1
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Kamel NA, Aboshanab KM, Elsayed KM. Colistin, doxycycline and Labetalol-meropenem combination are the most active against XDR-Carbapenem-resistant Acinetobacter baumannii: Role of a novel transferrable plasmid conferring carbapenem resistance. Diagn Microbiol Infect Dis 2024; 110:116558. [PMID: 39413660 DOI: 10.1016/j.diagmicrobio.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to evaluate the antimicrobial susceptibility and combination of a beta-blocker, labetalol (LAB) and meropenem (MEM) on Carbapenem-resistant (CR) A. baumannii clinical isolates. A total of 43 CR- A. baumannii were isolated of which 37 (86.6 %) and 28 (65 %) exhibited MDR and XDR phenotypes, respectively. Colistin and doxycycline still retain their activities in 93.1 % and 72.1 % of the isolates, respectively. Combining MEM with LAB at 0.25 mg /mL, decreased MIC values in 91.4 % (32/35) however, at 0.5 mg /mL, it decreased MIC value and restored susceptibility to MEM in 100 % and 91.4 % of the tested isolates, respectively. A novel transferable plasmid pAcbGIM3 harboring aph-3', blaoxa-58,blaGIM3 and blaCTX-M3 and eight mobile genetic elements were successfully isolated from a pan-drug resistant (PDR) isolate. In conclusion, LAB-MEM is a promising combination and should be clinically examined. This is the first report of a transmissible plasmid harboring blaGIM3 gene in Egypt.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Cairo 11566, Egypt; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.
| | - Khaled M Elsayed
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| |
Collapse
|
2
|
Wu J, Thompson TP, O'Connell NH, McCracken K, Powell J, Gilmore BF, Dunne CP, Kelly SA. More than just the gene: investigating expression using a non-native plasmid and host and its impact on resistance conferred by β-lactamase OXA-58 isolated from a hospital wastewater microbiome. Lett Appl Microbiol 2024; 77:ovae097. [PMID: 39375834 DOI: 10.1093/lambio/ovae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
With the escalation of hospital-acquired infections by multidrug resistant bacteria, understanding antibiotic resistance is of paramount importance. This study focuses on the β-lactamase gene, blaOXA-58, an important resistance determinant identified in a patient-facing hospital wastewater system. This study aimed to characterize the behaviour of the OXA-58 enzyme when expressed using a non-native plasmid and expression host. blaOXA-58 was cloned using a pET28a(+)/Escherichia coli BL21(DE3) expression system. Nitrocefin hydrolysis and antimicrobial susceptibility of OXA-58-producing cells were assessed against penicillin G, ampicillin, meropenem, and amoxicillin. blaOXA-58 conferred resistance to amoxicillin, penicillin G, and ampicillin, but not to meropenem. This was unexpected given OXA-58's annotation as a carbapenemase. The presence of meropenem also reduced nitrocefin hydrolysis, suggesting it acts as a competitive inhibitor of the OXA-58 enzyme. This study elucidates the phenotypic resistance conferred by an antimicrobial resistance gene (ARG) obtained from a clinically relevant setting and reveals that successful functional expression of ARGs is multifaceted. This study challenges the reliability of predicting antimicrobial resistance based solely on gene sequence alone, and serves as a reminder of the intricate interplay between genetics and structural factors in understanding resistance profiles across different host environments.
Collapse
Affiliation(s)
- J Wu
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - T P Thompson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - N H O'Connell
- Microbiology Department, University Hospital Limerick, Limerick, V94 F858, Ireland
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - K McCracken
- Keith McCracken Consulting Limited, The Manor House, Greencastle, Co. Donegal, F93 R9Y0, Ireland
| | - J Powell
- Microbiology Department, University Hospital Limerick, Limerick, V94 F858, Ireland
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - B F Gilmore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - C P Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| | - S A Kelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
3
|
Jain D, Verma J, Ajith T, Bhattacharjee A, Ghosh AS. Two non-active site residues W165 and L166 prominently influence the beta-lactam hydrolytic ability of OXA-23 beta-lactamase. J Antibiot (Tokyo) 2023; 76:489-498. [PMID: 37095236 DOI: 10.1038/s41429-023-00624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023]
Abstract
Dissemination of class D OXA-type carbapenemases is one of the significant causes of beta-lactam resistance in Gram-negative bacteria. The amino acid residues present near the active site are involved in hydrolytic mechanism of class D carbapenemases, though it is not identified in OXA-23. Here, with the help of site-directed mutagenesis, we aimed to explicate the importance of the residues W165, L166 and V167 of the possible omega loop and residue D222 in the short β5-β6 loop on the activity of OXA-23. All the residues were substituted with alanine. The resultant proteins were assayed for the changes in activity in E. coli cells and purified for in vitro activity, and stability assessment. E. coli cells harboring OXA-23_W165A and OXA-23_L166A, individually, exhibited a significant decrease in resistance towards beta-lactam antibiotics as compared to OXA-23. Further, purified OXA-23_W165A and OXA-23_L166A imparted about >4-fold decrease in catalytic efficiency and displayed reduced thermal stability as compared to OXA-23. Bocillin-FL binding assay revealed that W165A substitution results in improper N-carboxylation of K82, leading to deacylation deficient OXA-23. Therefore, we infer that the residue W165 maintains the integrity of N-carboxylated lysine (K82) of OXA-23 and the residue L166 might be responsible for properly orientating the antibiotic molecules.
