1
|
Kreiter J, Tyschuk T, Pohl EE. Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2. Biomolecules 2023; 14:21. [PMID: 38254621 PMCID: PMC10813146 DOI: 10.3390/biom14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Uncoupling protein 3 (UCP3) belongs to the mitochondrial carrier protein superfamily SLC25 and is abundant in brown adipose tissue (BAT), the heart, and muscles. The expression of UCP3 in tissues mainly dependent on fatty acid oxidation suggests its involvement in cellular metabolism and has drawn attention to its possible transport function beyond the transport of protons in the presence of fatty acids. Based on the high homology between UCP2 and UCP3, we hypothesized that UCP3 transports C4 metabolites similar to UCP2. To test this, we measured the transport of substrates against phosphate (32Pi) in proteoliposomes reconstituted with recombinant murine UCP3 (mUCP3). We found that mUCP3 mainly transports aspartate and sulfate but also malate, malonate, oxaloacetate, and succinate. The transport rates calculated from the exchange of 32Pi against extraliposomal aspartate and sulfate were 23.9 ± 5.8 and 17.5 ± 5.1 µmol/min/mg, respectively. Using site-directed mutagenesis, we revealed that mutation of R84 resulted in impaired aspartate/phosphate exchange, demonstrating its critical role in substrate transport. The difference in substrate preference between mUCP2 and mUCP3 may be explained by their different tissue expression patterns and biological functions in these tissues.
Collapse
Affiliation(s)
| | | | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (T.T.)
| |
Collapse
|
2
|
Preservation of mitochondrial membrane potential is necessary for lifespan extension from dietary restriction. GeroScience 2023:10.1007/s11357-023-00766-w. [PMID: 36877298 PMCID: PMC10400507 DOI: 10.1007/s11357-023-00766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Dietary restriction (DR) increases lifespan in many organisms, but its underlying mechanisms are not fully understood. Mitochondria play a central role in metabolic regulation and are known to undergo changes in structure and function in response to DR. Mitochondrial membrane potential (Δψm) is the driving force for ATP production and mitochondrial outputs that integrate many cellular signals. One such signal regulated by Δψm is nutrient-status sensing. Here, we tested the hypothesis that DR promotes longevity through preserved Δψm during adulthood. Using the nematode Caenorhabditis elegans, we find that Δψm declines with age relatively early in the lifespan, and this decline is attenuated by DR. Pharmacologic depletion of Δψm blocked the longevity and health benefits of DR. Genetic perturbation of Δψm and mitochondrial ATP availability similarly prevented lifespan extension from DR. Taken together, this study provides further evidence that appropriate regulation of Δψm is a critical factor for health and longevity in response to DR.
Collapse
|
3
|
Mendez-Romero O, Ricardez-García C, Castañeda-Tamez P, Chiquete-Félix N, Uribe-Carvajal S. Thriving in Oxygen While Preventing ROS Overproduction: No Two Systems Are Created Equal. Front Physiol 2022; 13:874321. [PMID: 35444563 PMCID: PMC9013945 DOI: 10.3389/fphys.2022.874321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
From 2.5 to 2.0 billion years ago, atmospheric oxygen concentration [O2] rose thousands of times, leading to the first mass extinction. Reactive Oxygen Species (ROS) produced by the non-catalyzed partial reduction of O2 were highly toxic eliminating many species. Survivors developed different strategies to cope with ROS toxicity. At the same time, using O2 as the final acceptor in respiratory chains increased ATP production manifold. Thus, both O2 and ROS were strong drivers of evolution, as species optimized aerobic metabolism while developing ROS-neutralizing mechanisms. The first line of defense is preventing ROS overproduction and two mechanisms were developed in parallel: 1) Physiological uncoupling systems (PUS), which increase the rate of electron fluxes in respiratory systems. 2) Avoidance of excess [O2]. However, it seems that as avoidance efficiency improved, PUSs became less efficient. PUS includes branched respiratory chains and proton sinks, which may be proton specific, the mitochondrial uncoupling proteins (UCPs) or unspecific, the mitochondrial permeability transition pore (PTP). High [O2] avoidance also involved different strategies: 1) Cell association, as in biofilms or in multi-cellularity allowed gas-permeable organisms (oxyconformers) from bacterial to arthropods to exclude O2. 2) Motility, to migrate from hypoxic niches. 3) Oxyregulator organisms: as early as in fish, and O2-impermeable epithelium excluded all gases and only exact amounts entered through specialized respiratory systems. Here we follow the parallel evolution of PUS and O2-avoidance, PUS became less critical and lost efficiency. In regard, to proton sinks, there is fewer evidence on their evolution, although UCPs have indeed drifted in function while in some species it is not clear whether PTPs exist.
