1
|
Hiralal A, Geelhoed JS, Neukirchen S, Meysman FJR. Comparative genomic analysis of nickel homeostasis in cable bacteria. BMC Genomics 2024; 25:692. [PMID: 39009997 PMCID: PMC11247825 DOI: 10.1186/s12864-024-10594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Cable bacteria are filamentous members of the Desulfobulbaceae family that are capable of performing centimetre‑scale electron transport in marine and freshwater sediments. This long‑distance electron transport is mediated by a network of parallel conductive fibres embedded in the cell envelope. This fibre network efficiently transports electrical currents along the entire length of the centimetre‑long filament. Recent analyses show that these fibres consist of metalloproteins that harbour a novel nickel‑containing cofactor, which indicates that cable bacteria have evolved a unique form of biological electron transport. This nickel‑dependent conduction mechanism suggests that cable bacteria are strongly dependent on nickel as a biosynthetic resource. Here, we performed a comprehensive comparative genomic analysis of the genes linked to nickel homeostasis. We compared the genome‑encoded adaptation to nickel of cable bacteria to related members of the Desulfobulbaceae family and other members of the Desulfobulbales order. RESULTS Presently, four closed genomes are available for the monophyletic cable bacteria clade that consists of the genera Candidatus Electrothrix and Candidatus Electronema. To increase the phylogenomic coverage, we additionally generated two closed genomes of cable bacteria: Candidatus Electrothrix gigas strain HY10‑6 and Candidatus Electrothrix antwerpensis strain GW3‑4, which are the first closed genomes of their respective species. Nickel homeostasis genes were identified in a database of 38 cable bacteria genomes (including 6 closed genomes). Gene prevalence was compared to 19 genomes of related strains, residing within the Desulfobulbales order but outside of the cable bacteria clade, revealing several genome‑encoded adaptations to nickel homeostasis in cable bacteria. Phylogenetic analysis indicates that nickel importers, nickel‑binding enzymes and nickel chaperones of cable bacteria are affiliated to organisms outside the Desulfobulbaceae family, with several proteins showing affiliation to organisms outside of the Desulfobacterota phylum. Conspicuously, cable bacteria encode a unique periplasmic nickel export protein RcnA, which possesses a putative cytoplasmic histidine‑rich loop that has been largely expanded compared to RcnA homologs in other organisms. CONCLUSION Cable bacteria genomes show a clear genetic adaptation for nickel utilization when compared to closely related genera. This fully aligns with the nickel‑dependent conduction mechanism that is uniquely found in cable bacteria.
Collapse
Affiliation(s)
- Anwar Hiralal
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | | | - Sinje Neukirchen
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium
| | - Filip J R Meysman
- Geobiology Research Group, University of Antwerp, Antwerp, Belgium.
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
2
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Matsia S, Kaoulla A, Menelaou M, Hatzidimitriou A, Papadopoulos T, Reimann M, Pöttgen R, Salifoglou A. Structural speciation in chemical reactivity profiling of binary-ternary systems of Ni(II) with iminodialcohol and aromatic chelators. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Skorupa P, Lindenstrauß U, Burschel S, Blumenscheit C, Friedrich T, Pinske C. The N-terminal domains of the paralogous HycE and NuoCD govern assembly of the respective formate hydrogenlyase and NADH dehydrogenase complexes. FEBS Open Bio 2020; 10:371-385. [PMID: 31925988 PMCID: PMC7050243 DOI: 10.1002/2211-5463.12787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
Formate hydrogenlyase (FHL) is the main hydrogen-producing enzyme complex in enterobacteria. It converts formate to CO2 and H2 via a formate dehydrogenase and a [NiFe]-hydrogenase. FHL and complex I are evolutionarily related and share a common core architecture. However, complex I catalyses the fundamentally different electron transfer from NADH to quinone and pumps protons. The catalytic FHL subunit, HycE, resembles NuoCD of Escherichia coli complex I; a fusion of NuoC and NuoD present in other organisms. The C-terminal domain of HycE harbours the [NiFe]-active site and is similar to other hydrogenases, while this domain in NuoCD is involved in quinone binding. The N-terminal domains of these proteins do not bind cofactors and are not involved in electron transfer. As these N-terminal domains are separate proteins in some organisms, we removed them in E. coli and observed that both FHL and complex I activities were essentially absent. This was due to either a disturbed assembly or to complex instability. Replacing the N-terminal domain of HycE with a 180 amino acid E. coli NuoC protein fusion did not restore activity, indicating that the domains have complex-specific functions. A FHL complex in which the N- and C-terminal domains of HycE were physically separated still retained most of its FHL activity, while the separation of NuoCD abolished complex I activity completely. Only the FHL complex tolerates physical separation of the HycE domains. Together, the findings strongly suggest that the N-terminal domains of these proteins are key determinants in complex assembly.
