1
|
Thomas GM, Wu Y, Leite W, Pingali SV, Weiss KL, Grant AJ, Diggs MW, Schmidt-Krey I, Gutishvili G, Gumbart JC, Urban VS, Lieberman RL. SANS reveals lipid-dependent oligomerization of an intramembrane aspartyl protease from H. volcanii. Biophys J 2024; 123:1846-1856. [PMID: 38824390 PMCID: PMC11267423 DOI: 10.1016/j.bpj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-β-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.
Collapse
Affiliation(s)
- Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Arshay J Grant
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Monneh W Diggs
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ingeborg Schmidt-Krey
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
2
|
Thulasi Devendrakumar K, Peng TS, Pierdzig L, Jackson E, Lipka V, Li X. Signal Peptide Peptidase and PI4Kβ1/2 play opposite roles in plant ER stress response and immunity. STRESS BIOLOGY 2024; 4:20. [PMID: 38507026 PMCID: PMC10954597 DOI: 10.1007/s44154-024-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
The Arabidopsis pi4kβ1,2 mutant is mutated in the phosphatidylinositol 4-kinase (PI4K) β1 and PI4Kβ2 enzymes which are involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P), a minor membrane lipid with important signaling roles. pi4kβ1,2 plants display autoimmunity and shorter roots. Though the pi4kβ1,2 mutant has been extensively characterized, the source of its autoimmunity remains largely unknown. In this study, through a genetic suppressor screen, we identified multiple partial loss-of-function alleles of signal peptide peptidase (spp) that can suppress all the defects of pi4kβ1,2. SPP is an intramembrane cleaving aspartic protease. Interestingly, pi4kβ1,2 plants display enhanced ER stress response and mutations in SPP can suppress such phenotype. Furthermore, reduced ER stress responses were observed in the spp single mutants. Overall, our study reveals a previously unknown function of PI4Kβ and SPP in ER stress and plant immunity.
Collapse
Affiliation(s)
- Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony ShengZhe Peng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Leon Pierdzig
- Department of Plant Cell Biology, Georg August Universität Göttingen, 37077, Göttingen, Lower Saxony, Germany
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Volker Lipka
- Department of Plant Cell Biology, Georg August Universität Göttingen, 37077, Göttingen, Lower Saxony, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Mentrup T, Leinung N, Patel M, Fluhrer R, Schröder B. The role of SPP/SPPL intramembrane proteases in membrane protein homeostasis. FEBS J 2024; 291:25-44. [PMID: 37625440 DOI: 10.1111/febs.16941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Signal peptide peptidase (SPP) and the four SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 constitute a family of aspartyl intramembrane proteases with homology to presenilins. The different members reside in distinct cellular localisations within the secretory pathway and the endo-lysosomal system. Despite individual cleavage characteristics, they all cleave single-span transmembrane proteins with a type II orientation exhibiting a cytosolic N-terminus. Though the identification of substrates is not complete, SPP/SPPL-mediated proteolysis appears to be rather selective. Therefore, according to our current understanding cleavage by SPP/SPPL proteases rather seems to serve a regulatory function than being a bulk proteolytic pathway. In the present review, we will summarise our state of knowledge on SPP/SPPL proteases and in particular highlight recently identified substrates and the functional and/or (patho)-physiological implications of these cleavage events. Based on this, we aim to provide an overview of the current open questions in the field. These are connected to the regulation of these proteases at the cellular level but also in context of disease and patho-physiological processes. Furthermore, the interplay with other proteostatic systems capable of degrading membrane proteins is beginning to emerge.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Nadja Leinung
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Mehul Patel
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| |
Collapse
|
4
|
Höppner S, Schröder B, Fluhrer R. Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling. FEBS J 2023; 290:5456-5474. [PMID: 37786993 DOI: 10.1111/febs.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.