Collapse
|
4
|
Drosophila melanogaster Uncoupling Protein-4A (UCP4A) Catalyzes a Unidirectional Transport of Aspartate. Int J Mol Sci 2022; 23:ijms23031020. [PMID: 35162943 PMCID: PMC8834685 DOI: 10.3390/ijms23031020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/23/2022] Open
Abstract
Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson’s disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.
Collapse
|
5
|
Ganesan S, Parvathi VD. Deconstructing the molecular genetics behind the PINK1/Parkin axis in Parkinson’s disease using Drosophila melanogaster as a model organism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila.
Main body
Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants.
Conclusion
While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.
Collapse
|
6
|
Functional characterization of the mitochondrial uncoupling proteins from the white shrimp Litopenaeus vannamei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148209. [PMID: 32305415 DOI: 10.1016/j.bbabio.2020.148209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 01/21/2023]
Abstract
Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.
Collapse
|
7
|
Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer's Mice. Cells 2020; 9:cells9061541. [PMID: 32599904 PMCID: PMC7349170 DOI: 10.3390/cells9061541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a major public health concern worldwide. Advanced age and female sex are two of the most prominent risk factors for AD. AD is characterized by progressive neuronal loss, especially in the cortex and hippocampus, and mitochondrial dysfunction has been proposed to be an early event in the onset and progression of the disease. Our results showed early perturbations in mitochondrial function in 3xTg mouse brain, with the cortex being more susceptible to mitochondrial changes than the hippocampus. In the cortex of 3xTg females, decreased coupled and uncoupled respiration were evident early (at 2 months of age), while in males it appeared later at 6 months of age. We observed increased coupled respiration in the hippocampus of 2-month-old 3xTg females, but no changes were detected later in life. Changes in mitochondrial dynamics were indicated by decreased mitofusin (Mfn2) and increased dynamin related protein 1 (Drp1) (only in females) in the hippocampus and cortex of 3xTg mice. Our findings highlight the importance of controlling and accounting for sex, brain region, and age in studies examining brain bioenergetics using this common AD model in order to more accurately evaluate potential therapies and improve the sex-specific translatability of preclinical findings.
Collapse
|
8
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Zhao T, Hao Y, Kaplan JM. Axonal Mitochondria Modulate Neuropeptide Secretion Through the Hypoxic Stress Response in Caenorhabditis elegans. Genetics 2018; 210:275-285. [PMID: 30049781 PMCID: PMC6116974 DOI: 10.1534/genetics.118.301014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Neurons are highly dependent on mitochondrial function, and mitochondrial damage has been implicated in many neurological and neurodegenerative diseases. Here we show that axonal mitochondria are necessary for neuropeptide secretion in Caenorhabditis elegans and that oxidative phosphorylation, but not mitochondrial calcium uptake, is required for secretion. Oxidative phosphorylation produces cellular ATP, reactive oxygen species, and consumes oxygen. Disrupting any of these functions could inhibit neuropeptide secretion. We show that blocking mitochondria transport into axons or decreasing mitochondrial function inhibits neuropeptide secretion through activation of the hypoxia inducible factor HIF-1 Our results suggest that axonal mitochondria modulate neuropeptide secretion by regulating transcriptional responses induced by metabolic stress.