Collapse
Affiliation(s)
- Philipp Skorupa
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| | - Ute Lindenstrauß
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| | - Sabrina Burschel
- Institute of Biochemistry/Molecular BioenergeticsAlbert‐Ludwigs‐University FreiburgGermany
| | | | - Thorsten Friedrich
- Institute of Biochemistry/Molecular BioenergeticsAlbert‐Ludwigs‐University FreiburgGermany
| | - Constanze Pinske
- Institute of Biology/MicrobiologyMartin‐Luther University Halle‐WittenbergGermany
| |
Collapse
|
5
|
Lacasse MJ, Sebastiampillai S, Côté JP, Hodkinson N, Brown ED, Zamble DB. A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. J Biol Chem 2019; 294:15373-15385. [PMID: 31455635 DOI: 10.1074/jbc.ra119.008101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/08/2019] [Indexed: 12/25/2022] Open
Abstract
[NiFe]-hydrogenases have attracted attention as potential therapeutic targets or components of a hydrogen-based economy. [NiFe]-hydrogenase production is a complicated process that requires many associated accessory proteins that supply the requisite cofactors and substrates. Current methods for measuring hydrogenase activity have low throughput and often require specialized conditions and reagents. In this work, we developed a whole-cell high-throughput hydrogenase assay based on the colorimetric reduction of benzyl viologen to explore the biological networks of these enzymes in Escherichia coli We utilized this assay to screen the Keio collection, a set of nonlethal single-gene knockouts in E. coli BW25113. The results of this screen highlighted the assay's specificity and revealed known components of the intricate network of systems that underwrite [NiFe]-hydrogenase activity, including nickel homeostasis and formate dehydrogenase activities as well as molybdopterin and selenocysteine biosynthetic pathways. The screen also helped identify several new genetic components that modulate hydrogenase activity. We examined one E. coli strain with undetectable hydrogenase activity in more detail (ΔeutK), finding that nickel delivery to the enzyme active site was completely abrogated, and tracked this effect to an ancillary and unannotated lack of the fumarate and nitrate reduction (FNR) anaerobic regulatory protein. Collectively, these results demonstrate that the whole-cell assay developed here can be used to uncover new information about bacterial [NiFe]-hydrogenase production and to probe the cellular components of microbial nickel homeostasis.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Jean-Philippe Côté
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicholas Hodkinson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Abstract
Nickel is essential for the survival of many pathogenic bacteria. E. coli and H. pylori require nickel for [NiFe]-hydrogenases. H. pylori also requires nickel for urease. At high concentrations nickel can be toxic to the cell, therefore, nickel concentrations are tightly regulated. Metalloregulators help to maintain nickel concentration in the cell by regulating the expression of the genes associated with nickel import and export. Nickel import into the cell, delivery of nickel to target proteins, and export of nickel from the cell is a very intricate and well-choreographed process. The delivery of nickel to [NiFe]-hydrogenase and urease is complex and involves several chaperones and accessory proteins. A combination of biochemical, crystallographic, and spectroscopic techniques has been utilized to study the structures of these proteins, as well as protein-protein interactions resulting in an expansion of our knowledge regarding how these proteins sense and bind nickel. In this review, recent advances in the field will be discussed, focusing on the metal site structures of nickel bound to metalloregulators and chaperones.
