Cellular Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Yasuhiro Kajihara
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST); 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
31
|
Izumi M, Oka Y, Okamoto R, Seko A, Takeda Y, Ito Y, Kajihara Y. Synthesis of Glc1Man9-Glycoprotein Probes by a Misfolding/Enzymatic Glucosylation/Misfolding Sequence. Angew Chem Int Ed Engl 2016; 55:3968-71. [PMID: 26890995 DOI: 10.1002/anie.201511491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Glycoproteins in non-native conformations are often toxic to cells and may cause diseases, thus the quality control (QC) system eliminates these unwanted species. Lectin chaperone calreticulin and glucosidase II, both of which recognize the Glc1 Man9 oligosaccharide on glycoproteins, are important components of the glycoprotein QC system. Reported herein is the preparation of Glc1 Man9 -glycoproteins in both native and non-native conformations by using the following sequence: misfolding of chemically synthesized Man9 -glycoprotein, enzymatic glucosylation, and another misfolding step. By using synthetic glycoprotein probes, calreticulin was found to bind preferentially to a hydrophobic non-native glycoprotein whereas glucosidase II activity was not affected by glycoprotein conformation. The results demonstrate the ability of chemical synthesis to deliver homogeneous glycoproteins in several non-native conformations for probing the glycoprotein QC system.
Collapse
Affiliation(s)
- Masayuki Izumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yukiho Oka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Ryo Okamoto
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Seko
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoichi Takeda
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukishige Ito
- ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. .,ERATO Ito glycotrilogy project Japan Science and Technology Agency (JST), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
32
|
Saeidi K. Myeloproliferative neoplasms: Current molecular biology and genetics. Crit Rev Oncol Hematol 2015; 98:375-89. [PMID: 26697989 DOI: 10.1016/j.critrevonc.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by increased production of mature blood cells. Philadelphia chromosome-negative MPNs (Ph-MPNs) consist of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). A number of stem cell derived mutations have been identified in the past 10 years. These findings showed that JAK2V617F, as a diagnostic marker involving JAK2 exon 14 with a high frequency, is the best molecular characterization of Ph-MPNs. Somatic mutations in an endoplasmic reticulum chaperone, named calreticulin (CALR), is the second most common mutation in patients with ET and PMF after JAK2 V617F mutation. Discovery of CALR mutations led to the increased molecular diagnostic of ET and PMF up to 90%. It has been shown that JAK2V617F is not the unique event in disease pathogenesis. Some other genes' location such as TET oncogene family member 2 (TET2), additional sex combs-like 1 (ASXL1), casitas B-lineage lymphoma proto-oncogene (CBL), isocitrate dehydrogenase 1/2 (IDH1/IDH2), IKAROS family zinc finger 1 (IKZF1), DNA methyltransferase 3A (DNMT3A), suppressor of cytokine signaling (SOCS), enhancer of zeste homolog 2 (EZH2), tumor protein p53 (TP53), runt-related transcription factor 1 (RUNX1) and high mobility group AT-hook 2 (HMGA2) have also identified to be involved in MPNs phenotypes. Here, current molecular biology and genetic mechanisms involved in MNPs with a focus on the aforementioned factors is presented.
Collapse
Affiliation(s)
- Kolsoum Saeidi
- Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
33
|
Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP. Proc Natl Acad Sci U S A 2015; 112:E5608-17. [PMID: 26420867 DOI: 10.1073/pnas.1510132112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin-substrate interactions and as key determinants of PLC dynamics.
Collapse
|
34
|
Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymphoma 2014; 56:1593-8. [PMID: 25115511 DOI: 10.3109/10428194.2014.953153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Calreticulin, an endoplasmic reticulum protein with multiple functions involving chaperone activity and calcium homeostasis, plays an important role in cellular proliferation and differentiation. Calreticulin dysfunction is known to be associated with different cancers. Very recently, calreticulin mutations have been identified in myeloproliferative neoplasms (MPNs), with a particularly high frequency in MPNs without Janus kinase 2 (JAK2) mutations, which exhibit clinical characteristics different from those with mutant JAK2. Here, we focus on the structure, function and carcinogenicity of calreticulin, as well as its relationship with MPNs not involving JAK2 mutations.