Collapse
Affiliation(s)
- Tongtong Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yingsong Hao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Sagi D. The addition of a developmental factor, unc-62, to already long-lived worms increases lifespan and healthspan. Biol Open 2017; 6:1796-1801. [PMID: 29055022 PMCID: PMC5769649 DOI: 10.1242/bio.027433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aging is a complex trait that is affected by multiple genetic pathways. A relatively unexplored approach is to manipulate multiple independent aging pathways simultaneously in order to observe their cumulative effect on lifespan. Here, we report the phenotypic characterization of a strain with changes in five aging pathways: (1) mitochondrial reactive oxygen species (ROS) production, (2) innate immunity, (3) stress response, (4) metabolic control and (5) developmental regulation in old age. The quintuply modified strain has a lifespan that is 160% longer than the transgenic control strain. Additionally, the quintuply modified strain maintains several physiological markers of aging for a longer time than the transgenic control. Our results support a modular approach as a general scheme to study how multiple pathways interact to achieve extreme longevity. Summary: This work uses a modular approach to combine five genes together to build worms that are long lived and much healthier than control animals, without a significant reduction in fertility. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Dror Sagi
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, CA 94305-5329, USA
| |
Collapse
|
11
|
Djordjevic J, Thomson E, Chowdhury SR, Snow WM, Perez C, Wong TP, Fernyhough P, Albensi BC. Brain region- and sex-specific alterations in mitochondrial function and NF-κB signaling in the TgCRND8 mouse model of Alzheimer's disease. Neuroscience 2017; 361:81-92. [PMID: 28802916 DOI: 10.1016/j.neuroscience.2017.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common late onset neurodegenerative disorder with indications that women are disproportionately affected. Mitochondrial dysfunction has been one of the most discussed hypotheses associated with the early onset and progression of AD, and it has been attributed to intraneuronal accumulation of amyloid β (Aβ). It was suggested that one of the possible mediators for Aβ-impaired mitochondrial function is the nuclear factor kappa B (NF-κB) signaling pathway. NF-κB plays important roles in brain inflammation and antioxidant defense, as well as in the regulation of mitochondrial function, and studies have confirmed altered NF-κB signaling in AD brain. In this study, we looked for sex-based differences in impaired bioenergetic processes and NF-κB signaling in the AD-like brain using transgenic (Tg) CRND8 mice that express excessive brain Aβ, but without tau pathology. Our results show that mitochondrial dysfunction is not uniform in affected brain regions. We observed increased basal and coupled respiration in the hippocampus of TgCRND8 females only, along with a decreased Complex II-dependent respiratory activity. Cortical mitochondria from TgCRND8 mice have reduced uncoupled respiration capacity, regardless of sex. The pattern of changes in NF-κB signaling was the same in both brain structures, but was sex specific. Whereas in females there was an increase in all three subunits of NF-κB, in males we observed increase in p65 and p105, but no changes in p50 levels. These results demonstrate that mitochondrial function and inflammatory signaling in the AD-like brain is region- and sex-specific, which is an important consideration for therapeutic strategies.
Collapse
Affiliation(s)
- Jelena Djordjevic
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| | - Ella Thomson
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Subir Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Wanda M Snow
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Claudia Perez
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Tak Pan Wong
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses. PLoS Genet 2017; 13:e1006921. [PMID: 28732077 PMCID: PMC5544249 DOI: 10.1371/journal.pgen.1006921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 08/04/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell’s maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions. Post-transcriptional modification of tRNAs is a universal process, thought to be essential for optimizing the functions of tRNAs. In humans, defects in the modification at position 2 (performed by protein TRMU) and 5 (carried out by proteins GTPBP3 and MTO1) of the uridine located at the wobble position of mitochondrial tRNAs (mt-tRNAs) cause oxidative phosphorylation (OXPHOS) dysfunction, and lead to liver and heart failure, respectively. However, the underlying mechanisms leading to pathogenesis are not well-known, and hence there is no molecular explanation for the different clinical phenotypes. We use Caenorhabditis elegans to compare in the same animal model and genetic background the effects of inactivating the TRMU, GTPBP3 and MTO1 orthologues on the phenotype and gene expression pattern of nuclear and mitochondrial DNA. Our data show that C. elegans responds to mt-tRNA hypomodification by changing in a defect-specific manner the expression of nuclear and mitochondrial genes, which leads, in all single mutants, to a rescue of the OXPHOS dysfunction that is associated with a biological cost. Our work suggests that pathology may develop as a consequence of the cell’s maladaptive response to the hypomodification status of mt-tRNAs.