Collapse
|
7
|
Lacasse MJ, Summers KL, Khorasani-Motlagh M, George GN, Zamble DB. Bimodal Nickel-Binding Site on Escherichia coli [NiFe]-Hydrogenase Metallochaperone HypA. Inorg Chem 2019; 58:13604-13618. [PMID: 31273981 DOI: 10.1021/acs.inorgchem.9b00897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[NiFe]-hydrogenase enzymes catalyze the reversible oxidation of hydrogen at a bimetallic cluster and are used by bacteria and archaea for anaerobic growth and pathogenesis. Maturation of the [NiFe]-hydrogenase requires several accessory proteins to assemble and insert the components of the active site. The penultimate maturation step is the delivery of nickel to a primed hydrogenase enzyme precursor protein, a process that is accomplished by two nickel metallochaperones, the accessory protein HypA and the GTPase HypB. Recent work demonstrated that nickel is rapidly transferred to HypA from GDP-loaded HypB within the context of a protein complex in a nickel selective and unidirectional process. To investigate the mechanism of metal transfer, we examined the allosteric effects of nucleotide cofactors and partner proteins on the nickel environments of HypA and HypB by using a combination of biochemical, microbiological, computational, and spectroscopic techniques. We observed that loading HypB with either GDP or a nonhydrolyzable GTP analogue resulted in a similar nickel environment. In addition, interaction with a mutant version of HypA with disrupted nickel binding, H2Q-HypA, does not induce substantial changes to the HypB G-domain nickel site. Instead, the results demonstrate that HypB modifies the acceptor site of HypA. Analysis of a peptide maquette derived from the N-terminus of HypA revealed that nickel is predominately coordinated by atoms from the N-terminal Met-His motif. Furthermore, HypA is capable of two nickel-binding modes at the N-terminus, a HypB-induced mode and a binding mode that mirrors the peptide maquette. Collectively, these results reveal that HypB brings about changes in the nickel coordination of HypA, providing a mechanism for the HypB-dependent control of the acquisition and release of nickel by HypA.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Kelly L Summers
- Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C9 , Canada
| | | | - Graham N George
- Department of Geological Sciences , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5E2 , Canada
| | - Deborah B Zamble
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada.,Department of Biochemistry , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| |
Collapse
|
8
|
Huang HT, Maroney MJ. Ni(II) Sensing by RcnR Does Not Require an FrmR-Like Intersubunit Linkage. Inorg Chem 2019; 58:13639-13653. [PMID: 31247878 DOI: 10.1021/acs.inorgchem.9b01096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
E. coli RcnR (resistance to cobalt and nickel regulator) is a homotetrameric DNA binding protein that regulates the expression of a Ni(II) and Co(II) exporter (RcnAB) by derepressing expression of rcnA and rcnB in response to binding Co(II) or Ni(II). Prior studies have shown that the cognate metal ions, Ni(II) and Co(II), bind in six-coordinate sites at subunit interfaces and are distinguished from noncognate metals (Cu(I), Cu(II), and Zn(II)) by coordination number and ligand selection. In analogy with FrmR, a formaldehyde-responsive transcriptional regulator in the RcnR/CsoR family, the interfacial site allows the metal ions to "cross-link" the N-terminal domain of one subunit with the invariant Cys35 residue in another, which has been deemed to be key to mediating the allosteric response of the tetrameric protein to metal binding. Through the use of mutagenesis to disconnect one subunit from the metal-mediated cross-link, X-ray absorption spectroscopy (XAS) as a structural probe, LacZ reporter assays, and metal binding studies using isothermal titration calorimetry (ITC), the work presented here shows that neither the interfacial binding site nor the coordination number of Ni(II) is important to the allosteric response to binding of this cognate metal ion. The opposite is found for the other cognate metal ion, Co(II), with respect to the interfacial binding site, suggesting that the molecular mechanisms for transcriptional regulation by the two ions are distinct. The metal binding studies reveal that tight metal binding is maintained in the variant. XAS is further used to demonstrate that His33 is not a ligand for Co(II), Ni(II), or Zn(II) in WT-RcnR. The results are discussed in the context of the overall understanding of the molecular mechanisms of metallosensors.