Collapse
Affiliation(s)
- Diamond Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Tejavath Ajith
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | | | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
4
|
Takebayashi Y, Henderson SR, Chirgadze DY, Warburton PJ, Evans BA. OXA-66 structure and oligomerisation of OXA Ab enzymes. Access Microbiol 2022; 4:acmi000412. [PMID: 36415731 PMCID: PMC9675178 DOI: 10.1099/acmi.0.000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023] Open
Abstract
The OXA β-lactamases are responsible for hydrolysing β-lactam antibiotics and contribute to the multidrug-resistant phenotype of several major human pathogens. The OXAAb enzymes are intrinsic to Acinetobacter baumannii and can confer resistance to carbapenem antibiotics. Here we determined the structure of the most prevalent OXAAb enzyme, OXA-66. The structure of OXA-66 was solved at a resolution of 2.1 Å and found to be very similar to the structure of OXA-51, the only other OXAAb enzyme that has had its structure solved. Our data contained one molecule per asymmetric unit, and analysis of positions responsible for dimer formation in other OXA enzymes suggest that OXA-66 likely exists as a monomer.
Collapse
Affiliation(s)
- Yuiko Takebayashi
- Department of Biomedical and Forensic Science, Anglia Ruskin University, Cambridge, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sara R. Henderson
- Norwich Medical School, University of East Anglia, Norwich, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Philip J. Warburton
- Department of Biomedical and Forensic Science, Anglia Ruskin University, Cambridge, UK
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Benjamin A. Evans
- Department of Biomedical and Forensic Science, Anglia Ruskin University, Cambridge, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
5
|
Jain D, Verma J, Ghosh AS. Deciphering the role of residues in the loops nearing the active site of OXA-58 in imparting beta-lactamase activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35766983 DOI: 10.1099/mic.0.001203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The existence of OXA-58 carbapenemase alone or in combination with other beta-lactam resistance factors poses significant beta-lactam resistance. The exact mechanism of action of OXA type beta-lactamases is debatable due to the involvement of multiple residues within or outside the active site. In the present work, we have elucidated the relative role of residues present in the putative omega (W169, L170, K171) and β6-β7 (A226 and D228) loops on the activity of OXA-58 by substituting into alanine (and aspartate for A226) through site-directed mutagenesis. E. coli cells harbouring OXA-58, substituted at the putative omega loop, manifest a significant decrease in the beta-lactam resistance profile than that of the cells expressing OXA-58. Further, a reduction in the catalytic efficiency is observed for the purified variants of OXA-58 carrying individual substitutions in the putative omega loop than that of OXA-58. However, the addition of NaHCO3 (for carbamylation of K86) increases catalytic efficiency of the individual protein as revealed by nitrocefin hydrolysis assay and steady state kinetics. Moreover, W169A and K171A substitutions show significant effects on the thermal stability of OXA-58. Therefore, we conclude that the putative omega loop residues W169, L170 and K171, individually, have significant role in the activity and stability of OXA-58, mostly by stabilising carbamylated lysine of active site.
Collapse
Affiliation(s)
- Diamond Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
6
|
Bhattacharya S, Junghare V, Pandey NK, Baidya S, Agarwal H, Das N, Banerjee A, Ghosh D, Roy P, Patra HK, Hazra S. Variations in the SDN Loop of Class A Beta-Lactamases: A Study of the Molecular Mechanism of BlaC ( Mycobacterium tuberculosis) to Alter the Stability and Catalytic Activity Towards Antibiotic Resistance of MBIs. Front Microbiol 2021; 12:710291. [PMID: 34690953 PMCID: PMC8531524 DOI: 10.3389/fmicb.2021.710291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for an immediate search for novel treatment strategies. Recently, BlaC, the principal beta-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. BlaC belongs to Ambler class A, which is generally susceptible to the beta-lactamase inhibitors currently used in clinics: tazobactam, sulbactam, and clavulanate. Alterations at Ser130 in conserved SDN loop confer resistance to mechanism-based inhibitors (MBIs) commonly observed in various clinical isolates. The absence of clinical evidence of S130G conversion in M. tuberculosis draws our attention to build laboratory mutants of S130G and S130A of BlaC. The study involving steady state, inhibition kinetics, and fluorescence microscopy shows the emergence of resistance against MBIs to the mutants expressing S130G and S130A. To understand the molecular reasoning behind the unavailability of such mutation in real life, we have used circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), molecular dynamics (MD) simulation, and stability-based enzyme activity to compare the stability and dynamic behaviors of native and S130G/A mutant form of BlaC. A significant decrease in melting temperature (BlaC TM 60°C, S130A TM 50°C, and S130G TM 45°C), kinetic instability at higher temperature, and comparative dynamic instability correlate the fact that resistance to beta-lactam/beta-lactamase inhibitor combinations will likely not arise from the structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be potentially applied as a part of a successful treatment regimen against M. tuberculosis.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vivek Junghare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Niteesh Kumar Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Subhecchha Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsha Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladrisingha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ayan Banerjee
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Debashish Ghosh
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | - Saugata Hazra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
7
|
Chiou J, Cheng Q, Shum PTF, Wong MHY, Chan EWC, Chen S. Structural and Functional Characterization of OXA-48: Insight into Mechanism and Structural Basis of Substrate Recognition and Specificity. Int J Mol Sci 2021; 22:ijms222111480. [PMID: 34768916 PMCID: PMC8583920 DOI: 10.3390/ijms222111480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/04/2023] Open
Abstract
Class D β-lactamase OXA-48 is widely distributed among Gram-negative bacteria and is an important determinant of resistance to the last-resort carbapenems. Nevertheless, the detailed mechanism by which this β-lactamase hydrolyzes its substrates remains poorly understood. In this study, the complex structures of OXA-48 and various β-lactams were modeled and the potential active site residues that may interact with various β-lactams were identified and characterized to elucidate their roles in OXA-48 substrate recognition. Four residues, namely S70, K73, S118, and K208 were found to be essential for OXA-48 to undergo catalytic hydrolysis of various penicillins and carbapenems both in vivo and in vitro. T209 was found to be important for hydrolysis of imipenem, whereas R250 played a major role in hydrolyzing ampicillin, imipenem, and meropenem most likely by forming a H-bond or salt-bridge between the side chain of these two residues and the carboxylate oxygen ions of the substrates. Analysis of the effect of substitution of alanine in two residues, W105 and L158, revealed their roles in mediating the activity of OXA-48. Our data show that these residues most likely undergo hydrophobic interaction with the R groups and the core structure of the β-lactam ring in penicillins and the carbapenems, respectively. Unlike OXA-58, mass spectrometry suggested a loss of the C6-hydroxyethyl group during hydrolysis of meropenem by OXA-48, which has never been demonstrated in Class D carbapenemases. Findings in this study provide comprehensive knowledge of the mechanism of the substrate recognition and catalysis of OXA-type β-lactamases.