Collapse
|
13
|
de Carvalho NR, Rodrigues NR, Macedo GE, Bristot IJ, Boligon AA, de Campos MM, Cunha FAB, Coutinho HD, Klamt F, Merritt TJS, Posser T, Franco JL. Eugenia uniflora leaf essential oil promotes mitochondrial dysfunction in Drosophila melanogaster through the inhibition of oxidative phosphorylation. Toxicol Res (Camb) 2017; 6:526-534. [PMID: 30090521 PMCID: PMC6060740 DOI: 10.1039/c7tx00072c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/03/2017] [Indexed: 01/06/2023] Open
Abstract
Eugenia uniflora L. (Myrtaceae family) has demonstrated several properties of human interest, including insecticide potential, due to its pro-oxidant properties. These properties likely result from the effects on its mitochondria, but the mechanism of this action is unclear. The aim of this work was to evaluate the mitochondrial bioenergetics function in Drosophila melanogaster exposed to E. uniflora leaf essential oil. For this, we used a high-resolution respirometry (HRR) protocol. We found that E. uniflora promoted a collapse of the mitochondrial transmembrane potential (ΔΨm). In addition the essential oil was able to promote the disruption of respiration coupled to oxidative phosphorylation (OXPHOS) and inhibit the respiratory electron transfer system (ETS) established with an uncoupler. In addition, exposure led to decreases of respiratory control ratio (RCR), bioenergetics capacity and OXPHOS coupling efficiency, and induced changes in the substrate control ratio. Altogether, our results suggested that E. uniflora impairs the mitochondrial function/viability and promotes the uncoupling of OXPHOS, which appears to play an important role in the cellular bioenergetics failure induced by essential oil in D. melanogaster.
Collapse
Affiliation(s)
- Nélson R de Carvalho
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Nathane R Rodrigues
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Giulianna E Macedo
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Ivi J Bristot
- Departamento de Bioquímica , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS CEP 90035-003 , Brasil
| | - Aline A Boligon
- Programa de Pós-Graduação em Ciências Farmacêuticas Universidade Federal de Santa Maria , Santa Maria , RS , Brasil
| | - Marli M de Campos
- Departmento de Análises Clínicas e Toxicológicas , Universidade Federal de Santa Maria , RS , Brasil
| | - Francisco A B Cunha
- Department of Chemistry & Biochemistry , Laurentian University , Sudbury , ON , Canada P3E 2C6
| | - Henrique D Coutinho
- Department of Chemistry & Biochemistry , Laurentian University , Sudbury , ON , Canada P3E 2C6
| | - Fabio Klamt
- Departamento de Bioquímica , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS CEP 90035-003 , Brasil
| | - Thomas J S Merritt
- Departamento de Ciências Biológicas da Universidade Regional do Cariri - URCA , Crato , CE , Brasil
| | - Thaís Posser
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| | - Jeferson L Franco
- Centro Interdisciplinar de Pesquisas em Biotecnologia - CIPBIOTEC , Universidade Federal do Pampa , Campus São Gabriel , RS , Brasil .
| |
Collapse
|
14
|
Identification of a previously undetected metabolic defect in the Complex II Caenorhabditis elegans mev-1 mutant strain using respiratory control analysis. Biogerontology 2016; 18:189-200. [PMID: 28039571 DOI: 10.1007/s10522-016-9672-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Hypometabolism may play an important role in the pathogenesis of ageing and ageing-related diseases. The nematode Caenorhabditis elegans offers the opportunity to study "living mitochondria" in a small (~1 mm) animal replete with a highly stereotypical, yet complex, anatomy and physiology. Basal oxygen consumption rate is often employed as a proxy for energy metabolism in this context. This parameter is traditionally measured using single-chamber Clark electrodes without the addition of metabolic modulators. Recently, multi-well oxygen electrodes, facilitating addition of metabolic modulators and hence study of respiratory control during different mitochondrial respiration states, have been developed. However, only limited official protocols exist for C. elegans, and key limitations of these techniques are therefore unclear. Following modification and testing of some of the existing protocols, we used these methods to explore mitochondrial bioenergetics in live nematodes of an electron transfer chain Complex II mutant strain, mev-1, and identified a previously undetected metabolic defect. We find that mev-1 mutants cannot respond adequately to increased energy demands, suggesting that oxidative phosphorylation is more severely impaired in these animals than has previously been appreciated.