Collapse
|
9
|
Complex formation between the Escherichia coli [NiFe]-hydrogenase nickel maturation factors. Biometals 2019; 32:521-532. [DOI: 10.1007/s10534-019-00173-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/18/2019] [Indexed: 11/26/2022]
|
10
|
Crystal structures of a [NiFe] hydrogenase large subunit HyhL in an immature state in complex with a Ni chaperone HypA. Proc Natl Acad Sci U S A 2018; 115:7045-7050. [PMID: 29915046 DOI: 10.1073/pnas.1801955115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ni-Fe clusters are inserted into the large subunit of [NiFe] hydrogenases by maturation proteins such as the Ni chaperone HypA via an unknown mechanism. We determined crystal structures of an immature large subunit HyhL complexed with HypA from Thermococcus kodakarensis Structure analysis revealed that the N-terminal region of HyhL extends outwards and interacts with the Ni-binding domain of HypA. Intriguingly, the C-terminal extension of immature HyhL, which is cleaved in the mature form, adopts a β-strand adjacent to its N-terminal β-strands. The position of the C-terminal extension corresponds to that of the N-terminal extension of a mature large subunit, preventing the access of endopeptidases to the cleavage site of HyhL. These findings suggest that Ni insertion into the active site induces spatial rearrangement of both the N- and C-terminal tails of HyhL, which function as a key checkpoint for the completion of the Ni-Fe cluster assembly.
Collapse
|
11
|
Khorasani-Motlagh M, Lacasse MJ, Zamble DB. High-affinity metal binding by the Escherichia coli [NiFe]-hydrogenase accessory protein HypB is selectively modulated by SlyD. Metallomics 2018; 9:482-493. [PMID: 28352890 DOI: 10.1039/c7mt00037e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[NiFe]-hydrogenase, which catalyzes the reversible conversion between hydrogen gas and protons, is a vital component of the metabolism of many pathogens. Maturation of [NiFe]-hydrogenase requires selective nickel insertion that is completed, in part, by the metallochaperones SlyD and HypB. Escherichia coli HypB binds nickel with sub-picomolar affinity, and the formation of the HypB-SlyD complex activates nickel release from the high-affinity site (HAS) of HypB. In this study, the metal selectivity of this process was investigated. Biochemical experiments revealed that the HAS of full length HypB can bind stoichiometric zinc. Moreover, in contrast to the acceleration of metal release observed with nickel-loaded HypB, SlyD blocks the release of zinc from the HypB HAS. X-ray absorption spectroscopy (XAS) demonstrated that SlyD does not impact the primary coordination sphere of nickel or zinc bound to the HAS of HypB. Instead, computational modeling and XAS of HypB loaded with nickel or zinc indicated that zinc binds to HypB with a different coordination sphere than nickel. The data suggested that Glu9, which is not a nickel ligand, directly coordinates zinc. These results were confirmed through the characterization of E9A-HypB, which afforded weakened zinc affinity compared to wild-type HypB but similar nickel affinity. This mutant HypB fully supports the production of [NiFe]-hydrogenase in E. coli. Altogether, these results are consistent with the model that the HAS of HypB functions as a nickel site during [NiFe]-hydrogenase enzyme maturation and that the metal selectivity is controlled by activation of metal release by SlyD.
Collapse
|
12
|
Huang HT, Bobst CE, Iwig JS, Chivers PT, Kaltashov IA, Maroney MJ. Co(II) and Ni(II) binding of the Escherichia coli transcriptional repressor RcnR orders its N terminus, alters helix dynamics, and reduces DNA affinity. J Biol Chem 2017; 293:324-332. [PMID: 29150441 DOI: 10.1074/jbc.ra117.000398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/13/2017] [Indexed: 12/22/2022] Open
Abstract
RcnR, a transcriptional regulator in Escherichia coli, derepresses the expression of the export proteins RcnAB upon binding Ni(II) or Co(II). Lack of structural information has precluded elucidation of the allosteric basis for the decreased DNA affinity in RcnR's metal-bound states. Here, using hydrogen-deuterium exchange coupled with MS (HDX-MS), we probed the RcnR structure in the presence of DNA, the cognate metal ions Ni(II) and Co(II), or the noncognate metal ion Zn(II). We found that cognate metal binding altered flexibility from the N terminus through helix 1 and modulated the RcnR-DNA interaction. Apo-RcnR and RcnR-DNA complexes and the Zn(II)-RcnR complex exhibited similar 2H uptake kinetics, with fast-exchanging segments located in the N terminus, in helix 1 (residues 14-24), and at the C terminus. The largest difference in 2H incorporation between apo- and Ni(II)- and Co(II)-bound RcnR was observed in helix 1, which contains the N terminus and His-3, and has been associated with cognate metal binding. 2H uptake in helix 1 was suppressed in the Ni(II)- and Co(II)-bound RcnR complexes, in particular in the peptide corresponding to residues 14-24, containing Arg-14 and Lys-17. Substitution of these two residues drastically affected DNA-binding affinity, resulting in rcnA expression in the absence of metal. Our results suggest that cognate metal binding to RcnR orders its N terminus, decreases helix 1 flexibility, and induces conformational changes that restrict DNA interactions with the positively charged residues Arg-14 and Lys-17. These metal-induced alterations decrease RcnR-DNA binding affinity, leading to rcnAB expression.