Collapse
Affiliation(s)
- Chao Sun
- Department of Hematology, Wuxi People's Hospital, Affiliated of Nanjing Medical University , Wuxi, Jiangsu , China
| | | | | |
Collapse
|
35
|
Sakono M, Seko A, Takeda Y, Ito Y. PDI family protein ERp29 forms 1:1 complex with lectin chaperone calreticulin. Biochem Biophys Res Commun 2014; 452:27-31. [DOI: 10.1016/j.bbrc.2014.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
36
|
Peng L, Rasmussen MI, Chailyan A, Houen G, Højrup P. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry. J Proteomics 2014; 108:1-16. [PMID: 24792702 DOI: 10.1016/j.jprot.2014.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protein disulfide-isomerase (PDI) is a four-domain flexible protein that catalyzes the formation of disulfide bonds in the endoplasmic reticulum. Here we have analyzed native PDI purified from human placenta by chemical cross-linking followed by mass spectrometry (CXMS). In addition to PDI the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous interaction pattern of the involved proteins, revealed relatively densely populated cross-link heat maps. The established X-ray structure of the monomeric PDI could be confirmed; however, the dimer as presented in the existing models does not seem to be prevalent in solution as modeling on the observed cross-links revealed new models of dimeric PDI. The observed inter-protein cross-links confirmed the existence of a peptide binding area on calnexin that binds strongly both PDI and ERp72. On the other hand, interaction sites on PDI and ERp72 could not be uniquely identified, indicating a more non-specific interaction pattern. BIOLOGICAL SIGNIFICANCE The present work demonstrates the use of chemical cross-linking and mass spectrometry (CXMS) for the determination of a solution structure of natural human PDI and its interaction with the chaperones ERp72 and calnexin. The data shows that the dimeric structure of PDI may be more diverse than indicated by present models. We further observe that the temperature influences the cross-linking pattern of PDI, but this does not influence the overall folding pattern of the molecule.
Collapse
Affiliation(s)
- Li Peng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Morten Ib Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anna Chailyan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
37
|
Ferris SP, Kodali VK, Kaufman RJ. Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis Model Mech 2014; 7:331-41. [PMID: 24609034 PMCID: PMC3944493 DOI: 10.1242/dmm.014589] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/14/2014] [Indexed: 12/31/2022] Open
Abstract
Biosynthesis of proteins--from translation to folding to export--encompasses a complex set of events that are exquisitely regulated and scrutinized to ensure the functional quality of the end products. Cells have evolved to capitalize on multiple post-translational modifications in addition to primary structure to indicate the folding status of nascent polypeptides to the chaperones and other proteins that assist in their folding and export. These modifications can also, in the case of irreversibly misfolded candidates, signal the need for dislocation and degradation. The current Review focuses on the glycoprotein quality-control (GQC) system that utilizes protein N-glycosylation and N-glycan trimming to direct nascent glycopolypeptides through the folding, export and dislocation pathways in the endoplasmic reticulum (ER). A diverse set of pathological conditions rooted in defective as well as over-vigilant ER quality-control systems have been identified, underlining its importance in human health and disease. We describe the GQC pathways and highlight disease and animal models that have been instrumental in clarifying our current understanding of these processes.