Collapse
Affiliation(s)
- Jiachi Chiou
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Qipeng Cheng
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Perry Tim-fat Shum
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Marcus Ho-yin Wong
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Edward Wai-chi Chan
- State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; (J.C.); (Q.C.); (P.T.-f.S.); (M.H.-y.W.); (E.W.-c.C.)
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- Correspondence:
| |
Collapse
|
8
|
Understanding the molecular interactions of inhibitors against Bla1 beta-lactamase towards unraveling the mechanism of antimicrobial resistance. Int J Biol Macromol 2021; 177:337-350. [PMID: 33582216 DOI: 10.1016/j.ijbiomac.2021.02.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
This study evaluated the inhibitory potential of various beta-lactamase inhibitors such as mechanism-based inhibitors (MBIs), carbapenems, monobactam, and non-beta-lactam inhibitors against Bla1, a class-A beta-lactamase encoded by Bacillus anthracis. The binding potential of different inhibitors was estimated using competitive kinetic assay, isothermal titration calorimetry, and Biolayer interferometry. We observed that tazobactam has better inhibition among other MBIs with a characteristics inhibition dissociation constant of 0.51 ± 0.13 μM. Avibactam was also identified as good inhibitor with an inhibition efficiency of 0.6 ± 0.04 μM. All the MBIs (KD = 1.90E-04 M, 2.05E-05 M, 3.55E-04 M for clavulanate, sulbactam and tazobactam) showed significantly better binding potential than carbapenems (KD = 1.02E-03 M, 2.74E-03 M, 1.24E-03 M for ertapenem, imipenem and biapenem respectively). Molecular dynamics simulations were carried out using Bla1-inhibitor complexes to understand the dynamics and stability. The minimum inhibitory concentration (MIC) was carried out by taking various substrates and inhibitors, and later it was followed by cell viability assay. Together, our study helps develop a proper understanding of Bla1 beta-lactamase and its interaction with inhibitory molecules. This study would facilitate comprehending the catalytic divergence of beta-lactamases and the newly emergent resistant strains, focusing on the new generation of therapeutics being less prone to antimicrobial resistance.
Collapse
|
9
|
A Diverse Panel of Clinical Acinetobacter baumannii for Research and Development. Antimicrob Agents Chemother 2020; 64:AAC.00840-20. [PMID: 32718956 DOI: 10.1128/aac.00840-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, Acinetobacter baumannii has emerged as a leading cause of nosocomial infections worldwide. Of particular concern are panresistant strains, leading the World Health Organization (WHO) to designate carbapenem-resistant A. baumannii as a priority 1 (critical) pathogen for research and development of new antibiotics. A key component in supporting this effort is accessibility to diverse and clinically relevant strains for testing. Here, we describe a panel of 100 diverse A. baumannii strains for use in this endeavor. Whole-genome sequencing was performed on 3,505 A. baumannii isolates housed at the Multidrug-Resistant Organism Repository and Surveillance Network. Isolates were cultured from clinical samples at health care facilities around the world between 2001 and 2017. Core-genome multilocus sequence typing and high-resolution single nucleotide polymorphism (SNP)-based phylogenetic analyses were used to select a final panel of 100 strains that captured the genetic diversity of the collection. Comprehensive antibiotic susceptibility testing was also performed on all 100 isolates using 14 clinically relevant antibiotics. The final 100-strain diversity panel contained representative strains from 70 different traditional Pasteur scheme multilocus sequence types, including major epidemic clones. This diversity was also reflected in antibiotic susceptibility and antimicrobial resistance (AMR) gene content, with phenotypes ranging from pansensitive to panresistant, and over 100 distinct AMR gene alleles identified from 32 gene families. This panel provides the most diverse and comprehensive set of A. baumannii strains for use in developing solutions for combating antibiotic resistance. The panel and all available metadata, including genome sequences, will be available to industry and academic institutions and federal and other laboratories free of charge.
Collapse
|
10
|
Håkonsholm F, Lunestad BT, Aguirre Sánchez JR, Martinez‐Urtaza J, Marathe NP, Svanevik CS. Vibrios from the Norwegian marine environment: Characterization of associated antibiotic resistance and virulence genes. Microbiologyopen 2020; 9:e1093. [PMID: 32558371 PMCID: PMC7520990 DOI: 10.1002/mbo3.1093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/20/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
A total of 116 Vibrio isolates comprising V. alginolyticus (n = 53), V. metschnikovii (n = 38), V. anguillarum (n = 21), V. antiquarius (n = 2), and V. fujianensis (n = 2) were obtained from seawater, fish, or bivalve molluscs from temperate Oceanic and Polar Oceanic area around Norway. Antibiotic sensitivity testing revealed resistance or reduced susceptibility to ampicillin (74%), oxolinic acid (33%), imipenem (21%), aztreonam (19%), and tobramycin (17%). Whole-genome sequence analysis of eighteen drug-resistant isolates revealed the presence of genes like β-lactamases, chloramphenicol-acetyltransferases, and genes conferring tetracycline and quinolone resistance. The strains also carried virulence genes like hlyA, tlh, rtxA to D and aceA, E and F. The genes for cholerae toxin (ctx), thermostable direct hemolysin (tdh), or zonula occludens toxin (zot) were not detected in any of the isolates. The present study shows low prevalence of multidrug resistance and absence of virulence genes of high global concern among environmental vibrios in Norway. However, in the light of climate change, and projected rising sea surface temperatures, even in the cold temperate areas, there is a need for frequent monitoring of resistance and virulence in vibrios to be prepared for future public health challenges.