Collapse
Affiliation(s)
- Sabine Höppner
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| |
Collapse
|
5
|
Schwake C, Hyon M, Chishti AH. Signal peptide peptidase: A potential therapeutic target for parasitic and viral infections. Expert Opin Ther Targets 2022; 26:261-273. [PMID: 35235480 DOI: 10.1080/14728222.2022.2047932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Signal peptide peptidase (SPP) is a GxGD-type intramembrane-cleaving aspartyl protease responsible for clearing accumulating signal peptides in the endoplasmic reticulum. SPP is conserved among all kingdoms and is essential for maintaining cell homeostasis. Inhibition of SPP with selective inhibitors and the structurally similar HIV protease inhibitors results in signal peptide accumulation and subsequent cell death. Identification of SPP homologues in major human parasitic infections has opened a new therapeutic opportunity. Moreover, the essentiality of mammalian SPP-mediated viral protein processing during infection is emerging. AREAS COVERED This review introduces the discovery and biological function of human SPP enzymes and identify parasitic homologues as pharmacological targets of both SPP and HIV protease inhibitors. Later, the role of mammalian SPP during viral infection and how disruption of host SPP can be employed as a novel antiviral therapy are examined and discussed. EXPERT OPINION Parasitic and viral infections cause severe health and economic burden, exacerbated by the lack of new therapeutics in the pipeline. SPP has been shown to be essential for malaria parasite growth and encouraging evidence in other parasites demonstrates broad essentiality of these proteases as therapeutic targets. As drug resistant parasite and viruses emerge, SPP inhibition will provide a new generation of compounds to counter the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Schwake
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Michael Hyon
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Papadopoulou AA, Fluhrer R. Signaling Functions of Intramembrane Aspartyl-Proteases. Front Cardiovasc Med 2020; 7:591787. [PMID: 33381526 PMCID: PMC7768045 DOI: 10.3389/fcvm.2020.591787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Intramembrane proteolysis is more than a mechanism to "clean" the membranes from proteins no longer needed. By non-reversibly modifying transmembrane proteins, intramembrane cleaving proteases hold key roles in multiple signaling pathways and often distinguish physiological from pathological conditions. Signal peptide peptidase (SPP) and signal peptide peptidase-like proteases (SPPLs) recently have been associated with multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins (PSs) are the only two families of intramembrane cleaving aspartyl proteases known in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex, which is well-studied in the context of Alzheimer's disease. The mammalian SPP/SPPL family of intramembrane cleaving proteases consists of five members: SPP and its homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases were discovered due to their homology to PSs, it became evident in the past two decades that no physiological functions are shared between these two families. Based on studies in cell culture models various substrates of SPP/SPPL proteases have been identified in the past years and recently-developed mouse lines lacking individual members of this protease family, will help to further clarify the physiological functions of these proteases. In this review we concentrate on signaling roles of mammalian intramembrane cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in vasculature. Delineating also signaling pathways that are affected and/or controlled by SPP/SPPL proteases. From SPP's participation in tumor progression and survival, to SPPL3's regulation of protein glycosylation and SPPL2c's control over cellular calcium stores, various crossovers between proteolytic activity of intramembrane proteases and cell signaling will be described.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
7
|
Mentrup T, Cabrera-Cabrera F, Fluhrer R, Schröder B. Physiological functions of SPP/SPPL intramembrane proteases. Cell Mol Life Sci 2020; 77:2959-2979. [PMID: 32052089 PMCID: PMC7366577 DOI: 10.1007/s00018-020-03470-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
Intramembrane proteolysis describes the cleavage of substrate proteins within their hydrophobic transmembrane segments. Several families of intramembrane proteases have been identified including the aspartyl proteases Signal peptide peptidase (SPP) and its homologues, the SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3. As presenilin homologues, they employ a similar catalytic mechanism as the well-studied γ-secretase. However, SPP/SPPL proteases cleave transmembrane proteins with a type II topology. The characterisation of SPP/SPPL-deficient mouse models has highlighted a still growing spectrum of biological functions and also promoted the substrate discovery of these proteases. In this review, we will summarise the current hypotheses how phenotypes of these mouse models are linked to the molecular function of the enzymes. At the cellular level, SPP/SPPL-mediated cleavage events rather provide specific regulatory switches than unspecific bulk proteolysis. By this means, a plethora of different cell biological pathways is influenced including signal transduction, membrane trafficking and protein glycosylation.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Florencia Cabrera-Cabrera
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, University of Augsburg, Universitätsstraße 2, 86135, Augsburg, Germany
- Biomedizinisches Centrum (BMC), Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Medizinisch-Theoretisches Zentrum MTZ, Technische Universität Dresden, Fiedlerstraße 42, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol 2020; 105:102-109. [PMID: 32171519 DOI: 10.1016/j.semcdb.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/12/2023]
Abstract
Genetic research on familial cases of Alzheimer disease have identified presenilin (PS) as an important membrane protein in the pathomechanism of this disease. PS is the catalytic subunit of γ-secretase, which is responsible for the generation of amyloid-β peptide deposited in the brains of Alzheimer disease patients. γ-Secretase is an atypical protease composed of four membrane proteins (i.e., presenilin, nicastrin, anterior pharynx defective-1 (Aph-1), and presenilin enhancer-2 (Pen-2)) and mediates intramembrane proteolysis. Numerous investigations have been conducted toward understanding the structural features of γ-secretase components as well as the cleavage mechanism of γ-secretase. In this review, we summarize our current understanding of the structure and activity relationship of the γ-secretase complex.