Collapse
Affiliation(s)
- Hsin-Ting Huang
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Cedric E Bobst
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jeffrey S Iwig
- Carmot Therapeutics, Inc., San Francisco, California 94158
| | - Peter T Chivers
- Departments of Biosciences and Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003.
| |
Collapse
|
13
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
|
14
|
Metallochaperones and metalloregulation in bacteria. Essays Biochem 2017; 61:177-200. [PMID: 28487396 DOI: 10.1042/ebc20160076] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.
Collapse
|
15
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
16
|
Chang YY, Cheng T, Yang X, Jin L, Sun H, Li H. Functional disruption of peroxiredoxin by bismuth antiulcer drugs attenuates Helicobacter pylori survival. J Biol Inorg Chem 2017; 22:673-683. [PMID: 28361362 DOI: 10.1007/s00775-017-1452-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 01/26/2023]
Abstract
Bismuth drugs have been used clinically to treat infections from Helicobacter pylori, a pathogen that is strongly related to gastrointestinal diseases even stomach cancer. Despite extensive studies, the mechanisms of action of bismuth drugs are not fully understood. Alkyl hydroperoxide reductase subunit C (AhpC) is the most abundant 2-cysteine peroxiredoxin, crucial for H. pylori survival in the host by defense of oxidative stress. Herein we show that a Bi(III) antiulcer drug (CBS) binds to the highly conserved cysteine residues (Cys49 and Cys169) with a dissociation constant (K d) of Bi(III) to AhpC of 3.0 (±1.0) × 10-24 M. Significantly the interaction of CBS with AhpC disrupts the peroxiredoxin and chaperone activities of the enzyme both in vitro and in bacterial cells, leading to attenuated bacterial survival. Moreover, using a home-made fluorescent probe, we demonstrate that Bi(III) also perturbs AhpC relocation between the cytoplasm and membrane region in decomposing the exogenous ROS. Our study suggests that disruption of redox homeostasis by bismuth drugs via interaction with key enzymes such as AhpC contributes to their antimicrobial activity.
Collapse
Affiliation(s)
- Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.,Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, People's Republic of China
| | - Xinming Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, People's Republic of China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
17
|
Zeer-Wanklyn CJ, Zamble DB. Microbial nickel: cellular uptake and delivery to enzyme centers. Curr Opin Chem Biol 2017; 37:80-88. [PMID: 28213182 DOI: 10.1016/j.cbpa.2017.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 01/29/2023]
Abstract
Nickel enzymes allow microorganisms to access chemistry that can be vital for survival and virulence. In this review we highlight recent work on several systems that import nickel ions and deliver them to the active sites of these enzymes. Small molecules, in particular l-His and derivatives, may chelate nickel ions before import at TonB-dependent outer-membrane and ABC-type inner-membrane transporters. Inside the cell, nickel ions are used by maturation factors required to produce nickel enzymes such as [NiFe]-hydrogenase, urease and lactate racemase. These accessory proteins often exhibit metal selectivity and frequently include an NTP-hydrolyzing metallochaperone protein. The research described provides a deeper understanding of the processes that allow microorganisms to access nickel ions from the environment and incorporate them into nickel proteins.