Collapse
|
15
|
Slocinska M, Antos-Krzeminska N, Rosinski G, Jarmuszkiewicz W. NONSULFATED SULFAKININ CHANGES METABOLIC PARAMETERS OF INSECT FAT BODY MITOCHONDRIA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:177-189. [PMID: 27501306 DOI: 10.1002/arch.21350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the effect of neuropeptide, the nonsulfated sulfakinin (SK) Zopat-SK-1 (pETSDDYGHLRFa) on the mitochondrial oxidative metabolism in the Zophobas atratus larval fat body. Mitochondria were isolated from beetle fat bodies 2 and 24 h after hormone injection. The administration of 20 pmol of Zopat-SK-1 to feeding larvae led to decreased mitochondrial oxidative activities in larval fat body. Diminished activities of citrate synthase and the cytochrome pathway, that is, nonphosphorylating and phosphorylating respiration during succinate oxidation, were observed. However, the effect of Zopat-SK-1 was more pronounced in fat body of insects after 24 h since hormone application. In hormone-treated larval fat bodies, mitochondrial respiration was decreased at the level of respiratory chain and the TCA cycle as well as at the level of mitochondrial biogenesis, as indicated by decreased activities of mitochondrial marker enzymes in fat body homogenates. The inhibition of succinate oxidation may indicate the role of Zopat-SK-1 in the regulation of mitochondrial complex II activity. Moreover, decreased respiratory chain activity was accompanied by the reduced activity of mitochondrial energy-dissipating pathway, uncoupling protein 4. The observed decrease in mitochondrial oxidative metabolism may reflect the Zopat-SK-1-induced reduction in the metabolic rate of larval fat body linked to actual energetic demands of animal.
Collapse
Affiliation(s)
- Malgorzata Slocinska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | | | - Grzegorz Rosinski
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
16
|
Riley CL, Dao C, Kenaston MA, Muto L, Kohno S, Nowinski SM, Solmonson AD, Pfeiffer M, Sack MN, Lu Z, Fiermonte G, Sprague JE, Mills EM. The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation. J Physiol 2016; 594:7455-7464. [PMID: 27647490 DOI: 10.1113/jp272971] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Both uncoupling protein 1 (UCP1) and UCP3 are important for mammalian thermoregulation. UCP1 and UCP3 in brown adipose tissue mediate early and late phases of sympathomimetic thermogenesis, respectively. Lipopolysaccharide thermogenesis requires skeletal muscle UCP3 but not UCP1. Acute noradrenaline-induced hyperthermia requires UCP1 but not UCP3. Loss of both UCP1 and UCP3 accelerate the loss of body temperature compared to UCP1KO alone during acute cold exposure. ABSTRACT Uncoupling protein 1 (UCP1) is the established mediator of brown adipose tissue-dependent thermogenesis. In contrast, the role of UCP3, expressed in both skeletal muscle and brown adipose tissue, in thermoregulatory physiology is less well understood. Here, we show that mice lacking UCP3 (UCP3KO) have impaired sympathomimetic (methamphetamine) and completely abrogated lipopolysaccharide (LPS) thermogenesis, but a normal response to noradrenaline. By comparison, UCP1 knockout (UCP1KO) mice exhibit blunted methamphetamine and fully inhibited noradrenaline thermogenesis, but an increased febrile response to LPS. We further establish that mice lacking both UCP1 and 3 (UCPDK) fail to show methamphetamine-induced hyperthermia, and have a markedly accelerated loss of body temperature and survival after cold exposure compared to UCP1KO mice. Finally, we show that skeletal muscle-specific human UCP3 expression is able to significantly rescue LPS, but not sympathomimetic thermogenesis blunted in UCP3KO mice. These studies identify UCP3 as an important mediator of physiological thermogenesis and support a renewed focus on targeting UCP3 in metabolic physiology.