Collapse
Affiliation(s)
- Tetsuo Cai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Naing SH, Oliver RC, Weiss KL, Urban VS, Lieberman RL. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering. Biophys J 2019; 114:602-608. [PMID: 29414706 DOI: 10.1016/j.bpj.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, and octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. Our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.
Collapse
Affiliation(s)
- Swe-Htet Naing
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
10
|
Gertsik N, Chau DM, Li YM. γ-Secretase Inhibitors and Modulators Induce Distinct Conformational Changes in the Active Sites of γ-Secretase and Signal Peptide Peptidase. ACS Chem Biol 2015; 10:1925-31. [PMID: 26030233 DOI: 10.1021/acschembio.5b00321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
γ-Secretase inhibitors (GSIs) and modulators (GSMs) are at the frontline of cancer and Alzheimer's disease research, respectively. While both are therapeutically promising, not much is known about their interactions with proteins other than γ-secretase. Signal peptide peptidase (SPP), like γ-secretase, is a multispan transmembrane aspartyl protease that catalyzes regulated intramembrane proteolysis. We used active site-directed photophore walking probes to study the effects of different GSIs and GSMs on the active sites of γ-secretase and SPP and found that nontransition state GSIs inhibit labeling of γ-secretase by activity-based probes but enhance labeling of SPP. The opposite is true of GSMs, which have little effect on the labeling of γ-secretase but diminish labeling of SPP. These results demonstrate that GSIs and GSMs are altering the structure of not only γ-secretase but also SPP, leading to potential changes in enzyme activity and specificity that may impact the clinical outcomes of these molecules.
Collapse
Affiliation(s)
- Natalya Gertsik
- Molecular
Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - De-Ming Chau
- Molecular
Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Clinical
Genetics Unit Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Yue-Ming Li
- Molecular
Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
11
|
Gertsik N, Chiu D, Li YM. Complex regulation of γ-secretase: from obligatory to modulatory subunits. Front Aging Neurosci 2015; 6:342. [PMID: 25610395 PMCID: PMC4285130 DOI: 10.3389/fnagi.2014.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is a four subunit, 19-pass transmembrane enzyme that cleaves amyloid precursor protein (APP), catalyzing the formation of amyloid beta (Aβ) peptides that form amyloid plaques, which contribute to Alzheimer’s disease (AD) pathogenesis. γ-Secretase also cleaves Notch, among many other type I transmembrane substrates. Despite its seemingly promiscuous enzymatic capacity, γ-secretase activity is tightly regulated. This regulation is a function of many cellular entities, including but not limited to the essential γ-secretase subunits, nonessential (modulatory) subunits, and γ-secretase substrates. Regulation is also accomplished by an array of cellular events, such as presenilin (active subunit of γ-secretase) endoproteolysis and hypoxia. In this review we discuss how γ-secretase is regulated with the hope that an advanced understanding of these mechanisms will aid in the development of effective therapeutics for γ-secretase-associated diseases like AD and Notch-addicted cancer.