Collapse
Affiliation(s)
- Conor J Zeer-Wanklyn
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
18
|
Lacasse MJ, Douglas CD, Zamble DB. Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins. Biochemistry 2016; 55:6821-6831. [PMID: 27951644 DOI: 10.1021/acs.biochem.6b00706] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[NiFe]-hydrogenase enzymes catalyze the reversible reduction of protons to molecular hydrogen and serve as a vital component of the metabolism of many pathogens. The synthesis of the bimetallic catalytic center requires a suite of accessory proteins, and the penultimate step, nickel insertion, is facilitated by the metallochaperones HypA and HypB. In Escherichia coli, nickel moves from a site in the GTPase domain of HypB to HypA in a process accelerated by GDP. To determine how the transfer of nickel is controlled, the impacts of HypA and nucleotides on the properties of HypB were examined. Integral to this work was His2Gln HypA, a mutant with attenuated nickel affinity that does not support hydrogenase production in E. coli. This mutation inhibits the translocation of nickel from HypB. H2Q-HypA does not modulate the apparent metal affinity of HypB, but the stoichiometry and stability of the HypB-nickel complex are modulated by the nucleotide. Furthermore, the HypA-HypB interaction was detected by gel filtration chromatography if HypB was loaded with GDP, but not a GTP analogue, and the protein complex dissociated upon binding of nickel to His2 of HypA. In contrast, a nucleotide does not modulate the binding of zinc to HypB, and loading zinc into the GTPase domain of HypB inhibits formation of the complex with HypA. These results demonstrate that GTP hydrolysis controls both metal binding and protein-protein interactions, conferring selective and directional nickel transfer during [NiFe]-hydrogenase biosynthesis.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Colin D Douglas
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6.,Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
19
|
Biosynthesis of Salmonella enterica [NiFe]-hydrogenase-5: probing the roles of system-specific accessory proteins. J Biol Inorg Chem 2016; 21:865-73. [PMID: 27566174 DOI: 10.1007/s00775-016-1385-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems.
Collapse
|
20
|
González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia. FRONTIERS IN PLANT SCIENCE 2016; 7:1088. [PMID: 27524990 PMCID: PMC4965479 DOI: 10.3389/fpls.2016.01088] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 05/03/2023]
Abstract
Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Abstract
[NiFe]-hydrogenases catalyze the reversible conversion of hydrogen gas into protons and electrons and are vital metabolic components of many species of bacteria and archaea. At the core of this enzyme is a sophisticated catalytic center comprising nickel and iron, as well as cyanide and carbon monoxide ligands, which is anchored to the large hydrogenase subunit through cysteine residues. The production of this multicomponent active site is accomplished by a collection of accessory proteins and can be divided into discrete stages. The iron component is fashioned by the proteins HypC, HypD, HypE, and HypF, which functionalize iron with cyanide and carbon monoxide. Insertion of the iron center signals to the metallochaperones HypA, HypB, and SlyD to selectively deliver the nickel to the active site. A specific protease recognizes the completed metal cluster and then cleaves the C-terminus of the large subunit, resulting in a conformational change that locks the active site in place. Finally, the large subunit associates with the small subunit, and the complete holoenzyme translocates to its final cellular position. Beyond this broad overview of the [NiFe]-hydrogenase maturation process, biochemical and structural studies are revealing the fundamental underlying molecular mechanisms. Here, we review recent work illuminating how the accessory proteins contribute to the maturation of [NiFe]-hydrogenase and discuss some of the outstanding questions that remain to be resolved.
Collapse
Affiliation(s)
- Michael J Lacasse
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto , Toronto, Ontario, Canada M5S 3H6.,Department of Biochemistry, University of Toronto , Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
22
|
|
23
|
Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Proc Natl Acad Sci U S A 2015; 112:7701-6. [PMID: 26056269 DOI: 10.1073/pnas.1503102112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ni atom at the catalytic center of [NiFe] hydrogenases is incorporated by a Ni-metallochaperone, HypA, and a GTPase/ATPase, HypB. We report the crystal structures of the transient complex formed between HypA and ATPase-type HypB (HypBAT) with Ni ions. Transient association between HypA and HypBAT is controlled by the ATP hydrolysis cycle of HypBAT, which is accelerated by HypA. Only the ATP-bound form of HypBAT can interact with HypA and induces drastic conformational changes of HypA. Consequently, upon complex formation, a conserved His residue of HypA comes close to the N-terminal conserved motif of HypA and forms a Ni-binding site, to which a Ni ion is bound with a nearly square-planar geometry. The Ni binding site in the HypABAT complex has a nanomolar affinity (Kd = 7 nM), which is in contrast to the micromolar affinity (Kd = 4 µM) observed with the isolated HypA. The ATP hydrolysis and Ni binding cause conformational changes of HypBAT, affecting its association with HypA. These findings indicate that HypA and HypBAT constitute an ATP-dependent Ni acquisition cycle for [NiFe]-hydrogenase maturation, wherein HypBAT functions as a metallochaperone enhancer and considerably increases the Ni-binding affinity of HypA.