Collapse
Affiliation(s)
- Christopher L Riley
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Christine Dao
- Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - M Alexander Kenaston
- Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Luigina Muto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| | - Shohei Kohno
- Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sara M Nowinski
- Department of Biochemistry, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Ashley D Solmonson
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Pfeiffer
- Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael N Sack
- National Heart, Lung, and Blood Institute, Laboratory of Mitochondrial Biology and Metabolism, NIH, Bethesda, MD, 20892, USA
| | - Zhongping Lu
- Cardiovascular and Pulmonary Branch and the Department of Biochemistry and Molecular Medicine, George Washington University, and the Veterans Affairs Medical Center, Washington, DC, 20422, 20052, USA
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies, and Biopharmaceutics and Center of Excellence in Comparative Genomics, University of Bari, 70125, Bari, Italy
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Edward M Mills
- Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
17
|
The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:21-33. [PMID: 27751905 DOI: 10.1016/j.bbabio.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/29/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022]
Abstract
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.
Collapse
|
18
|
Cho I, Hwang GJ, Cho JH. Uncoupling Protein, UCP-4 May Be Involved in Neuronal Defects During Aging and Resistance to Pathogens in Caenorhabditis elegans. Mol Cells 2016; 39:680-6. [PMID: 27646689 PMCID: PMC5050532 DOI: 10.14348/molcells.2016.0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022] Open
Abstract
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins that function to dissipate proton motive force and mitochondrial membrane potential. One UCP has been identified in Caenorhabditis elegans (C. elegans), namely UCP-4. In this study, we examined its expression and localization using a GFP marker in C. elegans. ucp-4 was expressed throughout the body from early embryo to aged adult and UCP-4 was localized in the mitochondria. It is known that increased mitochondrial membrane protential leads to a reactive oxygen species (ROS) increase, which is associated with age-related diseases, including neurodegenerative diseases in humans. A ucp-4 mutant showed increased mitochondrial membrane protential in association with increased neuronal defects during aging, and the neurons of ucp-4 overexpressing animals showed decreased neuronal defects during aging. These results suggest that UCP-4 may be involved in neuroprotection during aging via relieving mitochondrial membrane protential. We also investigated the relationship between UCP-4 and innate immunity because increased ROS can affect innate immunity. ucp-4 mutant displayed increased resistance to the pathogen Staphylococcus aureus compared to wild type. The enhanced immunity in the ucp-4 mutant could be related to increased mitochondrial membrane protential, presumably followed by increased ROS. In summary, UCP-4 might have an important role in neuronal aging and innate immune responses through mediating mitochondrial membrane protential.
Collapse
Affiliation(s)
- Injeong Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| | - Gyu Jin Hwang
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| |
Collapse
|
19
|
Luz AL, Godebo TR, Bhatt DP, Ilkayeva OR, Maurer LL, Hirschey MD, Meyer JN. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans. Toxicol Sci 2016; 152:349-62. [PMID: 27208080 PMCID: PMC4960910 DOI: 10.1093/toxsci/kfw093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Collapse
Affiliation(s)
- Anthony L Luz
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Tewodros R Godebo
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | | | - Olga R Ilkayeva
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center
| | - Laura L Maurer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Joel N Meyer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
20
|
Uncoupling proteins of invertebrates: A review. IUBMB Life 2016; 68:691-9. [DOI: 10.1002/iub.1535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/18/2016] [Indexed: 01/05/2023]
|
21
|
Chang ALS. Expanding Our Understanding of Human Skin Aging. J Invest Dermatol 2016; 136:897-899. [DOI: 10.1016/j.jid.2016.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 01/07/2023]
|
22
|
Bowman A, Birch-Machin MA. Age-Dependent Decrease of Mitochondrial Complex II Activity in Human Skin Fibroblasts. J Invest Dermatol 2016; 136:912-919. [PMID: 26829036 DOI: 10.1016/j.jid.2016.01.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
The mitochondrial theory of aging remains one of the most widely accepted aging theories and implicates mitochondrial electron transport chain dysfunction with subsequent increasing free radical generation. Recently, complex II of the electron transport chain appears to be more important than previously thought in this process, suggested predominantly by nonhuman studies. We investigated the relationship between complex II and aging using human skin as a model tissue. The rate of complex II activity per unit of mitochondria was determined in fibroblasts and keratinocytes cultured from skin covering a wide age range. Complex II activity significantly decreased with age in fibroblasts (P = 0.015) but not in keratinocytes. This was associated with a significant decline in transcript expression (P = 0.008 and P = 0.001) and protein levels (P = 0.0006 and P = 0.005) of the succinate dehydrogenase complex subunit A and subunit B catalytic subunits of complex II, respectively. In addition, there was a significant decrease in complex II activity with age (P = 0.029) that was specific to senescent skin cells. There was no decrease in complex IV activity with increasing age, suggesting possible locality to complex II.