Collapse
Affiliation(s)
- Natalya Gertsik
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Biochemistry and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Danica Chiu
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| |
Collapse
|
12
|
Li Y, Bohm C, Dodd R, Chen F, Qamar S, Schmitt-Ulms G, Fraser PE, St George-Hyslop PH. Structural biology of presenilin 1 complexes. Mol Neurodegener 2014; 9:59. [PMID: 25523933 PMCID: PMC4326451 DOI: 10.1186/1750-1326-9-59] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022] Open
Abstract
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter H St George-Hyslop
- Cambridge Institute for Medical Research, Wellcome Trust MRC Building, Addenbrookes Hospital, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
13
|
Avci D, Fuchs S, Schrul B, Fukumori A, Breker M, Frumkin I, Chen CY, Biniossek M, Kremmer E, Schilling O, Steiner H, Schuldiner M, Lemberg M. The Yeast ER-Intramembrane Protease Ypf1 Refines Nutrient Sensing by Regulating Transporter Abundance. Mol Cell 2014; 56:630-40. [DOI: 10.1016/j.molcel.2014.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/19/2014] [Accepted: 10/09/2014] [Indexed: 02/08/2023]
|
14
|
Sato C, Mio K, Kawata M, Ogura T. 3D structure determination of protein using TEM single particle analysis. Microscopy (Oxf) 2014; 63 Suppl 1:i9-i10. [PMID: 25359850 DOI: 10.1093/jmicro/dfu074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Proteins play important roles in cell functions such as enzymes, cell trafficking, neurotransmission, muscle contraction and hormone secretion. However, some proteins are very difficult to be crystallized and their structures are undetermined. Several techniques have been developed to elucidate the structure of macromolecules; X-ray or electron crystallography, nuclear magnetic resonance spectroscopy, and high-resolution electron microscopy. Among them, electron microscopy based single particle reconstruction (SPA) technique is a computer-aided structure determination method. This method reconstructs the 3D structure from projection images of dispersed protein. A large number of two-dimensional particle images are picked up from EM films, aligned and classified to generate 2D averages, and used to reconstruct the 3D structure by assigning the Euler angle of each 2D average. Due to the necessity of elaborate collaboration between the classical biology and the innovative information technology including parallel computing, scientists needed to break unseen barriers to get a start of this analysis. However, recent progresses in electron microscopes, mathematical algorithms, and computational abilities greatly reduced the height of barriers and expanded targets that are considered to be primarily addressable using single particle analysis. Membrane proteins are one of these targets to which the single particle analysis is successfully applied for the understanding of their 3D structures. For this purpose, we have developed various SPA methods [1-5] and applied them to different proteins [6-8].Here, we introduce reconstructed proteins, and discuss the availability of this technique. The intramembrane-cleaving proteases (I-CLiPs) that sever the transmembrane domains of their substrates have been identified in a range of organisms and play a variety of roles in biological conditions. I-CLiPs have been classified into three groups: serine-, aspartyl- and metalloprotease-type. Signal peptide peptidase (SPP) is an atypical aspartic protease that hydrolyzes peptide bonds within the transmembrane domain of substrates and is implicated in several biological and pathological functions. The structure of human SPP was determined by SPA at a resolution of 22 Å [8]. SPP forms a slender, bullet-shaped homotetramer with dimensions of 85 x 85 x 130 Å. The SPP complex has four concaves on the rhombus-like sides, connected to a large chamber inside the molecule. For the tetrameric assembly, the N-terminal region of SPP was found to be sufficient. Moreover, when N-terminal region was overexpressed, the formation of the endogenous SPP tetramer was inhibited, which suppressed the proteolytic activity within cells. From these data, the N-terminal region is considered to work as the structural scaffold.Transmembrane (TM) translocation of newly synthesized secretion proteins and membrane proteins are carried out by a Sec translocon protein complex. The polypeptide-conducting pore is formed by the SecYEG-SecA complex in bacteria, and the membrane protein SecDF is necessary for the efficient transport of proteins. However the molecular mechanism how SecDF realized efficient transport is not clear. A previous X-ray structural study of the whole protein and subdomain suggest that SecDF has at least two conformational variants, which could reflect molecular dynamics of this protein. To confirm this hypothesis, we analyzed the 3D structure of SecDF using dark field STEM electron tomography and single particle reconstruction. We determined two different whole SecDF protein structures which well explains the X-ray data. From these data, we would like to propose the possible molecular mechanism of SecDF during polypeptide translocation.