Collapse
|
24
|
Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1350-69. [PMID: 25461840 DOI: 10.1016/j.bbamcr.2014.11.021] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Abstract
The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
25
|
Chivers PT. Cobalt and Nickel. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cobalt and nickel play key roles in biological systems as cofactors in a small number of important enzymes. The majority of these are found in microbes. Evidence for direct roles for Ni(II) and Co(II) enzymes in higher organisms is limited, with the exception of the well-known requirement for the cobalt-containing vitamin B12 cofactor and the Ni-dependent urease in plants. Nonetheless, nickel in particular plays a key role in human health because of its essential role in microbes that inhabit various growth niches within the body. These roles can be beneficial, as can be seen with the anaerobic production and consumption of H2 in the digestive tract by bacteria and archaea that results in increased yields of short-chain fatty acids. In other cases, nickel has an established role in the establishment of pathogenic infection (Helicobacter pylori urease and colonization of the stomach). The synthesis of Co- and Ni-containing enzymes requires metal import from the extracellular milieu followed by the targeting of these metals to the appropriate protein and enzymes involved in metallocluster or cofactor biosynthesis. These metals are toxic in excess so their levels must be regulated carefully. This complex pathway of metalloenzyme synthesis and intracellular homeostasis requires proteins that can specifically recognize these metals in a hierarchical manner. This chapter focuses on quantitative and structural details of the cobalt and nickel binding sites in transport, trafficking and regulatory proteins involved in cobalt and nickel metabolism in microbes.
Collapse
Affiliation(s)
- Peter T. Chivers
- Department of Chemistry, School of Biological and Biomedical Sciences, and Biophysical Sciences Institute, Durham University Durham UK
| |
Collapse
|
26
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Sydor AM, Lebrette H, Ariyakumaran R, Cavazza C, Zamble DB. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB. J Biol Chem 2014; 289:3828-41. [PMID: 24338018 PMCID: PMC3924253 DOI: 10.1074/jbc.m113.502781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/01/2013] [Indexed: 12/23/2022] Open
Abstract
The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.
Collapse
Affiliation(s)
- Andrew M. Sydor
- From the Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada and
| | - Hugo Lebrette
- University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, DSV, IBS and CNRS, IBS, F-38000 Grenoble, France
| | - Rishikesh Ariyakumaran
- From the Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada and
| | - Christine Cavazza
- University Grenoble Alpes, Institut de Biologie Structurale (IBS), CEA, DSV, IBS and CNRS, IBS, F-38000 Grenoble, France
| | - Deborah B. Zamble
- From the Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada and
| |
Collapse
|
28
|
Cheng T, Li H, Yang X, Xia W, Sun H. Interaction of SlyD with HypB of Helicobacter pylori facilitates nickel trafficking. Metallomics 2014; 5:804-7. [PMID: 23708681 DOI: 10.1039/c3mt00014a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SlyD from Helicobacter pylori interacts with the [NiFe] hydrogenase accessory protein HypB through its IF domain. HpSlyD delivers Ni(2+) to HpHypB, leading to the enhancement of GTPase activity of HpHypB and implying the facilitation of Ni(2+) delivery from HpHypB to [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | | | | | | | | |
Collapse
|
29
|
Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis. J Bacteriol 2014; 196:1238-49. [PMID: 24415728 DOI: 10.1128/jb.01160-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-(14)C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-(14)C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.
Collapse
|
30
|
Douglas CD, Ngu TT, Kaluarachchi H, Zamble DB. Metal transfer within the Escherichia coli HypB-HypA complex of hydrogenase accessory proteins. Biochemistry 2013; 52:6030-9. [PMID: 23899293 DOI: 10.1021/bi400812r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The maturation of [NiFe]-hydrogenase in Escherichia coli is a complex process involving many steps and multiple accessory proteins. The two accessory proteins HypA and HypB interact with each other and are thought to cooperate to insert nickel into the active site of the hydrogenase-3 precursor protein. Both of these accessory proteins bind metal individually, but little is known about the metal-binding activities of the proteins once they assemble together into a functional complex. In this study, we investigate how complex formation modulates metal binding to the E. coli proteins HypA and HypB. This work lead to a re-evaluation of the HypA nickel affinity, revealing a KD on the order of 10(-8) M. HypA can efficiently remove nickel, but not zinc, from the metal-binding site in the GTPase domain of HypB, a process that is less efficient when complex formation between HypA and HypB is disrupted. Furthermore, nickel release from HypB to HypA is specifically accelerated when HypB is loaded with GDP, but not GTP. These results are consistent with the HypA-HypB complex serving as a transfer step in the relay of nickel from membrane transporter to its final destination in the hydrogenase active site and suggest that this complex contributes to the metal fidelity of this pathway.