Collapse
Affiliation(s)
| | | | | | - Jaime Martinez‐Urtaza
- Department of Genetics and MicrobiologyUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | | | | |
Collapse
|
11
|
Ramachandran B, Jeyakanthan J, Lopes BS. Molecular docking, dynamics and free energy analyses of Acinetobacter baumannii OXA class enzymes with carbapenems investigating their hydrolytic mechanisms. J Med Microbiol 2020; 69:1062-1078. [PMID: 32773005 DOI: 10.1099/jmm.0.001233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics.Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data.Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA).Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii, OXA-51, had a binding energy value of -40.984 kcal mol-1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol-1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups.Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml-1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, 0:025 Polwarth building, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
12
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Parkova A, Lucic A, Krajnc A, Brem J, Calvopiña K, Langley GW, McDonough MA, Trapencieris P, Schofield CJ. Broad Spectrum β-Lactamase Inhibition by a Thioether Substituted Bicyclic Boronate. ACS Infect Dis 2020; 6:1398-1404. [PMID: 31841636 DOI: 10.1021/acsinfecdis.9b00330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β-Lactamases comprise the most widely used mode of resistance to β-lactam antibiotics. Cyclic boronates have shown promise as a new class of β-lactamase inhibitor, with pioneering potential to potently inhibit both metallo- and serine-β-lactamases. We report studies concerning a bicyclic boronate ester with a thioether rather than the more typical β-lactam antibiotic "C-6/C-7" acylamino type side chain, which is present in the penicillin/cephalosporin antibiotics. The thioether bicyclic boronate ester was tested for activity against representative serine- and metallo-β-lactamases. The results support the broad inhibition potential of bicyclic boronate based inhibitors with different side chains, including against metallo-β-lactamases from B1, B2, and B3 subclasses. Combined with previous crystallographic studies, analysis of a crystal structure of the thioether inhibitor with the clinically relevant VIM-2 metallo-β-lactamase implies that further SAR work will expand the already broad scope of β-lactamase inhibition by bicyclic boronates.
Collapse
Affiliation(s)
- Anete Parkova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anka Lucic
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Alen Krajnc
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jürgen Brem
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Karina Calvopiña
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Gareth W. Langley
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | - Christopher J. Schofield
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Chen Q, Zhou W, Qian C, Shen K, Zhu X, Zhou D, Sun Z, Lu W, Liu H, Li K, Xu T, Bao Q, Lu J. OXA-830, a Novel Chromosomally Encoded Extended-Spectrum Class D β-Lactamase in Aeromonas simiae. Front Microbiol 2019; 10:2732. [PMID: 31849884 PMCID: PMC6902050 DOI: 10.3389/fmicb.2019.02732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/11/2019] [Indexed: 12/04/2022] Open
Abstract
The diversity of class D β-lactamases mediating resistance to β-lactams has been increasingly reported recently. In this study, a novel class D oxacillinase named OXA-830 was identified in a fully sequenced Aeromonas simiae strain, which was isolated from sewage discharged from a farm in southern China. OXA-830 shares the highest amino acid identity of 79.3% with an OXA-12-like variant named OXA-725. When expressed in E. coli DH5α, OXA-830 conferred resistance to penicillins and selected β-lactamase inhibitors but not to cephalosporins and carbapenems. Kinetic analysis of OXA-830 revealed a broad substrate profile including penicillins, cefazolin, cefoxitin, and ceftazidime but not carbapenems. The hydrolytic activity was significantly inhibited by sulbactam, followed by tazobactam, but was less effectively inhibited by clavulanic acid. The blaOXA–830 gene was located on the A. simiae A6 chromosome and the blaOXA–830-related region was bracketed by a pair of perfect inverted repeats.
Collapse
Affiliation(s)
- Qianqian Chen
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Wangxiao Zhou
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Changrui Qian
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kai Shen
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Zhu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Zhewei Sun
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Tongji University School of Medicine, Shanghai, China.,Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China.,School of Medical and Health, Lishui University, Lishui, China
| |
Collapse
|
15
|
Antunes VU, Llontop EE, Vasconcelos FNDC, López de Los Santos Y, Oliveira RJ, Lincopan N, Farah CS, Doucet N, Mittermaier A, Favaro DC. Importance of the β5-β6 Loop for the Structure, Catalytic Efficiency, and Stability of Carbapenem-Hydrolyzing Class D β-Lactamase Subfamily OXA-143. Biochemistry 2019; 58:3604-3616. [PMID: 31355630 DOI: 10.1021/acs.biochem.9b00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The class D β-lactamase OXA-143 has been described as an efficient penicillinase, oxacillinase, and carbapenemase. The D224A variant, known as OXA-231, was described in 2012 as exhibiting less activity toward imipenem and increased oxacillinase activity. Additionally, the P227S mutation was reported as a case of convergent evolution for homologous enzymes. To investigate the impact of both mutations (D224A and P227S), we describe in this paper a deep investigation of the enzymatic activities of these three homologues. OXA-143(P227S) presented enhanced catalytic activity against ampicillin, oxacillins, aztreonam, and carbapenems. In addition, OXA-143(P227S) was the only member capable of hydrolyzing ceftazidime. These enhanced activities were due to a combination of a higher affinity (lower Km) and a higher turnover number (higher kcat). We also determined the crystal structure of apo OXA-231. As expected, the structure of this variant is very similar to the published OXA-143 structure, except for the two M223 conformations and the absence of electron density for three solvent-exposed loop segments. Molecular dynamics calculations showed that both mutants experience higher flexibility compared to that of the wild-type form. Therefore, our results illustrate that D224A and P227S act as deleterious and positive mutations, respectively, within the evolutionary path of the OXA-143 subfamily toward a more efficient carbapenemase.