Collapse
Affiliation(s)
- Chikara Sato
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kazuhiro Mio
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masaaki Kawata
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Toshihiko Ogura
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
15
|
|
16
|
Chen CY, Malchus NS, Hehn B, Stelzer W, Avci D, Langosch D, Lemberg MK. Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u. EMBO J 2014; 33:2492-506. [PMID: 25239945 DOI: 10.15252/embj.201488208] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signal peptide peptidase (SPP) catalyzes intramembrane proteolysis of signal peptides at the endoplasmic reticulum (ER), but has also been suggested to play a role in ER-associated degradation (ERAD). Here, we show that SPP forms a complex with the ERAD factor Derlin1 and the E3 ubiquitin ligase TRC8 to cleave the unfolded protein response (UPR) regulator XBP1u. Cleavage occurs within a so far unrecognized type II transmembrane domain, which renders XBP1u as an SPP substrate through specific sequence features. Additionally, Derlin1 acts in the complex as a substrate receptor by recognizing the luminal tail of XBP1u. Remarkably, this interaction of Derlin1 with XBP1u obviates the need for ectodomain shedding prior to SPP cleavage, commonly required for intramembrane cuts. Furthermore, we show that XBP1u inhibits the UPR transcription factor XBP1s by targeting it toward proteasomal degradation. Thus, we identify an ERAD complex that controls the abundance of XBP1u and thereby tunes signaling through the UPR.
Collapse
Affiliation(s)
- Chia-yi Chen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Nicole S Malchus
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Beate Hehn
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Walter Stelzer
- Lehrstuhl für Chemie der Biopolymere, Department für Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | - Dönem Avci
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Department für Biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | - Marius K Lemberg
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
17
|
Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2828-39. [PMID: 24099004 DOI: 10.1016/j.bbamem.2013.03.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 01/09/2023]
Abstract
Signal peptide peptidase (SPP) and the homologous SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 belong to the family of GxGD intramembrane proteases. SPP/SPPLs selectively cleave transmembrane domains in type II orientation and do not require additional co-factors for proteolytic activity. Orthologues of SPP and SPPLs have been identified in other vertebrates, plants, and eukaryotes. In line with their diverse subcellular localisations ranging from the ER (SPP, SPPL2c), the Golgi (SPPL3), the plasma membrane (SPPL2b) to lysosomes/late endosomes (SPPL2a), the different members of the SPP/SPPL family seem to exhibit distinct functions. Here, we review the substrates of these proteases identified to date as well as the current state of knowledge about the physiological implications of these proteolytic events as deduced from in vivo studies. Furthermore, the present knowledge on the structure of intramembrane proteases of the SPP/SPPL family, their cleavage mechanism and their substrate requirements are summarised. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Matthias Voss
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336 Munich, Germany
| | | | | |
Collapse
|
18
|
Hoshi M, Ohki Y, Ito K, Tomita T, Iwatsubo T, Ishimaru Y, Abe K, Asakura T. Experimental detection of proteolytic activity in a signal peptide peptidase of Arabidopsis thaliana. BMC BIOCHEMISTRY 2013; 14:16. [PMID: 23829174 PMCID: PMC3710259 DOI: 10.1186/1471-2091-14-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 07/02/2013] [Indexed: 11/23/2022]
Abstract
Background Signal peptide peptidase (SPP) is a multi-transmembrane aspartic protease involved in intramembrane-regulated proteolysis (RIP). RIP proteases mediate various key life events by releasing bioactive peptides from the plane of the membrane region. We have previously isolated Arabidopsis SPP (AtSPP) and found that this protein is expressed in the ER. An AtSPP-knockout plant was found to be lethal because of abnormal pollen formation; however, there is negligible information describing the physiological function of AtSPP. In this study, we have investigated the proteolytic activity of AtSPP to define the function of SPPs in plants. Results We found that an n-dodecyl-ß-maltoside (DDM)-solubilized membrane fraction from Arabidopsis cells digested the myc-Prolactin-PP-Flag peptide, a human SPP substrate, and this activity was inhibited by (Z-LL)2-ketone, an SPP-specific inhibitor. The proteolytic activities from the membrane fractions solubilized by other detergents were not inhibited by (Z-LL)2-ketone. To confirm the proteolytic activity of AtSPP, the protein was expressed as either a GFP fusion protein or solely AtSPP in yeast. SDS-PAGE analysis showed that migration of the fragments that were cleaved by AtSPP were identical in size to the fragments produced by human SPP using the same substrate. These membrane-expressed proteins digested the substrate in a manner similar to that in Arabidopsis cells. Conclusions The data from the in vitro cell-free assay indicated that the membrane fraction of both Arabidopsis cells and AtSPP recombinantly expressed in yeast actually possessed proteolytic activity for a human SPP substrate. We concluded that plant SPP possesses proteolytic activity and may be involved in RIP.