Collapse
Affiliation(s)
- Sean P. Ferris
- Department of Biological Chemistry and Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vamsi K. Kodali
- Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Randal J. Kaufman
- Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Calreticulin molecular evolution: a strong purifying and episodic diversifying selection result. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-013-0327-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O'Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, Du MQ, Greaves M, Bowen D, Huntly BJP, Harrison CN, Cross NCP, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369:2391-2405. [PMID: 24325359 PMCID: PMC3966280 DOI: 10.1056/nejmoa1312542] [Citation(s) in RCA: 1388] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS We performed exome sequencing of samples obtained from 151 patients with myeloproliferative neoplasms. The mutation status of the gene encoding calreticulin (CALR) was assessed in an additional 1345 hematologic cancers, 1517 other cancers, and 550 controls. We established phylogenetic trees using hematopoietic colonies. We assessed calreticulin subcellular localization using immunofluorescence and flow cytometry. RESULTS Exome sequencing identified 1498 mutations in 151 patients, with medians of 6.5, 6.5, and 13.0 mutations per patient in samples of polycythemia vera, essential thrombocythemia, and myelofibrosis, respectively. Somatic CALR mutations were found in 70 to 84% of samples of myeloproliferative neoplasms with nonmutated JAK2, in 8% of myelodysplasia samples, in occasional samples of other myeloid cancers, and in none of the other cancers. A total of 148 CALR mutations were identified with 19 distinct variants. Mutations were located in exon 9 and generated a +1 base-pair frameshift, which would result in a mutant protein with a novel C-terminal. Mutant calreticulin was observed in the endoplasmic reticulum without increased cell-surface or Golgi accumulation. Patients with myeloproliferative neoplasms carrying CALR mutations presented with higher platelet counts and lower hemoglobin levels than patients with mutated JAK2. Mutation of CALR was detected in hematopoietic stem and progenitor cells. Clonal analyses showed CALR mutations in the earliest phylogenetic node, a finding consistent with its role as an initiating mutation in some patients. CONCLUSIONS Somatic mutations in the endoplasmic reticulum chaperone CALR were found in a majority of patients with myeloproliferative neoplasms with nonmutated JAK2. (Funded by the Kay Kendall Leukaemia Fund and others.).
Collapse
|
40
|
Wijeyesakere SJ, Rizvi SM, Raghavan M. Glycan-dependent and -independent interactions contribute to cellular substrate recruitment by calreticulin. J Biol Chem 2013; 288:35104-16. [PMID: 24100026 DOI: 10.1074/jbc.m113.507921] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calreticulin is an endoplasmic reticulum chaperone with specificity for monoglucosylated glycoproteins. Calreticulin also inhibits precipitation of nonglycosylated proteins and thus contains generic protein-binding sites, but their location and contributions to substrate folding are unknown. We show that calreticulin binds glycosylated and nonglycosylated proteins with similar affinities but distinct interaction kinetics. Although both interactions involve the glycan-binding site or its vicinity, the arm-like proline-rich (P-) domain of calreticulin contributes to binding non/deglycosylated proteins. Correspondingly, ensemble FRET spectroscopy measurements indicate that glycosylated and nonglycosylated proteins induce "open" and "closed" P-domain conformations, respectively. The co-chaperone ERp57 influences substrate-binding kinetics and induces a closed P-domain conformation. Together with analysis of the interactions of calreticulin with cellular proteins, these findings indicate that the recruitment of monoglucosylated proteins to calreticulin is kinetically driven, whereas the P-domain and co-chaperone contribute to stable substrate binding. Substrate sequestration in the cleft between the glycan-binding site and P-domain is a likely mechanism for calreticulin-assisted protein folding.
Collapse
Affiliation(s)
- Sanjeeva J Wijeyesakere
- From the Department of Microbiology and Immunology, University of Michigan School Medical School, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
41
|
Pinto RD, Moreira AR, Pereira PJB, dos Santos NMS. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) calreticulin. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1611-1618. [PMID: 23523749 DOI: 10.1016/j.fsi.2013.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/15/2013] [Accepted: 03/04/2013] [Indexed: 06/02/2023]
Abstract
Mammalian calreticulin (CRT) is a key molecular chaperone and regulator of Ca(2+) homeostasis in endoplasmic reticulum (ER), also being implicated in a variety of physiological/pathological processes outside the ER. Importantly, it is involved in assembly of MHC class I molecules. In this work, sea bass (Dicentrarchus labrax) CRT (Dila-CRT) gene and cDNA have been isolated and characterized. The mature protein retains two conserved motifs, three structural/functional domains (N, P and C), three type 1 and 2 motifs repeated in tandem, a conserved pair of cysteines and ER-retention motif. It is a single-copy gene composed of 9 exons. Dila-CRT three-dimensional homology models are consistent with the structural features described for mammalian molecules. Together, these results are supportive of a highly conserved structure of CRT through evolution. Moreover, the present data provides information that will allow further studies on sea bass CRT involvement in immunity and in particular class I antigen presentation.