Collapse
Affiliation(s)
- Víctor U Antunes
- Department of Organic Chemistry , State University of Campinas , São Paulo , SP 13083-970 , Brazil
| | - Edgar E Llontop
- Department of Biochemistry, Institute of Chemistry , University of Sao Paulo , Av. Prof. Lineu Prestes 748 , São Paulo , SP 05508-000 , Brazil
| | | | - Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie , Institut National de la Recherche Scientifique (INRS), Université du Québec , Laval , QC H7V 1B7 , Canada
| | - Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , 38064-200 Uberaba , MG , Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences , University of Sao Paulo , São Paulo , SP 05508-900 , Brazil
| | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry , University of Sao Paulo , Av. Prof. Lineu Prestes 748 , São Paulo , SP 05508-000 , Brazil
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie , Institut National de la Recherche Scientifique (INRS), Université du Québec , Laval , QC H7V 1B7 , Canada.,PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Anthony Mittermaier
- Department of Chemistry , McGill University , Montreal , QC H3A 0G4 , Canada.,PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Denize C Favaro
- Department of Organic Chemistry , State University of Campinas , São Paulo , SP 13083-970 , Brazil.,Department of Chemistry , McGill University , Montreal , QC H3A 0G4 , Canada
| |
Collapse
|
16
|
Zhang Y, Lei J, He Y, Yang J, Wang W, Wasey A, Xu J, Lin Y, Fan H, Jing G, Zhang C, Jin Y. Label‐Free Visualization of Carbapenemase Activity in Living Bacteria. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ye Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jin‐E Lei
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jianhua Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Wenjing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Abdul Wasey
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jiru Xu
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yue Lin
- Scion New Zealand Forest Research Institute) Rotorua 3010 New Zealand
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Guangyin Jing
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Ce Zhang
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Yi Jin
- School of Chemistry Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
17
|
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin Microbiol Rev 2018; 32:32/1/e00037-18. [PMID: 30487165 DOI: 10.1128/cmr.00037-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been successfully applied in recent years for first-line identification of pathogens in clinical microbiology because it is simple to use, rapid, and accurate and has economic benefits in hospital management. The range of clinical applications of MALDI-TOF MS for bacterial isolates is increasing constantly, from species identification to the two most promising applications in the near future: detection of antimicrobial resistance and strain typing for epidemiological studies. The aim of this review is to outline the contribution of previous MALDI-TOF MS studies in relation to detection of antimicrobial resistance and to discuss potential future challenges in this field. Three main approaches are ready (or almost ready) for clinical use, including the detection of antibiotic modifications due to the enzymatic activity of bacteria, the detection of antimicrobial resistance by analysis of the peak patterns of bacteria or mass peak profiles, and the detection of resistance by semiquantification of bacterial growth in the presence of a given antibiotic. This review provides an expert guide for MALDI-TOF MS users to new approaches in the field of antimicrobial resistance detection, especially possible applications as a routine diagnostic tool in microbiology laboratories.
Collapse
|
18
|
Zhang Y, Lei J, He Y, Yang J, Wang W, Wasey A, Xu J, Lin Y, Fan H, Jing G, Zhang C, Jin Y. Label‐Free Visualization of Carbapenemase Activity in Living Bacteria. Angew Chem Int Ed Engl 2018; 57:17120-17124. [DOI: 10.1002/anie.201810834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ye Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jin‐E Lei
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jianhua Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Wenjing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Abdul Wasey
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jiru Xu
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yue Lin
- Scion New Zealand Forest Research Institute) Rotorua 3010 New Zealand
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Guangyin Jing
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Ce Zhang
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Yi Jin
- School of Chemistry Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
19
|
Lohans CT, Wang DY, Jorgensen C, Cahill ST, Clifton IJ, McDonough MA, Oswin HP, Spencer J, Domene C, Claridge TDW, Brem J, Schofield CJ. 13C-Carbamylation as a mechanistic probe for the inhibition of class D β-lactamases by avibactam and halide ions. Org Biomol Chem 2018; 15:6024-6032. [PMID: 28678295 DOI: 10.1039/c7ob01514c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The class D (OXA) serine β-lactamases are a major cause of resistance to β-lactam antibiotics. The class D enzymes are unique amongst β-lactamases because they have a carbamylated lysine that acts as a general acid/base in catalysis. Previous crystallographic studies led to the proposal that β-lactamase inhibitor avibactam targets OXA enzymes in part by promoting decarbamylation. Similarly, halide ions are proposed to inhibit OXA enzymes via decarbamylation. NMR analyses, in which the carbamylated lysines of OXA-10, -23 and -48 were 13C-labelled, indicate that reaction with avibactam does not ablate lysine carbamylation in solution. While halide ions did not decarbamylate the 13C-labelled OXA enzymes in the absence of substrate or inhibitor, avibactam-treated OXA enzymes were susceptible to decarbamylation mediated by halide ions, suggesting halide ions may inhibit OXA enzymes by promoting decarbamylation of acyl-enzyme complex. Crystal structures of the OXA-10 avibactam complex were obtained with bromide, iodide, and sodium ions bound between Trp-154 and Lys-70. Structures were also obtained wherein bromide and iodide ions occupy the position expected for the 'hydrolytic water' molecule. In contrast with some solution studies, Lys-70 was decarbamylated in these structures. These results reveal clear differences between crystallographic and solution studies on the interaction of class D β-lactamases with avibactam and halides, and demonstrate the utility of 13C-NMR for studying lysine carbamylation in solution.