Collapse
Affiliation(s)
- Colin D Douglas
- Department of Chemistry, University of Toronto , 80 St. George St., Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
31
|
Sasaki D, Watanabe S, Matsumi R, Shoji T, Yasukochi A, Tagashira K, Fukuda W, Kanai T, Atomi H, Imanaka T, Miki K. Identification and structure of a novel archaeal HypB for [NiFe] hydrogenase maturation. J Mol Biol 2013; 425:1627-40. [PMID: 23399544 DOI: 10.1016/j.jmb.2013.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
HypB (metal-binding GTPase) and HypA (nickel metallochaperone) are required for nickel insertion into [NiFe] hydrogenase. However, the HypB homolog proteins are not found in some archaeal species including Thermococcales. In this article, we identify a novel archaeal Mrp/MinD family ATPase-type HypB from Thermococcus kodakarensis (Tk-mmHypB) and determine its crystal structure. The mmhypB gene is conserved among species lacking the hypB gene and is located adjacent to the hypA gene on their genome. Deletion of the mmhypB gene leads to a significant reduction in hydrogen-dependent growth of T. kodakarensis, which is restored by nickel supplementation. The monomer structure of Tk-mmHypB is similar to those of the Mrp/MinD family ATPases. The ADP molecules are tightly bound to the protein. Isothermal titration calorimetry shows that Tk-mmHypB binds ATP with a K(d) value of 84 nM. ADP binds more tightly than does ATP, with a K(d) value of 15 nM. The closed Tk-mmHypB dimer in the crystallographic asymmetric unit is consistent with the ATP-hydrolysis-deficient dimer of the Mrp/MinD family Soj/MinD proteins. Structural comparisons with these proteins suggest the ATP-binding dependent conformational change and rearrangement of the Tk-mmHypB dimer. These observations imply that the nickel insertion process during the [NiFe] hydrogenase maturation is performed by HypA, mmHypB, and a nucleotide exchange factor in these archaea.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Higgins KA, Carr CE, Maroney MJ. Specific metal recognition in nickel trafficking. Biochemistry 2012; 51:7816-32. [PMID: 22970729 DOI: 10.1021/bi300981m] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering, and incorporating the metal into target enzymes and controlling the levels of nickel in cells to prevent toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., Escherichia coli transports nickel for hydrogenases made under anaerobic conditions, and Helicobacter pylori requires nickel for hydrogenase and urease that are essential for acid viability), the "traffic pattern" for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate a variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR, and RcnR, employed to generate specific biological responses to nickel ions.
Collapse
Affiliation(s)
- Khadine A Higgins
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
33
|
|
34
|
Kaluarachchi H, Zhang JW, Zamble DB. Escherichia coli SlyD, more than a Ni(II) reservoir. Biochemistry 2011; 50:10761-3. [PMID: 22085337 DOI: 10.1021/bi201590d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SlyD interacts with HypB and contributes to nickel insertion during [NiFe]-hydrogenase biogenesis. Herein, we provide evidence of SlyD acting as a nickel storage determinant in Escherichia coli and show that this Ni(II) can be mobilized to HypB in vitro even under competitive conditions. Furthermore, SlyD enhances the GTPase activity of HypB, and acceleration of release of Ni(II) from HypB is more pronounced when HypB is GDP-bound. The data support a model in which a HypB-SlyD complex establishes communication between GTP hydrolysis and nickel delivery and provide insight into the role of the HypB-SlyD complex during [NiFe]-hydrogenase biosynthesis.
Collapse
Affiliation(s)
- Harini Kaluarachchi
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | | | | |
Collapse
|