Collapse
Affiliation(s)
- Rute D Pinto
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
42
|
Calreticulin in the immune system: ins and outs. Trends Immunol 2012; 34:13-21. [PMID: 22959412 DOI: 10.1016/j.it.2012.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 12/19/2022]
Abstract
Calreticulin is a calcium-binding chaperone that has several functions in the immune response. In the endoplasmic reticulum (ER), calreticulin facilitates the folding of major histocompatibility complex (MHC) class I molecules and their assembly factor tapasin, thereby influencing antigen presentation to cytotoxic T cells. Although calreticulin is normally ER-resident, it is found at the cell surface of living cancer cells and dying cells. Here, calreticulin promotes cellular phagocytic uptake. In tumor vaccine models, drugs that induce cell surface calreticulin confer enhanced tumor protection in an extracellular calreticulin-dependent manner. Much remains to be understood about the roles of calreticulin in these distinct functions. Further investigations are important towards advancing basic knowledge of glycoprotein-folding pathways, and towards developing new cancer therapeutic strategies.
Collapse
|
43
|
Wang L, Fang Q, Zhu J, Wang F, Rean Akhtar Z, Ye G. Molecular cloning and functional study of calreticulin from a lepidopteran pest, Pieris rapae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:55-65. [PMID: 22516748 DOI: 10.1016/j.dci.2012.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
Insects have an effective innate immune system to protect themselves from exogenous invaders. Calreticulin is a multifunctional protein mainly involved in directing proper conformation of proteins, controlling calcium level, and participating in immune responses. Previous suppression subtractive hybridization assay showed that the expression of Pieris rapae calreticulin (PrCRT) was suppressed after injection of Pteromalus puparum venom. In this study, we obtained a full length cDNA of PrCRT and expressed recombinant wild type and the N-domain deleted mutant PrCRT in bacteria. Real time quantitative PCR and western blot analyses showed that PrCRT mRNA and protein were expressed in hemocytes, Malpighian tubule, midgut, epidermis and fat body, with a higher level in hemocytes. PrCRT was probably located in endoplasmic reticulum distributing in the cytoplasm of hemocytes. Recombinant PrCRT was first able to attach and then enter the hemocytes by endocytosis. PrCRT mRNA in hemocytes was significantly induced after injection of yeast or beads, but did not change noticeably after injection of Escherichia coli or Micrococcus lysodeikticus. Recombinant PrCRT enhanced cellular encapsulation by P. rapae hemocytes in vitro, and the N-domain of PrCRT was required for encapsulation. RNAi of PrCRT by dsRNA injection impaired the ability of hemocytes to encapsulate beads. After parasitization by P. puparum, PrCRT mRNA and protein levels in P. rapae pupal hemocytes were significantly suppressed compared to non-parasitized control. Our results suggest that PrCRT is involved in cellular encapsulation and the pupal parasitoid P. puparum can decrease PrCRT expression to impair host cellular immune response.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
In a complex multicellular organism, different cell types engage in specialist functions, and as a result, the secretory output of cells and tissues varies widely. Whereas some quiescent cell types secrete minor amounts of proteins, tissues like the pancreas, producing insulin and other hormones, and mature B cells, producing antibodies, place a great demand on their endoplasmic reticulum (ER). Our understanding of how protein secretion in general is controlled in the ER is now quite sophisticated. However, there remain gaps in our knowledge, particularly when applying insight gained from model systems to the more complex situations found in vivo. This article describes recent advances in our understanding of the ER and its role in preparing proteins for secretion, with an emphasis on glycoprotein quality control and pathways of disulfide bond formation.
Collapse
Affiliation(s)
- Adam M Benham
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
45
|
Calreticulin signaling in health and disease. Int J Biochem Cell Biol 2012; 44:842-6. [PMID: 22373697 DOI: 10.1016/j.biocel.2012.02.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 01/19/2023]
Abstract
Calreticulin is an endoplasmic reticulum Ca(2+) binding chaperone that has multiple functions inside and outside of the endoplasmic reticulum. It is involved in the quality control of newly synthesized proteins and glycoproteins, interacting with various other endoplasmic reticulum chaperones, specifically calnexin and ER protein of 57-kDa in the calreticulin/calnexin cycle. Calreticulin also plays a crucial role in regulating intracellular Ca(2+) homeostasis, associating calreticulin with a wide variety of signaling processes, such as cardiogenesis, adipocyte differentiation and cellular stress responses. The role of calreticulin outside of the endoplasmic reticulum is also extensive, including functions in wound healing and immunity. Therefore, calreticulin has important implications in health and disease. Signaling facts.
Collapse
|