Collapse
Affiliation(s)
| | - David Y Wang
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Samuel T Cahill
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | - Ian J Clifton
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | | - Henry P Oswin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Carmen Domene
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK. and Department of Chemistry, King's College London, London, SE1 1DB, UK
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
20
|
Akhter S, Lund BA, Ismael A, Langer M, Isaksson J, Christopeit T, Leiros HKS, Bayer A. A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design. Eur J Med Chem 2017; 145:634-648. [PMID: 29348071 DOI: 10.1016/j.ejmech.2017.12.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/24/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023]
Abstract
β-Lactam antibiotics are of utmost importance when treating bacterial infections in the medical community. However, currently their utility is threatened by the emergence and spread of β-lactam resistance. The most prevalent resistance mechanism to β-lactam antibiotics is expression of β-lactamase enzymes. One way to overcome resistance caused by β-lactamases, is the development of β-lactamase inhibitors and today several β-lactamase inhibitors e.g. avibactam, are approved in the clinic. Our focus is the oxacillinase-48 (OXA-48), an enzyme reported to spread rapidly across the world and commonly identified in Escherichia coli and Klebsiella pneumoniae. To guide inhibitor design, we used diversely substituted 3-aryl and 3-heteroaryl benzoic acids to probe the active site of OXA-48 for useful enzyme-inhibitor interactions. In the presented study, a focused fragment library containing 49 3-substituted benzoic acid derivatives were synthesised and biochemically characterized. Based on crystallographic data from 33 fragment-enzyme complexes, the fragments could be classified into R1 or R2 binders by their overall binding conformation in relation to the binding of the R1 and R2 side groups of imipenem. Moreover, binding interactions attractive for future inhibitor design were found and their usefulness explored by the rational design and evaluation of merged inhibitors from orthogonally binding fragments. The best inhibitors among the resulting 3,5-disubstituted benzoic acids showed inhibitory potential in the low micromolar range (IC50 = 2.9 μM). For these inhibitors, the complex X-ray structures revealed non-covalent binding to Arg250, Arg214 and Tyr211 in the active site and the interactions observed with the mono-substituted fragments were also identified in the merged structures.
Collapse
Affiliation(s)
- Sundus Akhter
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Bjarte Aarmo Lund
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Manuel Langer
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Tony Christopeit
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT- The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
21
|
Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii. Antimicrob Agents Chemother 2017; 61:AAC.01172-17. [PMID: 28807908 DOI: 10.1128/aac.01172-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
The number of infections caused by Gram-negative pathogens carrying carbapenemases is increasing, and the group of carbapenem-hydrolyzing class D β-lactamases (CHDLs) is especially problematic. Several clinically important CHDLs have been identified in Acinetobacter baumannii, including OXA-23, OXA-24/40, OXA-58, OXA-143, OXA-235, and the chromosomally encoded OXA-51. The selection and dissemination of carbapenem-resistant A. baumannii strains constitutes a serious global threat. Carbapenems have been successfully utilized as last-resort antibiotics for the treatment of multidrug-resistant A. baumannii infections. However, the spread of OXA carbapenemases is compromising the continued use of these antimicrobials. In response to this clinical issue, it is necessary and urgent to design and develop new specific inhibitors with efficacy against these enzymes. The aim of this work was to characterize the inhibitory activity of LN-1-255 (a 6-alkylidene-2-substituted penicillin sulfone) and compare it to that of two established inhibitors (avibactam and tazobactam) against the most relevant enzymes of each group of class D carbapenemases in A. baumannii The β-lactamase inhibitor LN-1-255 demonstrated excellent microbiological synergy and inhibition kinetics parameters against all tested CHDLs and a significantly higher activity than tazobactam and avibactam. A combination of carbapenems and LN-1-255 was effective against A. baumannii class D carbapenemases. Docking assays confirmed the affinity of LN-1-255 for the active site of these enzymes. LN-1-255 represents a potential new β-lactamase inhibitor that may have a significant role in eradicating infections caused by A. baumannii isolates carrying CHDLs.
Collapse
|
22
|
Abstract
β-Lactamases, the enzymes that hydrolyze β-lactam antibiotics, remain the greatest threat to the usage of these agents. In this review, the mechanism of hydrolysis is discussed for both those enzymes that use serine at the active site and those that require divalent zinc ions for hydrolysis. The β-lactamases now include >2000 unique, naturally occurring amino acid sequences. Some of the clinically most important of these are the class A penicillinases, the extended-spectrum β-lactamases (ESBLs), the AmpC cephalosporinases, and the carbapenem-hydrolyzing enzymes in both the serine and metalloenzyme groups. Because of the versatility of these enzymes to evolve as new β-lactams are used therapeutically, new approaches to antimicrobial therapy may be required.
Collapse
Affiliation(s)
- Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44120.,Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44120
| |
Collapse
|
23
|
Frasca V. Using Isothermal Titration Calorimetry Techniques to Quantify Enzyme Kinetics. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2016.29040.vfr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes. Int J Antimicrob Agents 2016; 48:163-7. [DOI: 10.1016/j.ijantimicag.2016.04.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 11/24/2022]
|
25
|
Abstract
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
Collapse
|
26
|
Saino H, Sugiyabu T, Ueno G, Yamamoto M, Ishii Y, Miyano M. Crystal Structure of OXA-58 with the Substrate-Binding Cleft in a Closed State: Insights into the Mobility and Stability of the OXA-58 Structure. PLoS One 2015; 10:e0145869. [PMID: 26701320 PMCID: PMC4689445 DOI: 10.1371/journal.pone.0145869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3-α4, β6-β7, and β8-α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3-α4 and Met225 of β6-β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone.
Collapse
Affiliation(s)
- Hiromichi Saino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
- * E-mail:
| | - Tomohiro Sugiyabu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Masashi Miyano
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
27
|
Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 2015; 12:9-14. [PMID: 26551395 PMCID: PMC4684797 DOI: 10.1038/nchembio.1950] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022]
Abstract
Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes.