Collapse
Affiliation(s)
- Amy Bowman
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark A Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Luz AL, Rooney JP, Kubik LL, Gonzalez CP, Song DH, Meyer JN. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes. PLoS One 2015; 10:e0130940. [PMID: 26106885 PMCID: PMC4480853 DOI: 10.1371/journal.pone.0130940] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.
Collapse
Affiliation(s)
- Anthony L. Luz
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - John P. Rooney
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Laura L. Kubik
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Claudia P. Gonzalez
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Dong Hoon Song
- Simulation Group, Samsung SDI, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Morgan PG, Higdon R, Kolker N, Bauman AT, Ilkayeva O, Newgard CB, Kolker E, Steele LM, Sedensky MM. Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion 2014; 20:95-102. [PMID: 25530493 DOI: 10.1016/j.mito.2014.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 09/10/2014] [Accepted: 12/10/2014] [Indexed: 01/06/2023]
Abstract
Single-gene mutations that disrupt mitochondrial respiratory chain function in Caenorhabditis elegans change patterns of protein expression and metabolites. Our goal was to develop useful molecular fingerprints employing adaptable techniques to recognize mitochondrial defects in the electron transport chain. We analyzed mutations affecting complex I, complex II, or ubiquinone synthesis and discovered overarching patterns in the response of C. elegans to mitochondrial dysfunction across all of the mutations studied. These patterns are in KEGG pathways conserved from C. elegans to mammals, verifying that the nematode can serve as a model for mammalian disease. In addition, specific differences exist between mutants that may be useful in diagnosing specific mitochondrial diseases in patients.
Collapse
Affiliation(s)
- P G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington, USA; Center for Developmental Therapeutics, Seattle Children's Research Institute, USA.
| | - R Higdon
- Bioinformatics and High-throughput Analysis Laboratory, USA; High-throughput Analysis Core, Seattle Children's Research Institute, USA; Data-Enabled Life Sciences Alliance (DELSA Global), USA
| | - N Kolker
- High-throughput Analysis Core, Seattle Children's Research Institute, USA; Data-Enabled Life Sciences Alliance (DELSA Global), USA
| | - A T Bauman
- Bioinformatics and High-throughput Analysis Laboratory, USA
| | - O Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - C B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - E Kolker
- Bioinformatics and High-throughput Analysis Laboratory, USA; High-throughput Analysis Core, Seattle Children's Research Institute, USA; Data-Enabled Life Sciences Alliance (DELSA Global), USA; Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA 02115, USA
| | - L M Steele
- Center for Developmental Therapeutics, Seattle Children's Research Institute, USA
| | - M M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington, USA; Center for Developmental Therapeutics, Seattle Children's Research Institute, USA
| |
Collapse
|
25
|
Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 2014; 4:831-78. [PMID: 25257998 PMCID: PMC4192695 DOI: 10.3390/metabo4030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|
26
|
Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection. J Bioenerg Biomembr 2014; 47:119-31. [PMID: 25217852 DOI: 10.1007/s10863-014-9580-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The integrity of mitochondrial function is essential to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. Considering that neuronal uncoupling proteins (UCPs) decrease reactive oxygen species (ROS) production at the expense of energy production, it is important to understand the underlying mechanisms by which UCPs control the balance between the production of adenosine triphosphate (ATP) and ROS in the context of normal physiological activity and in pathological conditions. Here we review the current understanding of neuronal UCPs-mediated respiratory uncoupling process by performing a survey in their physiology and regulation. The latest findings regarding neuronal UCPs physiological roles and their involvement and interest as potential targets for therapeutic intervention in brain diseases will also be exploited.