Collapse
Affiliation(s)
- Masako Hoshi
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tomita T, Iwatsubo T. Structural biology of presenilins and signal peptide peptidases. J Biol Chem 2013; 288:14673-80. [PMID: 23585568 DOI: 10.1074/jbc.r113.463281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presenilin and signal peptide peptidase are multispanning intramembrane-cleaving proteases with a conserved catalytic GxGD motif. Presenilin comprises the catalytic subunit of γ-secretase, a protease responsible for the generation of amyloid-β peptides causative of Alzheimer disease. Signal peptide peptidase proteins are implicated in the regulation of the immune system. Both protease family proteins have been recognized as druggable targets for several human diseases, but their detailed structure still remains unknown. Recently, the x-ray structures of some archaeal GxGD proteases have been determined. We review the recent progress in biochemical and biophysical probing of the structure of these atypical proteases.
Collapse
Affiliation(s)
- Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
20
|
Structure of a presenilin family intramembrane aspartate protease. Nature 2012; 493:56-61. [PMID: 23254940 DOI: 10.1038/nature11801] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/16/2012] [Indexed: 12/22/2022]
Abstract
Presenilin and signal peptide peptidase (SPP) are intramembrane aspartyl proteases that regulate important biological functions in eukaryotes. Mechanistic understanding of presenilin and SPP has been hampered by lack of relevant structural information. Here we report the crystal structure of a presenilin/SPP homologue (PSH) from the archaeon Methanoculleus marisnigri JR1. The protease, comprising nine transmembrane segments (TMs), adopts a previously unreported protein fold. The amino-terminal domain, consisting of TM1-6, forms a horseshoe-shaped structure, surrounding TM7-9 of the carboxy-terminal domain. The two catalytic aspartate residues are located on the cytoplasmic side of TM6 and TM7, spatially close to each other and approximately 8 Å into the lipid membrane surface. Water molecules gain constant access to the catalytic aspartates through a large cavity between the amino- and carboxy-terminal domains. Structural analysis reveals insights into the presenilin/SPP family of intramembrane proteases.
Collapse
|
21
|
Oehler V, Filipe A, Montserret R, da Costa D, Brown G, Penin F, McLauchlan J. Structural analysis of hepatitis C virus core-E1 signal peptide and requirements for cleavage of the genotype 3a signal sequence by signal peptide peptidase. J Virol 2012; 86:7818-28. [PMID: 22593157 PMCID: PMC3421639 DOI: 10.1128/jvi.00457-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022] Open
Abstract
The maturation of the hepatitis C virus (HCV) core protein requires proteolytic processing by two host proteases: signal peptidase (SP) and the intramembrane-cleaving protease signal peptide peptidase (SPP). Previous work on HCV genotype 1a (GT1a) and GT2a has identified crucial residues required for efficient signal peptide processing by SPP, which in turn has an effect on the production of infectious virus particles. Here we demonstrate that the JFH1 GT2a core-E1 signal peptide can be adapted to the GT3a sequence without affecting the production of infectious HCV. Through mutagenesis studies, we identified crucial residues required for core-E1 signal peptide processing, including a GT3a sequence-specific histidine (His) at position 187. In addition, the stable knockdown of intracellular SPP levels in HuH-7 cells significantly affects HCV virus titers, further demonstrating the requirement for SPP for the maturation of core and the production of infectious HCV particles. Finally, our nuclear magnetic resonance (NMR) structural analysis of a synthetic HCV JFH1 GT2a core-E1 signal peptide provides an essential structural template for a further understanding of core processing as well as the first model for an SPP substrate within its membrane environment. Our findings give deeper insights into the mechanisms of intramembrane-cleaving proteases and the impact on viral infections.
Collapse
Affiliation(s)
- Verena Oehler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roland Montserret
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, UMR 5086, CNRS, Université de Lyon, Lyon, France
| | - Daniel da Costa
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gaie Brown
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - François Penin
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, UMR 5086, CNRS, Université de Lyon, Lyon, France
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|