Collapse
|
28
|
Active-Site Plasticity Is Essential to Carbapenem Hydrolysis by OXA-58 Class D β-Lactamase of Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 60:75-86. [PMID: 26459904 DOI: 10.1128/aac.01393-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/03/2015] [Indexed: 01/09/2023] Open
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are a subgroup of class D β-lactamases, which are enzymes that hydrolyze β-lactams. They have attracted interest due to the emergence of multidrug-resistant Acinetobacter baumannii, which is not responsive to treatment with carbapenems, the usual antibiotics of choice for this bacterium. Unlike other class D β-lactamases, these enzymes efficiently hydrolyze carbapenem antibiotics. To explore the structural requirements for the catalysis of carbapenems by these enzymes, we determined the crystal structure of the OXA-58 CHDL of A. baumannii following acylation of its active-site serine by a 6α-hydroxymethyl penicillin derivative that is a structural mimetic for a carbapenem. In addition, several point mutation variants of the active site of OXA-58, as identified by the crystal structure analysis, were characterized kinetically. These combined studies confirm the mechanistic relevance of a hydrophobic bridge formed over the active site. This structural feature is suggested to stabilize the hydrolysis-productive acyl-enzyme species formed from the carbapenem substrates of this enzyme. Furthermore, our structural studies provide strong evidence that the hydroxyethyl group of carbapenems samples different orientations in the active sites of CHDLs, and the optimum orientation for catalysis depends on the topology of the active site allowing proper closure of the active site. We propose that CHDLs use the plasticity of the active site to drive the mechanism of carbapenem hydrolysis toward efficiency.
Collapse
|
29
|
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16:9654-92. [PMID: 25938965 PMCID: PMC4463611 DOI: 10.3390/ijms16059654] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.
Collapse
|
30
|
Sahuquillo-Arce JM, Hernández-Cabezas A, Yarad-Auad F, Ibáñez-Martínez E, Falomir-Salcedo P, Ruiz-Gaitán A. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol 2015; 4:75-95. [DOI: 10.5497/wjp.v4.i1.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Carbapenems are potent β-lactams with activity against extended-spectrum cephalosporinases and β-lactamases. These antibiotics, derived from thienamycn, a carbapenem produced by the environmental bacterium Streptomyces cattleya, were initially used as last-resort treatments for severe Gram-negative bacterial infections presenting resistance to most β-lactams but have become an empirical option in countries with high prevalence of Extended Spectrum β-lactamase-producing bacterial infections. Imipenem, the first commercially available carbapenem, was approved for clinical use in 1985. Since then, a wide variety of carbapenem-resistant bacteria has appeared, primarily Enterobacteriaceae such as Escherichia coli or Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa and Acinetobacter baumannii, presenting different resistance mechanisms. The most relevant mechanism is the production of carbapenem-hydrolyzing β-lactamases, also known as carbapenemases. These enzymes also inactivate all known β-lactams, and some of these enzymes can be acquired through horizontal gene transfer. Moreover, plasmids, transposons and integrons harboring these genes typically carry other resistance determinants, rendering the recipient bacteria resistant to almost all currently used antimicrobials, as is the case for K. pneumoniae carbapenemase - or New Delhi metallo-β-lactamases-type enzymes. The recent advent of these enzymes in the health landscape presents a serious challenge. First, the emergence of carbapenemases limits the currently available treatment options; second, these enzymes pose a risk to patients, as some studies have demonstrated high mortality associated with carbapenemase-producing bacterial infections; and third, these circumstances require an extra cost to sanitary systems, which are particularly cumbersome in developing countries. Therefore, emphasis should be placed on the early detection of these enzymes, the prevention of the spread of carbapenemase-producing bacteria and the development of new drugs resistant to carbapenemase hydrolysis.
Collapse
|
31
|
Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, Gniadkowski M, Hrabak J. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol (Praha) 2015; 60:119-29. [PMID: 25261959 PMCID: PMC4328112 DOI: 10.1007/s12223-014-0349-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/15/2014] [Indexed: 01/29/2023]
Abstract
Carbapenemase-mediated resistance to carbapenems in Enterobacteriaceae has become the main challenge in the treatment and prevention of infections recently. The partially unnoticed spread of OXA-48-type carbapenemase producers is usually assigned to low minimum inhibitory concentrations (MICs) of carbapenems that OXA-48-producing isolates often display. Therefore, there is an urgent need of specific and sensitive methods for isolation and detection of OXA-48 producers in clinical microbiology diagnostics. The influence of bicarbonates on carbapenem MICs against carbapenemase-producing Enterobacteriaceae was tested. We also checked whether the addition of bicarbonates to liquid media supplemented with meropenem may facilitate the selective enrichment of various carbapenemase producers in cultures. Furthermore, the sensitivity of carbapenemase confirmation by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) and spectrophotometric hydrolysis assays upon the addition of NH4HCO3 was examined. The addition of NaHCO3 significantly increased MICs of ertapenem and meropenem for OXA-48 producers. Furthermore, liquid media supplemented with NaHCO3 and meropenem were reliable for the selective enrichment of carbapenemase producers. The presence of NH4HCO3 in buffers used in the spectrophotometric and MALDI-TOF MS carbapenemase detection increased the sensitivity of that assay. Our results demonstrate that bicarbonates in media or reaction buffers can enhance the sensitivity of screening methods and diagnostic tests for carbapenemase producers.