Collapse
|
27
|
Slocinska M, Antos-Krzeminska N, Golebiowski M, Kuczer M, Stepnowski P, Rosinski G, Jarmuszkiewicz W. UCP4 expression changes in larval and pupal fat bodies of the beetle Zophobas atratus under adipokinetic hormone treatment. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:52-9. [DOI: 10.1016/j.cbpa.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022]
|
28
|
Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:598-611. [PMID: 23291191 DOI: 10.1016/j.bbabio.2012.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022]
Abstract
In recent years, it has become apparent that there exist several roles for respiratory complex II beyond metabolism. These include: (i) succinate signaling, (ii) reactive oxygen species (ROS) generation, (iii) ischemic preconditioning, (iv) various disease states and aging, and (v) a role in the function of the mitochondrial ATP-sensitive K(+) (mKATP) channel. This review will address the involvement of complex II in each of these areas, with a focus on how complex II regulates or may be involved in the assembly of the mKATP. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
29
|
Porter RK. Studies on the function and regulation of mitochondrial uncoupling proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:171-84. [PMID: 22729858 DOI: 10.1007/978-1-4614-3573-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mitochondrial uncoupling proteins are members of the SLC25 family of solute carriers. Models of mitochondrial transporter function predict that uncoupling proteins are solute carriers. Evidence in the literature suggests that uncoupling proteins can transport protons, fatty acid anions, chloride anions, and recently the dicarboxylate succinate. Studies have also demonstrated that UCPs can be covalently modified and in some instances this covalent modification is needed to affect uncoupling function. The current evidence from functional analyses of mammalian uncoupling proteins is summarized in this chapter.
Collapse
Affiliation(s)
- Richard K Porter
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
30
|
Molecular identification and functional characterisation of uncoupling protein 4 in larva and pupa fat body mitochondria from the beetle Zophobas atratus. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:126-33. [DOI: 10.1016/j.cbpb.2012.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 01/20/2023]
|
31
|
Ramsden DB, Ho PW, Ho JW, Liu H, So DH, Tse H, Chan K, Ho S. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2012; 2:468-78. [PMID: 22950050 PMCID: PMC3432969 DOI: 10.1002/brb3.55] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/07/2023] Open
Abstract
Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.
Collapse
Affiliation(s)
- David B. Ramsden
- School of Medicine and School of Biosciences, University of Birmingham, United Kingdom
| | - Philip W.‐L. Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| | - Jessica W.‐M. Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Hui‐Fang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Danny H.‐F. So
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Ho‐Man Tse
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Koon‐Ho Chan
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| | - Shu‐Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
32
|
Sagi D, Kim SK. An engineering approach to extending lifespan in C. elegans. PLoS Genet 2012; 8:e1002780. [PMID: 22737090 PMCID: PMC3380832 DOI: 10.1371/journal.pgen.1002780] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/08/2012] [Indexed: 02/08/2023] Open
Abstract
We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome.
Collapse
Affiliation(s)
| | - Stuart K. Kim
- Departments of Genetics and Developmental Biology, Stanford University Medical Center, Stanford, California, United States of America
| |
Collapse
|
33
|
Ho PW, Ho JW, Liu HF, So DH, Tse ZH, Chan KH, Ramsden DB, Ho SL. Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease. Transl Neurodegener 2012; 1:3. [PMID: 23210978 PMCID: PMC3506996 DOI: 10.1186/2047-9158-1-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease.
Collapse
Affiliation(s)
- Philip Wl Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|