Collapse
Affiliation(s)
- Vendula Studentova
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Costas C. Papagiannitsis
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | | | - Yvonne Pfeifer
- Robert Koch Institute, Nosocomial Pathogens and Antibiotic Resistance, Wernigerode, Germany
| | - Eva Chudackova
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | - Tamara Bergerova
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| | | | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Alej Svobody 80, 304 60 Plzen, Czech Republic
| |
Collapse
|
32
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
33
|
Crystal structure of carbapenemase OXA-58 from Acinetobacter baumannii. Antimicrob Agents Chemother 2014; 58:2135-43. [PMID: 24468777 DOI: 10.1128/aac.01983-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class D β-lactamases capable of hydrolyzing last-resort carbapenem antibiotics represent a major challenge for treatment of bacterial infections. Wide dissemination of these enzymes in Acinetobacter baumannii elevated this pathogen to the category of most deadly and difficult to treat. We present here the structure of the OXA-58 β-lactamase, a major class D carbapenemase of A. baumannii, determined to 1.30-Å resolution. Unlike two other Acinetobacter carbapenemases, OXA23 and OXA-24, the OXA-58 enzyme lacks the characteristic hydrophobic bridge over the active site, despite conservation of the residues which participate in its formation. The active-site residues in OXA-58 are spatially conserved in comparison to those in other class D β-lactamases. Lys86, which activates water molecules during the acylation and deacylation steps, is fully carboxylated in the OXA-58 structure. In the absence of a substrate, a water molecule is observed in the active site of the enzyme and is positioned in the pocket that is usually occupied by the 6α-hydroxyethyl moiety of carbapenems. A water molecule in this location would efficiently deacylate good substrates, such as the penicillins, but in the case of carbapenems, it would be expelled by the 6α-hydroxyethyl moiety of the antibiotics and a water from the surrounding medium would find its way to the vicinity of the carboxylated Lys86 to perform deacylation. Subtle differences in the position of this water in the acyl-enzyme complexes of class D β-lactamases could ultimately be responsible for differences in the catalytic efficiencies of these enzymes against last-resort carbapenem antibiotics.
Collapse
|
34
|
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are enzymes of the utmost clinical importance due to their ability to produce resistance to carbapenems, the antibiotics of last resort for the treatment of various life-threatening infections. The vast majority of these enzymes have been identified in Acinetobacter spp., notably in Acinetobacter baumannii. The OXA-2 and OXA-10 enzymes predominantly occur in Pseudomonas aeruginosa and are currently classified as narrow-spectrum class D β-lactamases. Here we demonstrate that when OXA-2 and OXA-10 are expressed in Escherichia coli strain JM83, they produce a narrow-spectrum antibiotic resistance pattern. When the enzymes are expressed in A. baumannii ATCC 17978, however, they behave as extended-spectrum β-lactamases and confer resistance to carbapenem antibiotics. Kinetic studies of OXA-2 and OXA-10 with four carbapenems have demonstrated that their catalytic efficiencies with these antibiotics are in the same range as those of some recognized class D carbapenemases. These results are in disagreement with the classification of the OXA-2 and OXA-10 enzymes as narrow-spectrum β-lactamases, and they suggest that other class D enzymes that are currently regarded as noncarbapenemases may in fact be CHDLs.
Collapse
|
35
|
Leonard DA, Bonomo RA, Powers RA. Class D β-lactamases: a reappraisal after five decades. Acc Chem Res 2013; 46:2407-15. [PMID: 23902256 DOI: 10.1021/ar300327a] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite 70 years of clinical use, β-lactam antibiotics still remain at the forefront of antimicrobial chemotherapy. The major challenge to these life-saving therapeutics is the presence of bacterial enzymes (i.e., β-lactamases) that can hydrolyze the β-lactam bond and inactivate the antibiotic. These enzymes can be grouped into four classes (A-D). Among the most genetically diverse are the class D β-lactamases. In this class are β-lactamases that can inactivate the entire spectrum of β-lactam antibiotics (penicillins, cephalosporins, and carbapenems). Class D β-lactamases are mostly found in Gram-negative bacteria such as Pseudomonas aeruginosa , Escherichia coli , Proteus mirabilis , and Acinetobacter baumannii . The active-sites of class D β-lactamases contain an unusual N-carboxylated lysine post-translational modification. A strongly hydrophobic active-site helps create the conditions that allow the lysine to combine with CO2, and the resulting carbamate is stabilized by a number of hydrogen bonds. The carboxy-lysine plays a symmetric role in the reaction, serving as a general base to activate the serine nucleophile in the acylation reaction, and the deacylating water in the second step. There are more than 250 class D β-lactamases described, and the full set of variants shows remarkable diversity with regard to substrate binding and turnover. Narrow-spectrum variants are most effective against the earliest generation penicillins and cephalosporins such as ampicillin and cephalothin. Extended-spectrum variants (also known as extended-spectrum β-lactamases, ESBLs) pose a more dangerous clinical threat as they possess a small number of substitutions that allow them to bind and hydrolyze later generation cephalosporins that contain bulkier side-chain constituents (e.g., cefotaxime, ceftazidime, and cefepime). Mutations that permit this versatility seem to cluster in the area surrounding an active-site tryptophan resulting in a widened active-site to accommodate the oxyimino side-chains of these cephalosporins. More concerning are the class D β-lactamases that hydrolyze clinically important carbapenem β-lactam drugs (e.g., imipenem). Whereas carbapenems irreversibly acylate and inhibit narrow-spectrum β-lactamases, class D carbapenemases are able to recruit and activate a deacylating water. The rotational orientation of the C6 hydroxyethyl group found on all carbapenem antibiotics likely plays a role in whether the deacylating water is effective or not. Inhibition of class D β-lactamases is a current challenge. Commercially available inhibitors that are active against other classes of β-lactamases are ineffective against class D enzymes. On the horizon are several compounds, consisting of both β-lactam derivatives and non-β-lactams, that have the potential of providing novel leads to design new mechanism-based inactivators that are effective against the class D enzymes. Several act synergistically when given in combination with a β-lactam antibiotic, and others show a unique mechanism of inhibition that is distinct from the traditional β-lactamase inhibitors. These studies will bolster structure-based inhibitor design efforts to facilitate the optimization and development of these compounds as class D inactivators.
Collapse
Affiliation(s)
- David A. Leonard
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and Department of Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| |
Collapse
|
36
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
37
|
Abstract
Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.
Collapse
Affiliation(s)
- Jarrod W Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|